Organization of Course

INTRODUCTION

- 1. Course overview
- 2. Air Toxics overview
- 3. HYSPLIT overview

HYSPLIT Theory and Practice

4. Meteorology

- 5. Back Trajectories
- 6. Concentrations / Deposition
- 7. HYSPLIT-SV for

semivolatiles (e.g, PCDD/F)

8. HYSPLIT-HG for mercury

Overall Project Issues & Examples

- 9. Emissions Inventories
- 10. Source-Receptor Post-

Processing

- 11. Source-Attribution for Deposition
- 12. Model Evaluation
- 13. Model Intercomparison
- 14. Collaboration Possibilities

- S HYSPLIT requires at a minimum, u,v,w,T, P_{sfc} (RH or Q optional) in 3 dimensions
- Meteorological data are specially formatted to minimize execution time
 - Compressed binary
 - Fields are written at each level for one time period, then repeated as needed in time
- All forecast data currently available in HYSPLIT menus originates from NOAA's National Centers for Environmental Prediction (NCEP)
- Forecast or Analysis
 - Registration is required to run HYSPLIT dispersion with forecast data
 - Data is available globally and regionally over North America
- PC HYSPLIT downloads data directly from NOAA ARL servers; options are available to switch to other FTP servers

Forecast Meteorological Data:

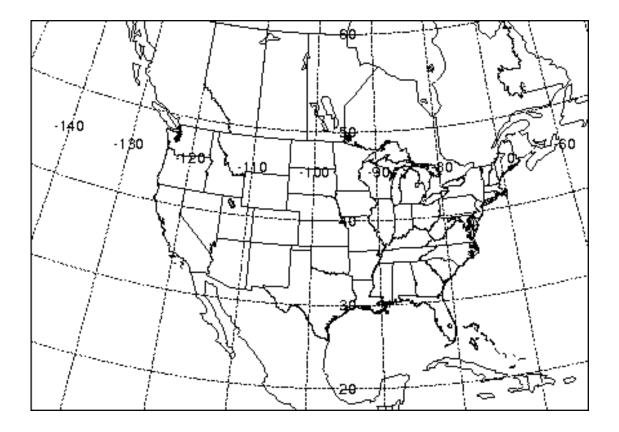
- North American Meso (NAM)
- Rapid Update Cycle (RUC)
- Global Forecast System (GFS)

<u>Analysis</u> Meteorological Data:

- North American Meso (NAM)
- NAM Data Assimilation System (NDAS, formerly EDAS)
- Global Data Assimilation System (GDAS, formerly FNL)
- 🥑 Global Reanalysis

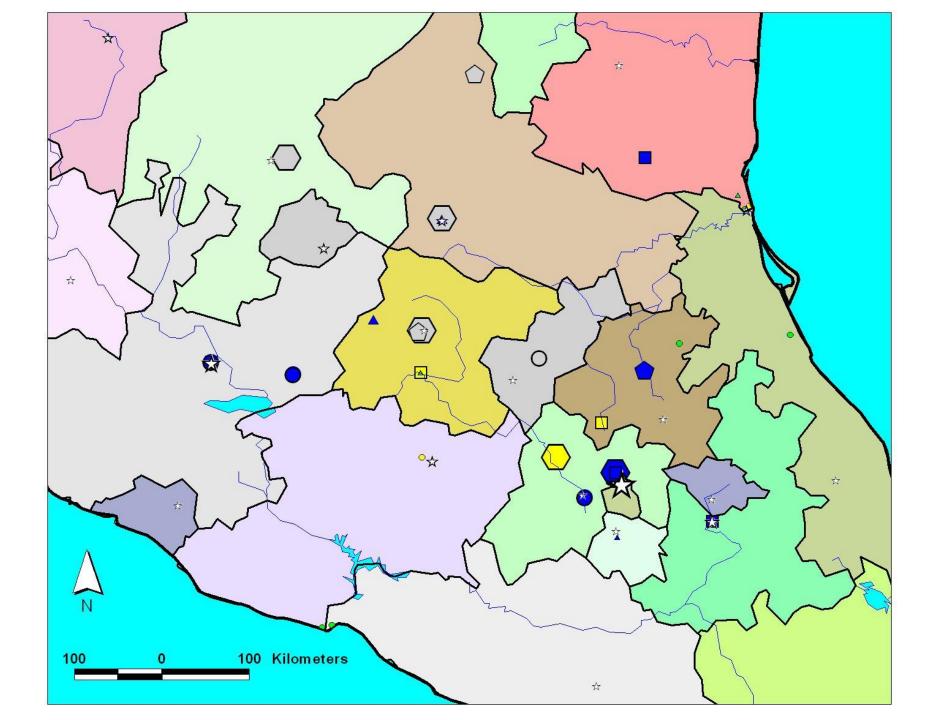
# Menus of Hysplit4		
Meteorology	<u>T</u> rajectory	<u>C</u> oncentration
	HY	SPLIT4
ARL Data FTP		system for computing
Convert to ARL	Appended	ncentration, and Depositio Reset
Display Data 🔸	Archive	Keset
Utilities 🕨	Reanalysis	
Meteorology Help	Set Server	

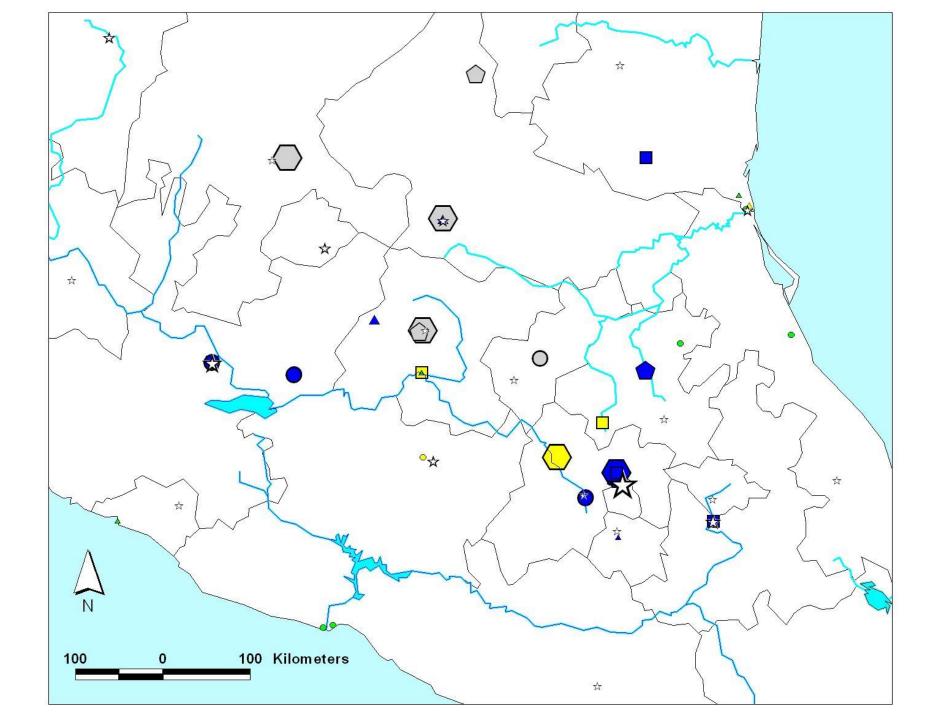
For more information, see the following websites: http://www.arl.noaa.gov/READYmetdata.php

