EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

EMEP/TFMM Workshop on the Review of the MSC-E Models on HMs and POPs Oct 13-14, 2005 Hotel Mir, Moscow Russia Summary presented by Mark Cohen, NOAA Air Resources Laboratory, Silver Spring, MD, USA

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II			Stage III		Conclu-		
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		
			Par	ticipa	ants					
D.	Syrakov		•••••		Bul	garia	.NIMH			
A.	Dastoor,	D. Davi	gnon		Cai	nada	MSC-C	Can		
J .	Christens	en			Der	ımark	.NERI			
G.	Petersen	, R. Ebir	ighaus		Gei	rmany	.GKSS			
J.]	Pacyna			•••••	Noi	rway	. NILU			
J. 1	Munthe,]	l. Wängt	berg		Swo	eden	IVL			
R.	Bullock				US .	A	.EPA			
Μ	. Cohen, I	R. Artz,	R. Draxl	ler	US	A	.NOAA			
C.	Seigneur	, K. Loh	man		US	A	AER/E	PRI		
A.	Ryabosh	apko, I.	Ilyin, O.	Travnik	ovEM	EP	. MSC-E			

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-			
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

- I. Comparison of chemical schemes for a cloud environment
- II. Air Concentrations in Short Term Episodes

III. Long-Term Deposition and Source-Receptor Budgets

EN	MEP Inter	comparison Study	of Numerical I	Models for Lo	ng-Range Atn	nospheric Trai	nsport of	Mer	cury		
Intro-	Stage	I	Stage II			Stage III			Co	onclu-	
duction	Chemis	try Hg ⁰	Hg(p)	RGM	Wet Dep	Dry Dep	Budg	ets	S	sions	
		Pa	rticip	ating	Mod	els					
Model A	Acronym	Model Name and	Participating Models								
	CAM	Chemistry of Atm	os. Mercury m	odel, Environr	nental Institute	e, Sweden					
	MCM	Mercury Chemist	try Model, Atm	os. & Environ	mental Resear	ch, USA					
	CMAQ	Community Mult	i-Scale Air Qua	ulity model, US	S EPA						
	ADOM	Acid Deposition	and Oxidants M	<i>lodel</i> , GKSS F	Research Cente	er, Germany					
М	SCE-HM	MSC-E heavy me	tal regional mo	odel, EMEP M	SC-E						
	GRAHM	Global/Regional	Atmospheric H	eavy Metal me	odel, Environn	nent Canada					
	EMAP	Eulerian Model f	or Air Pollution	n, Bulgarian M	leteo-service						
	DEHM	Danish Eulerian	Danish Eulerian Hemispheric Model, National Environmental Institute								
H	IYSPLIT	Hybrid Single Pa	Hybrid Single Particle Lagrangian Integrated Trajectory model, US NOAA								
MSCE-	HM-Hem	MSC-E heavy me	tal hemispherie	c model, EME	P MSC-E						

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-			
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

- I. <u>Comparison of chemical schemes</u> for a cloud environment
- II. Air Concentrations in Short Term Episodes
- III. Long-Term Deposition and Source-Receptor Budgets

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II			Stage III		Conclu-		
duction	Chemistry	Hg ⁰	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Effect of Different Assumptions Regarding Hg(p) Solubility AER/EPRI 0%; MSCE-EMEP 50%; CMAQ-EPA 100%

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-			
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Stage I Publications:

- 2001 Ryaboshapko, A., Ilyin, I., Bullock, R., Ebinghaus, R., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. *Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage I. Comparisons of Chemical Modules for Mercury Transformations in a Cloud/Fog Environment*. Meteorological Synthesizing Centre East, Moscow, Russia.
- 2002 Ryaboshapko, A., Bullock, R., Ebinghaus, R., Ilyin, I., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. *Comparison of Mercury Chemistry Models*. <u>Atmospheric Environment</u> 36, 3881-3898.

