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TRANSPORT and FATE of ATMOSPHERIC POLLUTANTS

@ vapor-particle partitioning at low relative humidity

@ vapor-droplet partitioning in clouds (and/or at high relative humidity)

® chemical transformations producing new compounds (may be more or less toxic) due
to reactions and photolysis in the vapor phase, on the surface of particles, and/or within
droplets (note: this may involve interaction with compounds from other emissions sources)
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Deposition

® wet deposition of particle
phase and vapor phase
material, from inside clouds
and as the precipitation
collects material as it falls
through the atmosphere

@ dry deposition of particle
phase and vapor phase
material, depends on
meteorology (e.g., wind
speed) and characteristics of
surface

@® re-emission (grasshopper
effect) for some pollutants




For the atmospheric fate of air toxics,

everything depends on vapor-particle partitioning

0 Atmospheric Chemistry

0 Wet and Dry Deposition
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For the atmospheric fate of air toxics,

everything depends on vapor-particle partitioning

0 Atmospheric Chemistry

0 Wet and Dry Deposition

If the local atmospheric relative humidity is above 70-80%, particles

.| become droplets and this affects partitioning, chemistry, and deposition |-
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Fraction in Vapor Phase

Figure 1. Estimated vapor/particle partitioning characteristics of selected PCDD/F congeners
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The aerosol surface area used in these calculations is 3.5e-06 cm2/cm3, equivalent to "Background + Local Sources”.
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Typical
atmospheric
“travel distance”
Is ~400 km/day,
but this can vary
a lot depending
on the
meteorological
conditions

" Lines indicate the median location of airborne contaminants originating 1,3 and 5
* days before their arrival in the Great Lakes hydrological basin. -
- Saurce: International Air Qualify Advisory Board, ‘1988.




Estimated Long-Range Air Transport Potential of BVES Compounds

LONG RANGE TRANSPORT RATING
2 | 3
APPROXIMATE ATMOSPHERIC HALF LIFE

1 year or more 1 week-few mos. few hrs-few days seconds-minutes

GEOGRAPHIC DISTRIBUTION
(approx. average transport distance associated with half-life)

1,000-10,000 km 100-1,000 km

(possibly global)
P

elemental mercury particulate mercury aldrin(?) aldrin (?)

hexachloro-1,3- mercury dichloride heptachlor(?) heptachlor (?)

butadiene
alkylated lead 4,4'-methylene bis (2- 4,4'-methylene bis
tetrachlorobenzenes chloroaniline) (?) (2-chloroaniline) (?)
cadmium
pentachlorobenzene tributyltin (?)
DDT/DDD/DDE
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HCH’s (&4, &, &, 8)
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3,3"-dichloro- phenanthrene
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anthracene
1,4-dichlorobenzene
PCDD/F’s
PCBs
dinitropyrenes
benzo[a]pyrene
benz[a]anthracene

perylene

benzo[g,h,i]perylene

PAHs (as a group)




Consideration of the Exposure
Pathway is Very Important

d Inhalation?
 Dermal (skin)?
J Water?

4 Food? (and if so, which foods?

This governs what you want to try to find out,
(by modeling, by measurements, or by both)
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Humans and
wildlife affected
primarily by
eating fish
containing
mercury

Best
documented

4 Impacts are on
Mercury transformed by - - the developing

bacteriainto methylmercury —— fetus: impaired
in sediments, soils & water, & motor and
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adapted from slides prepared by USEPA and NOAA




Atmospheric
Models

and
Atmospheric
Measurements



Why do we need atmospheric models?

» to get comprehensive source attribution information

...we don’t just want to know how much is depositing at any given
location, we also want to know where it came from:

® different source regions (local, regional, national, global)

® different jurisdictions (different states and provinces)

® anthropogenic vs. natural emissions

® different source types (power plants, waste incin., smelters...)



Why do we need atmospheric models?

» to estimate deposition over large regions
...because deposition fields are highly spatially variable,
and one can’t measure everywhere all the time...



Why do we need atmospheric models?

» to estimate dry deposition
... presently, dry deposition can only be estimated via models



Why do we need atmospheric models?

» to evaluate potential consequences of future emissions scenarios



Models are not perfect

“...Everyone believes monitoring results except for the person
making the measurements... and nobody believes modeling
results except for the person doing the modeling...”

How not perfect are they?

Results are encouraging, but difficult to evaluate models due to
lack of contemporaneous monitoring and emissions inventory data

Models are a test of our knowledge...

If they don’t work, fundamental things about our understanding of
atmospheric mercury that are wrong or incomplete...

More certain info at a few locations (monitoring)
vs. less certain info region-wide (modeling)



Recent Reactive Gaseous Mercury concentrations at the Grand Bay NERR, MS
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Environmental Mer

a

cury Cycling -- Natural vs. Anthropogenic

ame amount of mercury on

B

“natural” Hg cycle — Hg is tranpoted th u'ghout the environment,
and chemical transformations interconvert different mercury species

This has always been going on, and there has always been Hg in fish

But, we make some Hg unexpectedly “bioavailable”

Most anthropogenic Hg is “released” as atmospheric emissions:

» Hg in coal is released to the air when coal is burned

» Hg in other fuels is released to the air w they are processed and burned

» Hg in ores is released to the air during m "?gical processes

= Hg in products is released to the air when burned or landfilled after being discarded
(e.g., batteries, switches) '

Average, current atmospheri€ Hg deposition is ~3x pre-industrial levels

Evidence suggests that newly deposited Hg is mose bioavailable



Natural vs.
anthropogenic
mercury?

Studies show that
anthropogenic
activities have
typically increased
bioavailable Hg
concentrations in
ecosystems by a
factor of 2 -10
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