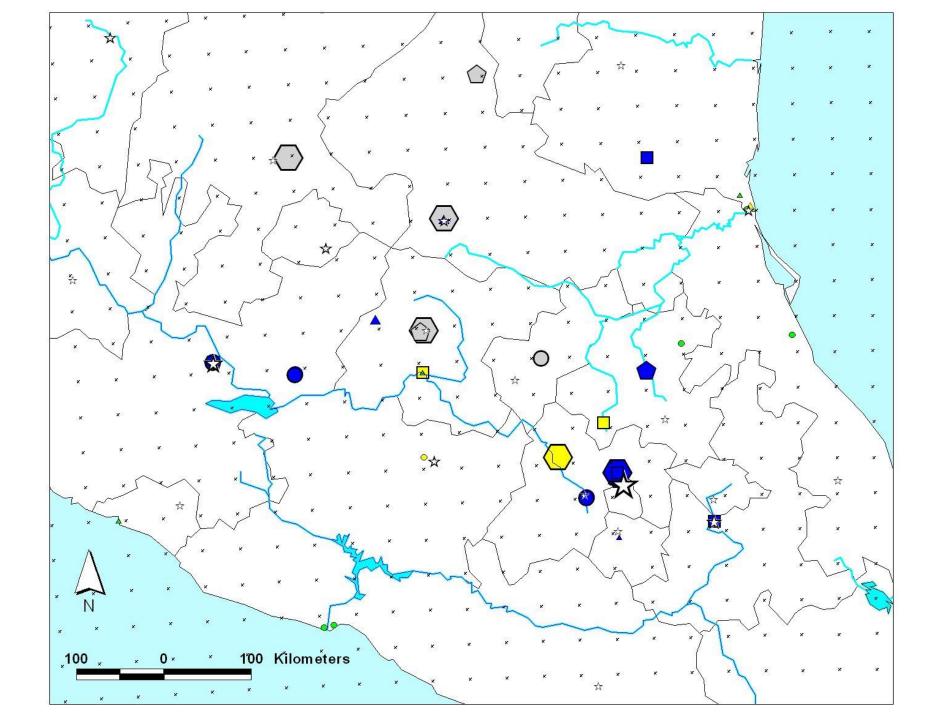

http://www.arl.noaa.gov/archives.php

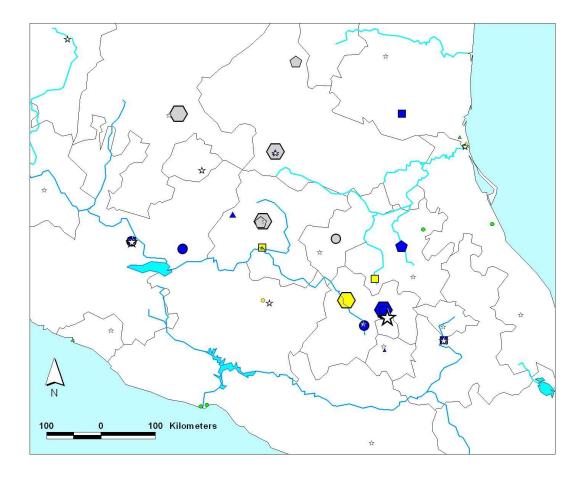
http://www.nco.ncep.noaa.gov/pmb/products/

