INTRODUCTION

- 1. Course overview
- 2. Air Toxics overview
- 3. HYSPLIT overview

HYSPLIT Theory and Practice

- 4. Meteorology
- 5. Back Trajectories
- 6. Concentrations / Deposition
- 7. HYSPLIT-SV for

semivolatiles (e.g, PCDD/F)

8. HYSPLIT-HG for mercury

Overall Project Issues & Examples

- 9. Emissions Inventories
- 10. Source-Receptor Post-

Processing

- 11. Source-Attribution for Deposition
- 12. Model Evaluation
- 13. Model Intercomparison
- 14. Collaboration Possibilities

TRANSPORT and FATE of ATMOSPHERIC POLLUTANTS

• vapor-particle partitioning at low relative humidity

• vapor-droplet partitioning in clouds (and/or at high relative humidity)

• chemical transformations producing new compounds (may be more or less toxic) due to reactions and photolysis in the *vapor phase*, *on the surface of particles*, and/or *within droplets* (note: this may involve interaction with compounds from other emissions sources)

For the atmospheric fate of air toxics, everything depends on vapor-particle partitioning

□ Atmospheric Chemistry

Wet and Dry Deposition

vapor-phase pollutant example: Hexachlorobenzene (HCB)

semi-volatile pollutant example: 2,3,7,8-TCDD *low volatility pollutant* **example:** OCDD *particle-phase pollutant* example: Cadmium

For the atmospheric fate of air toxics, everything depends on vapor-particle partitioning

□ Atmospheric Chemistry

Wet and Dry Deposition

If the local atmospheric relative humidity is above 70-80%, particles become droplets and this affects partitioning, chemistry, and deposition

vapor-phase pollutant example: Hexachlorobenzene (HCB)

semi-volatile pollutant example: 2,3,7,8-TCDD *low volatility pollutant* **example:** OCDD *particle-phase pollutant* example: Cadmium

Figure 1. Estimated vapor/particle partitioning characteristics of selected PCDD/F congeners

The aerosol surface area used in these calculations is 3.5e-06 cm2/cm3, equivalent to "Background + Local Sources".

Approximate Atmospheric Half-Life (Days), based on: vapor/particle partitioning vapor-phase rxn with hydroxyl radical (OH) dry and wet deposition of particle-phase and vapor phase fractions

Typical atmospheric "travel distance" is $\sim 400 \text{ km/day}$, but this can vary a lot depending on the meteorological conditions

Estimated Long-Range Air Transport Potential of BVES Compounds			
LONG RANGE TRANSPORT RATING			
1	2	3	4
APPROXIMATE ATMOSPHERIC HALF LIFE			
1 year or more	1 week-few mos.	few hrs-few days	seconds-minutes
GEOGRAPHIC DISTRIBUTION (approx. average transport distance associated with half-life)			
global	1,000-10,000 km (possibly global)	100-1,000 km	local
elemental mercury hexachloro-1,3- butadiene tetrachlorobenzenes pentachlorobenzene hexachlorobenzene	particulate mercury mercury dichloride alkylated lead cadmium DDT/DDD/DDE mirex toxaphene HCH's (á, â, ä, ā) pentachlorophenol octachlorostyrene 3,3'-dichloro- benzidene 1,4-dichlorobenzene PCDD/F's PCBs dinitropyrenes benzo[a]pyrene benz[a]anthracene	aldrin(?) heptachlor(?) 4,4'-methylene bis (2- chloroaniline) (?) tributyltin (?) heptachlor epoxide methoxychlor dieldrin endrin 4-bromophenyl phenyl ether phenanthrene anthracene	aldrin (?) heptachlor (?) 4,4'-methylene bis (2-chloroaniline) (?)
	benzo[g,h,i]perylene PAHs (as a group)		

Consideration of the Exposure Pathway is Very Important

□ Inhalation?

Dermal (skin)?

U Water?

□ Food? (and if so, which foods?

This governs what you want to try to find out, (by modeling, by measurements, or by both)

Atmospheric Models and Atmospheric Measurements

- to get comprehensive source attribution information ...we don't just want to know how much is depositing at any given location, we also want to know where it came from:
 - different source regions (local, regional, national, global)
 - different jurisdictions (different states and provinces)
 - anthropogenic vs. natural emissions
 - different source types (power plants, waste incin., smelters...)

- b to get comprehensive source attribution information ...we don't just want to know how much is depositing at any given location, we also want to know where it came from:
 - different source regions (local, regional, national, global)
 - different jurisdictions (different states and provinces)
 - anthropogenic vs. natural emissions
 - different source types (power plants, waste incin., smelters...)

> to estimate *deposition* over large regions

...because deposition fields are highly spatially variable, and one can't measure everywhere all the time...

- to get comprehensive source attribution information ...we don't just want to know how much is depositing at any given location, we also want to know where it came from:
 - different source regions (local, regional, national, global)
 - different jurisdictions (different states and provinces)
 - anthropogenic vs. natural emissions
 - different source types (power plants, waste incin., smelters...)
- to estimate deposition over large regions ...because deposition fields are highly spatially variable, and one can't measure everywhere all the time...
- > to estimate *dry deposition*

... presently, dry deposition can only be estimated via models

- to get comprehensive source attribution information ...we don't just want to know how much is depositing at any given location, we also want to know where it came from:
 - different source regions (local, regional, national, global)
 - different jurisdictions (different states and provinces)
 - anthropogenic vs. natural emissions
 - different source types (power plants, waste incin., smelters...)
- to estimate deposition over large regions ...because deposition fields are highly spatially variable, and one can't measure everywhere all the time...
- to estimate *dry deposition* ... presently, dry deposition can only be estimated via models

to evaluate potential consequences of future emissions scenarios

Models are not perfect

"...Everyone believes monitoring results except for the person making the measurements... and nobody believes modeling results except for the person doing the modeling..."

How not perfect are they?

Results are encouraging, but difficult to evaluate models due to lack of contemporaneous monitoring and emissions inventory data

Models are a test of our knowledge...

If they don't work, fundamental things about our understanding of atmospheric mercury that are wrong or incomplete...

More certain info at a few locations (monitoring) vs. less certain info region-wide (modeling)

Recent Reactive Gaseous Mercury concentrations at the Grand Bay NERR, MS

Environmental Mercury Cycling -- Natural vs. Anthropogenic

- Mercury (Hg) is an element... there is the same amount of mercury on Earth today as there always has been
- "natural" Hg cycle Hg is transported throughout the environment, and chemical transformations interconvert different mercury species
- This has always been going on, and there has always been Hg in fish
- But, we make some Hg unexpectedly "bioavailable"
- Most anthropogenic Hg is "released" as atmospheric emissions:
 - Hg in coal is released to the air when coal is burned
 - Hg in other fuels is released to the air when they are processed and burned
 - Hg in ores is released to the air during metallurgical processes
 - Hg in products is released to the air when burned or landfilled after being discarded (e.g., batteries, switches)
- Average, current atmospheric Hg deposition is ~3x pre-industrial levels
- **Evidence suggests that newly deposited Hg is more bioavailable**

Natural vs. anthropogenic mercury?

Studies show that anthropogenic activities have typically increased bioavailable Hg concentrations in ecosystems by a factor of 2 – 10

source: USGS, Shuster et al., 2002