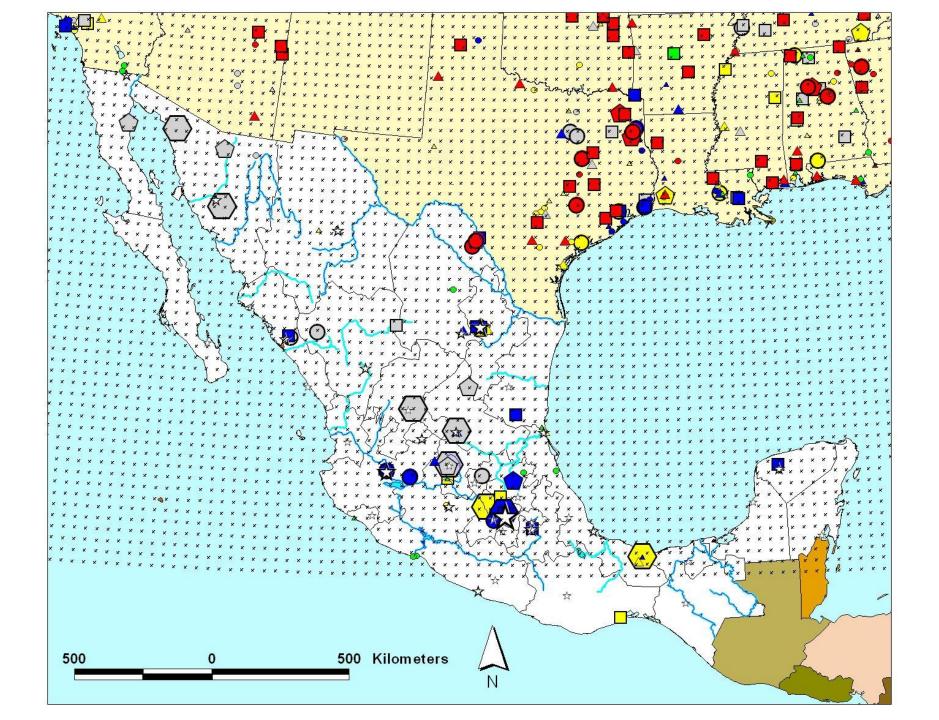
Regional Met Data Sets

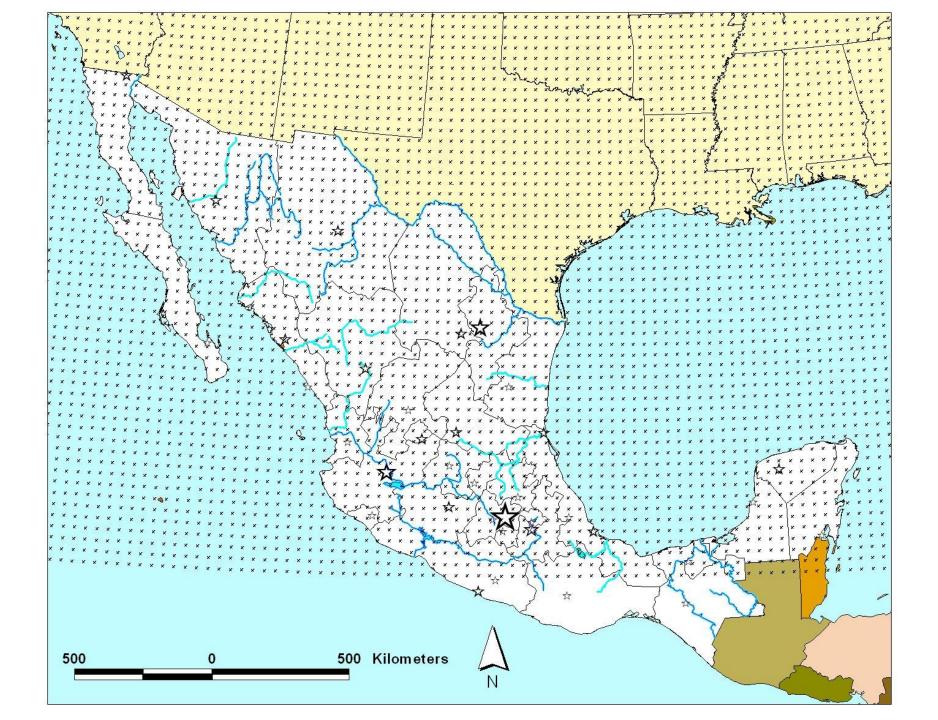

Example: EDAS 40km data set

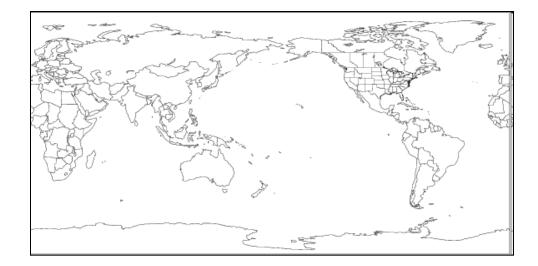

EDAS 40km Grid




ftp://arlftp.arlhq.noaa.gov/pub/archives/edas40/edas.aug08.001


ftp://arlftp.arlhq.noaa.gov/pub/archives/edas40/edas.aug08.002



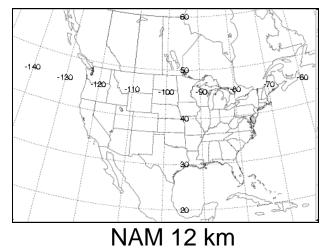

Global Met Data Sets

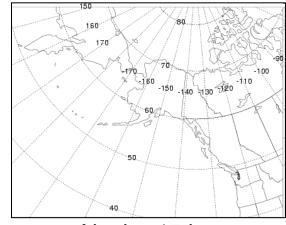
Example:

NCEP/NCAR Reanalysis Data Archive

Second Second S

- Global coverage from 1948 to ~present
- NCEP & NCAR reran GFS for the past
- Used primarily for running events prior to model data availability
 - reanalysis 2.5 degree (~277 km), 6 hrly, pressure levels, archive

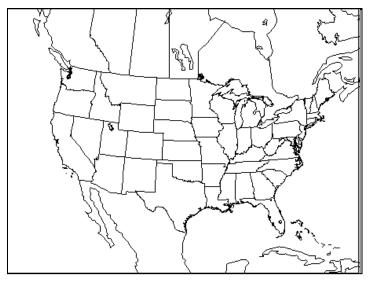



Global reanalysis

Index of ftp://arlftp.arlhq.noaa.gov/pub/archi	ves/reanalysis/ - M	ozilla Fire	efox	
<u>Eile Edit V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp				
🕢 🗸 C 🗶 🏡 🖳 ftp://arlftp.arlhq.noaa.gov/pub/arch	nives/reanalysis/	☆ ·	• G• Google	P
S NOAA web mail 🚞 credit cards 🚞 on-line publications 🚞 software [🗎 NOAA stuff 🚞 nersonal 🖡	GIS training	and other 🧮 ton -	stub checks »
	🔶 W Wikipedia 🔹 🥝 🔹		🔴 🔅 84°F •	
Web Search •	🕆 w wikipedia 🔹 🧐 🔹	<u>~</u> • 🗳	₩ 🔅 84% •	
				<u>^</u>
Index of ftp://arlftp.arlhq.noaa.gov/put	- /archivoc /roanaly			
	J/archives/reariary	515/		-
📫 Up to higher level directory				
Name	Size	Last M	odified	
README.TXT	5 KB	4/7/2008	12:00:00 AM	
☐ RP194801.qbl	120226 KB		12:00:00 AM	
□ RP194802.gbl	112469 KB		12:00:00 AM	
	120226 KB		12:00:00 AM	
	116348 KB	9/26/2003	12:00:00 AM	
	120226 KB	9/26/2003	12:00:00 AM	
	116348 KB	9/26/2003	12:00:00 AM	
📾 RP194807.gbl	120226 KB	9/26/2003	12:00:00 AM	
	120226 KB	9/26/2003	12:00:00 AM	
🖬 RP194809.gbl	116348 KB	9/26/2003	12:00:00 AM	
📾 RP194810.gbl	120226 KB	9/26/2003	12:00:00 AM	
📾 RP194811.gbl	116348 KB	9/26/2003	12:00:00 AM	
📾 RP194812.gbl	120226 KB	9/26/2003	12:00:00 AM	
📾 RP194901.gbl	120226 KB	9/26/2003	12:00:00 AM	
📾 RP194902.gbl				
	108591 KB	9/26/2003	12:00:00 AM	
	108591 KB 120226 KB	9/26/2003 9/26/2003	12:00:00 AM 12:00:00 AM	
	120226 KB	9/26/2003	12:00:00 AM	
	120226 KB 116348 KB	9/26/2003 9/26/2003	12:00:00 AM 12:00:00 AM	

NAM Meteorological Data:

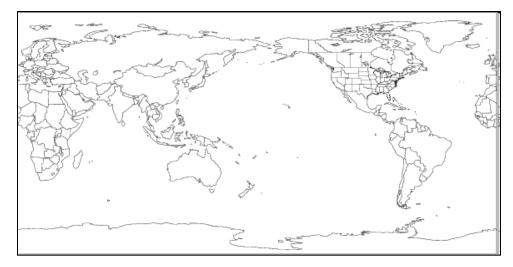
- Regional forecast model used in most HYSPLIT model runs over U.S.
- Updated every 6 hours
 - namf CONUS, 12 km, 3 hrly, pressure levels, 48h forecast
 - namf40 CONUS, 40 km, 3 hrly, pressure levels, 84h forecast
 - namakf Alaska, 45 km, 3 hrly, pressure levels, 36h forecast
 - namsf.XXtile 4 U.S. quadrants, 12 km, 1 hrly, sigma levels, 48h forecast
 - namsf.AK Alaska,12 km, 1 hrly, sigma levels, 48h forecast
 - namsf.HI Hawaii, 12 km, 1 hrly, sigma levels, 48h forecast
 - Nam12/NAMs CONUS, 12 km, 3 hrly, P & S levels, daily archive of forecasts
 - NDAS (EDAS) 40 km (80km <2004), 3 hrly, pressure, archive (analysis + forecast)</p>



Alaska 45 km

Supplement

Solution RUC Meteorological Data:


- Rapid Update Cycle forecast model useful for rapidly changing conditions
- Incorporates radar, satellite, aircraft, surface, upper-air observations
- Updated every 3 hours
 - S ruc − CONUS, 20 km, 1 hrly, pressure levels, 12h forecast

RUC 20 km

GFS Meteorological Data:

- Global Forecast System model Global coverage
- Updated every 6 hours
 - gfsf 1 degree (~111 km), 3 hrly, pressure levels, 180h forecast
 - s gfslrf 2.5 degree (~277km), 12 hrly, pressure levels, 180-384 forecast hours
 - Solution Solution Solution Solution Solution Solution (analysis + forecasts) GDAS (>12/2004) − 1 degree, 3 hrly, pressure levels, archive (analysis + forecasts)
 - Science GDAS (>8/2007) 0.5 degree, 3 hrly, hybrid levels, archive (analysis + forecasts)
 - FNL (1997-2006) 191 km, 6 hrly, pressure levels, archive (analysis + forecast)

Data Requirements

File characteristics and projection

HYSPLIT requires that meteorological data fields be:

- projected on a conformal map projection (Polar Stereographic, Lambert, or Mercator) or a regular latitude-longitude grid,
- organized with one record per variable per level and all records must have the same record length,
- written in a forward time sequence.

More details on the format and packing of the meteorological data can be found in the <u>HYSPLIT User's Guide</u>.

The **\exec** directory contains several command line programs (**chk_data.exe**, **chk_rec.exe**) that can be used to analyze a HYSPLIT compatible meteorological data file. **chk_file.exe** has been incorporated into a HYSPLIT GUI under the <u>Meteorology</u> / <u>Display Data</u> menu.

Ø Menus of Hysplit4			
Meteorology	<u>T</u> rajectory	<u>C</u> oncentration	. <u>A</u> dvanced
	HYSP An integrated sy ajectories, Air Conce	stem for computing	sition
Convert to ARL		set	Неlр
Display Data	Check File		
Utilities	Contour Map		
Meteorology Help	Text Profile		
	Grid Domain		

Forecast Data Access

Forecast Data

Forecast meteorological data, already been converted from standard GRIB format to the HYSPLIT compatible format, can be conveniently downloaded using the **ARL Data FT**P and **Forecas**t submenus of the **Meteorology** menu. The user can download the most recent four forecast runs (cycles), except for the RUC model, which is available eight times per day.

All meteorological data are retrieved by default from the Air Resources Laboratory's FTP server (gus.arlhq.noaa.gov). The submenu option **Set Server** allows the user to change to an alternate ARL FTP server (arlftp.arlhq.noaa.gov), to a backup NOAA NCEP operational FTP server (ftpprd.ncep.noaa.gov) or to user-specified FTP server and directory containing HYSPLIT compatible meteorological files.

# Menus of Hysplit4			
Meteorology	<u>T</u> rajectory	<u>C</u> oncentration	<u>A</u> dvanced
	- I HYS	PLIT4	
ARL Data FTP		ystem for computing	
Convert to ARL	Appended	centration, and Depositio	Неlp
Display Data	Archive		nerp
Utilities 🥬	Reanalysis		
Meteorology Help	Set Server		

Forecast Data Access

Processed Forecast Data

The forecast data on the ARL server covers 4 domains:

- North America
 - * NAM (North American Mesoscale 12 and 40 km),
 - * NAM (12 km sigma in four tiles NE, SE, SW, NW)
 - * RUC (Rapid Update Cycle 20 km)
- <u>Alaska</u>
 - * NAM (12 km sigma level and 45 km pressure level data)
- <u>Hawaii</u>
 - * NAM (12 km sigma level data)
- <u>Global latitude-longitude grids</u>
 - * GFSF 1 degree, 3 hourly to +180 hours,
 - * **GFSLR** 2.5 degree, 12 hourly from +180 to +360 hours.

🦸 FTP Processed Forecast Data from ARL

All data files are derived from various forecast models. Abbreviations indicate: spatial resolution, temporal resolution (1 or 3 hr), vertical coordinate (P=pressure, S=sigma, s=S>0.7), and forecast duration.

FTP Password:	glennr@hyspl	.it						
Meteorological File Selection								
⊙ gfsf	1-deg 3P +	180h (594	Mb)					
C gfslrf	2.5 d 12P +	360h (30	Mb)					
C namakf	45-km 3P	+36h (39	Mb)					
C namf	12-km 3P	+48h (881	Mb)					
C nam£40	40-km 3P	+84h (150	Mb)					
🔘 namsf.AK	12-km 1S	+48h (1297	/Mb)					
🔘 namsf.HI	12-km 1S	+48h (145	iMb)					
C namsf.NEtile	12-km 1s	+48h (229	Mb)					
○ namsf.N\tile	12-km 1s	+48h (229	Mb)					
🔘 namsf.SEtile	12-km 1s	+48h (229	Mb)					
🔿 namsf.S\tile	12-km 1s	+48h (229	Mb)					
O ruc	20-km 1P	+12h (152	2 Mb)					
Year (YYYY): 2009	Month (MM):	02 Day	(DD): 17					
Forecast Cycle (1	Forecast Cycle (UTC): 0 00 0 06 0 12 0 18							
RUC only Cycle (UTC): C 03 C 09 C 15 C 21								
Output path: C:/hysplit4/working								
Quit Hel	թ	et Data Fi	le					

Prior to selecting **Get Data File**, a valid Email address should be entered into the password field. The latest forecast cycle will be downloaded by default. A percent complete message will appear indicating the FTP is in progress. Another message will appear when the FTP process is complete. More information on the forecast meteorological data can be found on the <u>READY website</u>.

PC-HYSPLIT WORKSHOP

Analysis Data Access

Analysis Data FTP

There are 3 options under the **ARL Data FTP** menu tab for retrieving analysis meteorological data in HYSPLIT compatible format from the ARL FTP server.

- Appended a 48 hour pseudo-analysis consisting of the 0 hour initialization and short-time (+3 or +1,+2,+3,+4,+5 hour) forecasts from the last seven forecast cycles) of the NAM (45 km Alaska, 12 and 40 km CONUS), RUC and GFS
- Archive longer term archives (discussed in more detail on the next slide)
- Reanalysis access to monthly 2.5 degree NCAR/NCEP files from 1948 to end of last year

# Menus of Hysplit4					
Meteorology	<u>T</u> rajectory	<u>C</u> oncent	ration	<u>A</u> dv an co	ed
	-) H)	(SPLIT4			
ARL Data FTP		system for com			
Convert to ARL	Appended	ncentration, and Reset	i Depositio	n Help	
Display Data	Archive	Reset		метр	
Utilities	Reanalysis				
Meteorology Help	Set Server				

Analysis Data Access

Archive

The following archive data are currently available:

- The EDAS (now called NDAS) is available on a reduced resolution (80 km) grid over the US prior to January 2004. Thereafter, it is available at 40 km horizontal resolution.
- The NAMs and NAM12 are 12 km pseudoanalyses over the US on sigma and pressure levels, respectively, made from daily forecast files.
- The FNL global archive pressure level data are on northern and southern hemispheric grids at 6 hour intervals (replaced by GDAS in 2006).
- The GDAS global archive data are available on two grids (both 3 hrly); 1.0 degree, pressure levels, and 0.5 degree, sigma levels

FTP EDAS/NAM/FNL/GDAS Archives from ARL

FTP Access to HYSPLIT meteorological archives. The EDAS and FNL data are available from 1997 as semi- monthly (SM) files. The remaining archives replace the older data sets and are weekly (WK) or daily (DA). The vertical coordinates are pressure (P), sigma (S), or hybrid (h).

FTP Password: glennr@hysplit
C EDAS 80 km 3P (<=2003 SM 82 Mb)
⊙ EDAS 40 km 3P (>=2004 SM 600 Mb)
C FNL.NH 191 km 6P (<=2006 SM 86 Mb)
C FNL.SH 191 km 6P (<=2006 SM 86 Mb)
○ GDAS 1-deg 3P (>=2005 ₩K 600 Mb)
⊂ GDAS 0.5-deg 3H (>=2008 DA 468 Mb)
С NAM12 12-km 3P (>=2007 DA 395 Mb)
C NAMS 12 km 1S (>=2008 DA 994 Mb)
By Semi-Month By Week
001 or 002 Half GDAS 1-deg
© 001 C 002 C 1 C 2 C 3 C 4 C 5
Select Month:
Cjan ©feb Cmar Capr Cmay Cjun
C jul C aug C sep C oct C nov C dec
Year (YY): 09 Day (DD): 18
Output path: C:/hysplit4/working
edas.feb09.001
Quit Help Get Data File

The **EDAS** and **FNL** files are selected according the to year and half-month (**001** for days 1 to 15 and **002** for days 16 to the end of the month). The 1 degree **GDAS** files are weekly with the week of the month represented by the numbers 1 to 5. The 0.5 degree **GDAS** and **NAM** archives are downloaded as a daily files.

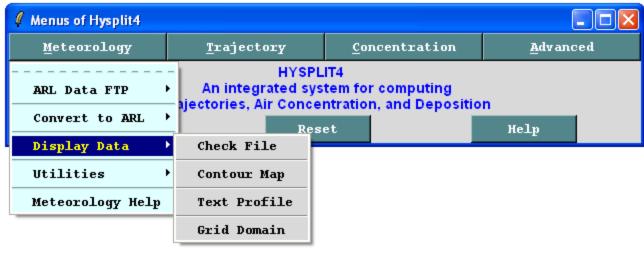
There are a lot of powerful tools available in the HYSPLIT modeling system to display meteorological data

We aren't going to go into much detail here, but here are a few examples...

Data Requirements

Running <u>Check File</u> prompts the user for the location of a HYSPLIT compatible dataset. (Note: its best to store all HYSPLIT compatible data sets in a directory whose name does not contain spaces as these can sometimes confuse the TCL scripts).

🗸 Meteorological Data Information						
Program to summarize the contents of a HYSPLIT compatible meteorological data file. The summary output is written to a text file: chkfile.txt. Displaying results for very large data sets may take a few minutes. All records are listed!						
Set File Name of ARL format Data						
C:/hysplit4/working hysplit.t12z.namf40						
Quit Help Run File Program						


A sample of section 1 of the full output from <u>Check File</u> (chk_file.exe) is shown (right) for the 40 km NAM forecast file from February 17, 2009, 1200 UTC. (Note: the source code for chk_file can be found in \examples\source and can be used to develop other programs that need to read the meteorological data).

						_
SIMULATION LOG						
METEOROLOGICAL DATA I	LISTIN	(G				^
Enter meteorological	L dire	ctory	7			-
Enter meteorological	L file	name				
-						
File start time:	9	2	17	12	0	
File ending time:	9	2	21	0	0	
-						
Last record number :	6235					
Record length bytes:	239	15				
Meteo data model :	NAM					
Grid size x,y,z :	185	129	27			
Vertical coordinate:	2					
First forecast hour:	0					
Last forecast hour :	84					
Records per time :	215					
Minutes between :	180					
Pole pnt lat/lon :		0000		0000		
Reference lat/lon:		0000	-95.	0000		
Grid size (km) :		0000				
	0.					
Tang Lat / Cone :		0000				
Synch pnt x,y :				0000		
Synch pnt lat/lon:	12.	1900	-133.4	4600		
Lower left corner:			-133.4			
Upper right corner:			-49.3			
Tangent point x,y:	321.	8001	100.	7176		
	Exi	+				
	EXI	t i				
1.						100

Display Data Menu

There are four options under the **Display Data** menu tab:

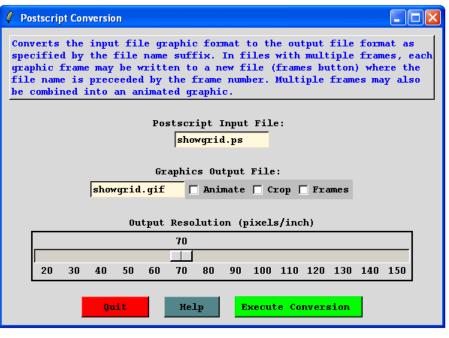
- Check File display information about meteorological data set (discussed previously),
- Contour Map contour and map meteorological data fields,
- Text Profile a vertical profile text listing of all meteorological variables at a selected point,
- Grid Domain a map of the spatial domain of the meteorological data grid.

Meteorological Grid Domain

Grid Domain

- Grid Domain creates a Postscript graphic of the meteorological data set domain, which can be useful to determine the area covered by a data set.
- The domain can be displayed by selecting a meteorological data file. In the example below, the 40 km lambert-conformal projection of the NAM model was chosen. (keep data files in a directory without spaces in the name).
- For this example, every fourth grid point is displayed (set the grid point plotting interval to 4) and latitude-longitude lines are drawn every 5 degrees (set lat-lon interval to 5).

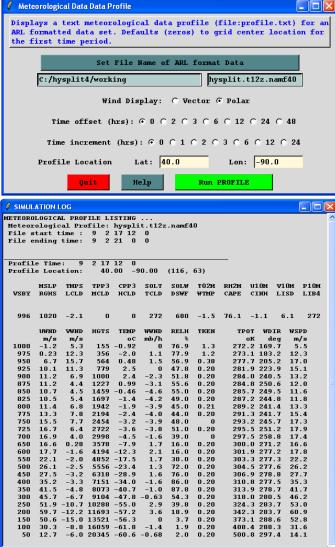
	· · · · · · · · · · · · · · · · · · ·
🧳 Meteorological Data Grid Point Locations	
Program to show the meteorological grid domain using the locations of each grid point. Output is written to file showgrid.ps.	145 140 185 190
Set File Name of ARL format Data	190-125-1201415-110-105-100 (95, 90) (35, 90) (35, 90)
C:/hysplit4/working hysplit.t12z.namf40	+ + + + + + + + + + + + + + +
Grid point plotting interval: O 0 O 1 O 2 @ 4 O 5 O 10	
Lat-Lon interval (deg): 0 0.2 0 0.5 0 1 0 2 0 5 0 10 0 15 0 30 0 60	· · · · · · · · · · · · · · · · · · ·
Map background file: C:/hysplit4/graphics	
Quit Help Create Map	
	· · · · · · · · · · · · · · · · · · ·


PC-HYSPLIT WORKSHOP

Convert PostScript

Under the **Meteorology**, **Trajectory**, and **Concentration** menus there is a submenu item called **Utilities**. Utility programs that are specific to each main menu reside in this submenu. In every **Utilities** submenu there is a program called **Convert Postscript** that can be used to convert the Postscript graphic into other graphic formats such as gif, jpg, bmp, etc.

The **Convert Postscript** menu will display the last created Postscript filename. If this is not the desired graphic to convert, it should be replaced with the appropriate name. The output file extension (gif, jpg, bmp, etc) represents the conversion format. The conversion process uses Ghostscript to read the Postscript file and ImageMagick to convert that file to a variety of other supported formats (conversion to gif is the default). The slider bar determines the size of the output graphic in pixels per inch. The checkboxes permit the creation of a multiframe animation in one file or multiple output files if the "Frames" option has been checked. The "Crop" option eliminates the white space around the graphic. However this option may produce inconsistent results in conjunction with the animation feature.

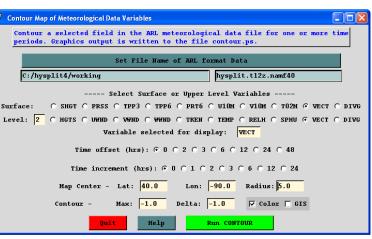


Vertical Meteorological Profile

The **Text Profile** program creates a simple text based listing of the meteorological data vertical profile at a selected latitude-longitude point. In this example (right), the NAM 40km data set was selected with default values for offset and increment (zeros indicate that only the first time period is displayed). The profile location was chosen at 40N, 90W. The polar default option will display the wind as a direction and speed, whereas the vector option will display the wind components u & v.

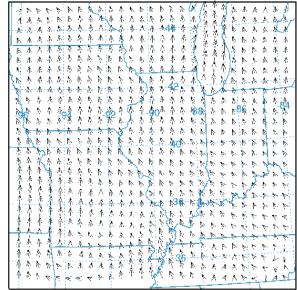
The data are shown for the nearest grid point location (no temporal or spatial interpolation). The location grid index (I,J) is indicated in parenthesis next to the lat-lon position. The first row shows the surface variables. Subsequent rows show the upper-level data, in this case by pressure level. The leftmost columns show the data directly from the file, while on the right side ambient temperatures have been converted to potential temperature and wind components have been rotated from the native grid to true compass direction. The leftmost coordinate is pressure as taken from the index (INDX) record. In other coordinate systems the program computes a height. This program can be useful in validating the data when investigating a problem with a HYSPLIT calculation.

PC-HYSPLIT WORKSHOP


Exit

>

Contour Meteorological Data


Contour Map

- Creates a Postscript graphic of a meteorological variable on a horizontal map.
- In this example (right) the NAM 40 km data set was chosen with default values for **Time offset** and **Time increment**. (Zeros indicate only the first time period is to be displayed.)
- Zeros for Map center location sets the default map to be the center of the data grid; (40N, 90W in this example).
- Negative values for the Contour maximum and Delta force the automatic contour scaling.
- Not all possible meteorological variables are shown, nor may a data file contain all the variables in the selection list. More options are available from the command line version of the program called *display.exe*.
- In this example, wind velocity vectors were plotted for data level 2 (1000 hPA).
- Velocity vectors are shown at every grid point over the domain selected for display; in this case a map with a **Radius** of 5 degrees latitude.
- The "10" in parenthesis after the variable symbol "VECT" indicates that the maximum wind speed vector on the map was 10 m/s.

NOAA AIR RESOURCES LABORATORY

Valid Time (UTC): 09/02/17/12

VECT (10) AT HEIGHT: 1000.000

Additional Information about Meteorological Data and HYSPLIT

Data Requirements

Meteorological Variables

- A <u>unique 4-character string</u> identifies meteorological variables.
- Minimum requirements to run the model are the U and V wind components (UWND, VWND), ambient temperature (TEMP), height (HGTS) of the data level (if on pressure coordinates), and the surface pressure (PRSS).
- A sample extract of section 2 of the chk_file program is shown below for the NAM 40 km dataset for levels between the surface and 925 hPa.

Index	Level #	Variable listing and checksum values
5	925.0000	7 UWND 35 VWND 75 HGTS 204 TEMP 24 WWND 238 RELH 222 TKEN 25
4	950.0000	7 UWND 162 VWND 65 HGTS 219 TEMP 184 WWND 254 RELH 43 TKEN 174
3	975.0000	7 UWND 107 VWND 157 HGTS 139 TEMP 57 WWND 244 RELH 5 TKEN 49
2	1000.0000	7 UWND 237 VWND 191 HGTS 192 TEMP 209 WWND 193 RELH 30 TKEN 135
1	0.0000	32 MSLP 41 TMPS 232 TPP3 180 CPP3 180 SOLT 28 SOLW 136
		T02M 118 RH2M 87 U10M 28 V10M 253 P10M 217 PRSS 195
		WESD 172 CSNO 118 CICE 180 CFZR 180 CRAI 118 LHTF 3
		SHTF 165 USTR 87 VSBY 227 RGHS 97 LCLD 83 MCLD 234
		HCLD 8 TCLD 176 DSWF 166 WTMP 1 CAPE 203 CINH 144
		LISD 116 LIB4 191

Data Requirements

Data Records

- Each data record is composed of a 50 byte ASCII header portion, describing the data packing, followed by the packed data of length (I*J bytes).
- One-byte per element "difference packing" is used for all data fields.
- The first data record (*INDX*) of each time period contains information on the variables, levels, grid, and checksums to follow.
- An extract of the final section from *chk file* is shown below for the NAM 40 km data set.

		# YYMMDDHHFHLLGG	FLD	EXP	PRECISION	VAR(1,1)
		1 9 21712 0 018	INDX	0	0.000000E+00	0.0000000E+00
		2 9 21712 0 018	MSLP	4	0.6299213E-01	0.1014420E+04
		3 9 21712 0 018	TMPS	5	0.1259843E+00	0.2988067E+03
Definition	ns:	4 9 21712 0 018	TPP3	1	0.7874016E-02	0.0000000E+00
		5 9 21712 0 018	CPP3	1	0.7874016E-02	0.0000000E+00
YYMMDDHH	= date/time (UTC)	6 9 21712 0 018	SOLT	5	0.1259843E+00	0.2730887E+03
	· · · ·	7 9 21712 0 018	SOLW	10	0.4031496E+01	0.1000000E+04
FH	= forecast hour	8 9 21712 0 018	T02M	4	0.6299213E-01	0.2977927E+03
LL	= vertical level	9 9 21712 0 018	RH2M	6	0.2519685E+00	0.8214149E+02
		10 9 21712 0 018	U10M	3	0.3149606E-01	-0.9052811E+01
GG	= grid number	11 9 21712 0 018	V10M	4	0.6299213E-01	-0.2805954E+01
	field lobal	12 9 21712 0 018	P10M	4	0.6299213E-01	0.2964305E+03
FLD	= field label	13 9 21712 0 018	PRSS	8	0.1007874E+01	0.1014287E+04
EXP	= scaling exponent	14 9 21712 0 018	WESD	9	0.2015748E+01	0.0000000E+00
	•	15 9 21712 0 018	CSNO	1	0.7874016E-02	0.0000000E+00
PREC	= precision of packed data	16 9 21712 0 018	CICE	1	0.7874016E-02	0.0000000E+00
VAR(1,1)	= data value at (1,1)	17 9 21712 0 018	CFZR	1	0.7874016E-02	0.0000000E+00
V/((1,1)		18 9 21712 0 018	CRAI	1	0.7874016E-02	0.0000000E+00
		19 9 21712 0 018	LHTF	10	0.4031496E+01	0.1704460E+03
		20 9 21712 0 018	SHTF	9	0.2015748E+01	0.1664436E+02
		21 9 21712 0 018	USTR	0	0.3937008E-02	0.3633987E+00
		22 9 21712 0 018	VSBY	15	0.1290079E+03	0.2403518E+05
		23 9 21712 0 018	RGHS	2	0.1574803E-01	0.2000000E-02
		24 9 21712 0 018	LCLD	7	0.5039370E+00	0.1000000E+02
25		PC-HYSPLIT WOR	KSHOP			

EDAS ARCHIVE OVERVIEW

The National Weather Service's National Centers for Environmental Prediction (NCEP) runs a series of computer analyses and forecasts operationally. One of the operational systems is the EDAS (Eta Data Assimilation System), covering the U.S. Addition current information on this model can be found on NCEP's website (http://www.nco.ncep.noaa.gov/pmb/products/). At NOAA's Air Resources Laboratory (ARL), NCEP model data are used for air quality transport and dispersion modeling. ARL archives both EDAS and FNL data using a 1-byte packing routine. Both archives contain basic fields such as the u- and v-wind components, temperature, and humidity. However, the archives differ from each other because of the horizontal and vertical resolution, as well as in the specific fields, provided by NCEP.

ORIGIN OF THE DATA The 3-hourly archive data come from NCEP's EDAS. (Note: information here may not be up to date. Check the NCEP website for current information.) The EDAS was implemented into the operational early Eta model runs during 1995. The EDAS is an intermittent assimilation system consisting of successive 3-h Eta model forecasts and Optimum Interpolation (OI) analyses for a pre-forecast period (12-h for the early Eta) on a 38 level, 48 km grid. A 6-h forecast from the GDAS is used to to start the assimilation at 12-h prior to model start time. The following is a schematic for the 12Z cycle

6-h GDAS	3-h eta	3-h eta	3-h eta	3-h eta	48-h Eta
>	> -	> -	> -	> -	>
Forecast	fcst	fcst	fcst	fcst	forecast
	0 0 Z	03Z	06Z	09Z	12Z
where;					
= Eta OI an	alysis				

The 3-h analysis updates allow for the use of high frequency observations, such as wind profiler, NEXRAD, and aircraft data. ARL saves the successive 3-hour analyses, twice each day to produce a continuous data archive. Some fields such as precipitation and surface fluxes are not available in the analysis files, therefore these are taken from the successive 3-hour forecast files. The 48 km data are interpolated to a 40 km, Lambert Conformal Grid, covering the continental United States.

ARL PROCESSING The ARL archiving program produces a 3 hourly, 40 km dataset on pressure surfaces. In addition, 14 gridpoints on the western end of the model domain and 10 gridpoints on the northern end of the domain are removed to reduce the size of the semi-monthly files (currently at about 627 Mbytes). The data are put into semi-monthly files and made available online at ARL=s server (ftp://www.arl.noaa.gov/pub/archives/edas40/) for easy access via ftp.

DATA DESCRIPTION The archive data file contains the data in synoptic time sequence, without any missing records (missing data is represented by nulls and the forecast hour is set to negative 1). Therefore it is possible to position randomly to any point within a data file. Each file contains data for approximately two weeks: days one through 15, and 16 through the end of the month. At each time period, an index record is always the first record, followed by surface data, and then all data in each pressure level from the ground up. EDAS data are available in the files called edas.mmmyy.00#, where mmm is the month (e.g. jul) and yy is the year (97) and 00# refer to:

00#=001 - days 1-15 of the month 00#=002 - rest of the month

http://www.arl.noaa.gov/edas40.php

Overview -

The NCEP/NCAR Reanalysis Project is a joint project between the National Centers for Environmental Prediction (NCEP, formerly "NMC") and the National Center for Atmospheric Research (NCAR). The goal of this joint effort is to produce new atmospheric analyses using historical data (1948 onwards) and as well to produce analyses of the current atmospheric state (Climate Data Assimilation System, CDAS). Until recently, the meteorological community has had to use analyses that supported the real-time weather forecasting. These analyses are very inhomogeneous in time as there have been big improvements in the data assimilation systems. The quality and utility of the re-analyses should be superior to NCEP's original analyses because:

- * a state-of-the-art data assimilation is used
- * more observations are used
- * quality control has been improved
- * the model/data assimilation procedure remains unchanged during the project
- * many more fields are being saved
- * global (some older analyses were hemispheric)
- * better vertical resolution (stratosphere)

More information about the reanalysis project and data are available from several sources:

http://wesley.wwb.noaa.gov/reanalysis.html http://www.cdc.noaa.gov/cdc/data.nmc.reanalysis.html Availability -

A subset of this data is available from ARL in a format suitable for transport and dispersion calculations using HYSPLIT through READY by selecting "Reanalysis" in the meteorological data set selection pull-down menu.

The archive is updated on this site once per year at the end of the year.

The directory contains data files with the following syntax:

R{S|P}{YEAR}{MONTH}.{gbl|tbd}

Where R indicates "Reanalysis", S or P indicates that the data are on Sigma or Pressure surfaces, YEAR is a four digit year, and MONTH is a two digit month. The file suffix identifies the projection as either the 2.5 degree global latitude-longitude projection (gbl), or a regional conformal map projection. Other regional projections are "to be determined (tbd)" later. The projection details are encoded in the file's index record and are processed by HYSPLIT during trajectory or dispersion computations.

The sigma level data were obtained from NCEP's internal spectral coefficient archive. The pressure level data were obtained from the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA.

Additional Data Set Details

Pressure Level Data

Model Type:	LZ	AT-LOI	J				
Vert Coord:	2						
Numb X pt:	144						
Numb Y pt:	73						
Numb Levels:	18						
Sfc Variables:	5	PRSS	T02M	U10M	V10M	TPP6	
Upper Levels:	6	HGTS	TEMP	UWND	VWND	WWND	RELH

Sigma Level Data (CONUS extract for the DATEM archive, not available)

The spectral coefficients on 28 model sigma surfaces were processed to obtain required fields 4 per day on a global Gaussian grid of 1.875 degree resolution. A regional sub-grid covering the continental US and Canada was extracted.

WWND

Current USA spatial domain: 21.9N 127.5W to 60.0N 52.5W Output every 6 hours Levels: .995,.982,.964,.943,.916,.884,.846,.801,.751,.694,.633, .568,.502,.436,.372,.312,.258,.210,.168,.133,.103,.078, .058,.042,.029,.018,.010,.003

MODEL TYPE:	MERCATOR
VERT COORD:	1
POLE LAT:	21.904
POLE LON:	-127.5
REF LAT:	21.904
REF LON:	-127.5
REF GRID:	136.5
ORIENTATION:	0.
CONE ANGLE:	0.
SYNC X:	1.
SYNC Y:	1.
SYNC LAT:	21.904
SYNC LON:	-127.5
NUMB X:	57
NUMB Y:	41
NUMB LEVELS:	29
SFC VARIABLES:	01 PRSS
UPPER LEVELS:	05 TEMP SPHU UWND VWND

All of these datasets contain basic fields such as the u- and v-wind components, temperature, and humidity. However, the archives differ from each other because of the horizontal and vertical resolution, as well as in the specific fields provided by NCEP. All fields were selected by ARL according to what is most relevant for transport and dispersion studies and disk space limitations. Data Packing Format

NCEP typically saves their model output in GRIB format. However, at ARL the data are reprocessed and stored in a 1-byte packing algorithm. This 1- byte packing is a bit more compact than GRIB and can be directly used on a variety of computing platforms with direct access I/O.

The data array is packed and stored into one byte characters. To preserve as much data precision as possible the difference between the values at grid points is saved and packed rather than the actual values. The grid is then reconstructed by adding the differences between grid values starting with the first value, which is stored in unpacked ASCII form in the header record. To illustrate the process, assume that a grid of real data, R, of dimensions i,j is given by the example below.

1,j	2,ј		i-1,j	i,j
1,j-1	2,j-1	••••	i-1,j-1	i,j-1
		••••		• • • •
1,2	2,2		i-1,2	i,2
1,1	2,1		i-1,1	i,1

The packed value, P, is then given by

Pi,j = (Ri,j - Ri-1,j) * (2 * * (7-N)),

where the scaling exponent

N = ln dRmax / ln 2.

The value of dRmax is the maximum difference between any two adjacent grid points for the entire array. It is computed from the differences along each i index holding j constant. The difference at index (1,j) is computed from index (1,j-1), and at 1,1 the difference is always zero. The packed values are one byte unsigned integers, where values from 0 to 126 represent -127 to -1, 127 represents zero, and values of 128 to 254 represent 1 to 127. Each record length is then equal in bytes to the number of array elements plus 50 bytes for the header label information. The 50 byte label field precedes each packed data field and contains the following ASCII data:

Field	Format	Description
Year	12	Greenwich date for which data valid
Month	12	"
Day	12	"
Hour	12	"
Forecast*	12	Hours forecast, zero for analysis
Level	12	Level from the surface up (see Table 3)
Grid	12	Grid identification (see Table 1)
Variable	A4	Variable label (see Table 2)
Exponent	I4	Scaling exponent needed for unpacking
Precision	E14.7	Precision of unpacked data
Value 1,1	E14.7	Unpacked data value at grid point 1,1

*Forecast hour is -1 for missing data.