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury											
Intro-	Stage I		Stage II				Conclu-				
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			

- I. Comparison of chemical schemes for a cloud environment
- II. <u>Air Concentrations in Short</u> <u>Term Episodes</u>

III. Long-Term Deposition and Source-Receptor Budgets

EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage l	[Stage II			Stage II	I	Conclu-		
duction	Chemist	ry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	b Budgets	sions		
Model			CMAQ-Hg	ADOM	HYSPLIT	EMAP	GRAHM	DEHM	MSCE-Hg		
Model typ	e		Eulerian	Eulerian	Lagrangian	Eulerian	Eulerian Eulerian		Eulerian		
Scale/ Domain	Scale/ Domain		regional/ Central and orthern Europe	regional/ Central Europe	regional/ EMEP	regional/ EMEP	global	Hemispheric	regional/ EMEP		
Source of meteorolog	Source of meteorological data		CMWF TOGA nalysis (MM5)	HIRLAM	NCEP/NCAR (MM-5)	SDA, NCEP/NCAR reanalysis	Canadian Meteorolo- gical Centre	NCEP / NCAR reanalysis	SDA, NCEP/NCAR reanalysis		
Model top	height (km)		15	10	15	5	30	15	3.9		
Horizontal (km, unles differently	l resolution is noted ')		36 x 36	55 x 55	36 x 36, 108 x 108	50 x 50	1º x 1º	50 x 50 150 x 150	50 x 50		
Hg(0) bou condition	ndary (ng/m ³)		1.7	1.5	1.5	1.5	No	1.5	1.6 - 1.7		
RGM bound	ndary (pg/m ³)		17	2	5	10	none	0	0		
TPM boun	ndary (pg/m ³)		17	20	10	10	none	0	20		
Gas-phase agents	Gas-phase oxidation agents		H ₂ O ₂ , Cl ₂ , OH [·]	O ₃	O ₃ , H ₂ O ₂ , Cl ₂ , HCl	О ₃ , ОН●	O ₃	O ₃	O ₃ (f)		
Liquid-pha agents	Liquid-phase oxidation agents		DH●, HOCI, OCI-	O ₃	O ₃ , OH [•] , HOCl, OCl ⁻	O ₃	O ₃	O ₃	O ₃		
Liquid-phase reduction agents		S	$O_3^{=}$, hv, HO ₂	SO ₃ =	SO ₃ =, HO ₂	SO ₃ =	SO ₃ =	SO ₃ =	SO ₃ ⁼ , HO ₂		

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-			
duction	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Stage II Publications:

- 2003 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Davignon, D., Draxler, R., Ebinghaus, R., Ilyin, I., Munthe, J., Petersen, G., Syrakov, D. Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage II. Comparisons of Modeling Results with Observations Obtained During Short Term Measuring Campaigns. Meteorological Synthesizing Centre East, Moscow, Russia.
- 2005 Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R., Davignon, D., Draxler, R., and Munthe, J. *Intercomparison Study of Atmospheric Mercury Models. Phase II. Comparison of Models with Short-Term Measurements*. Submitted to <u>Atmospheric Environment.</u>

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-			
duction	Chemistry	RGM	Wet Dep	Dry Dep	Budgets	sions				

- I. Comparison of chemical schemes for a cloud environment
- II. Air Concentrations in Short Term Episodes

III. Long-Term Deposition and Source-Receptor Budgets

2000 European anthropogenic Hg emissions

240 t/yr

European natural Hg emissions

180 t/yr

European anthropogenic Hg re-emissions

50 t/yr

E	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury													
Intro-	Stage I			Stag	ge II				St	age III			Conclu	-
duction	Chemistry		Hg^0	Hg	g(p)	RGN	1	Wet Dep	Di Di	ry Dep	Bud	lgets	sions	
Du sin	e to re nulated	esou 1 th	rce e en	cons tire	stra yea	ints, r 19	, n(99	ot all	moc	lels	Oct	Nor	Dec	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
CMAQ												
HYSPLIT												
ADOM												
MSCE-HM												
MSCE-HEM												
DEHM												
ЕМАР												

uncertainties in measurements -even of precipitation amount...

Wet Deposition Summary

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I	Stage II				Conclu-				
	Chemistry	Hg ⁰ Hg(p) RGM			Wet Dep	Dry Dep	Budgets	sions		

For *dry deposition*, there are no measurement results to compare the models against;

However, the models can be compared against *each other*...

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I	Stage II			Stage III			Conclu-		
	Chemistry	Hg^{0}	Hg ⁰ Hg(p) RGM			Dry Dep	Budgets	sions		

In the following, the total modelpredicted deposition (= wet + dry) is compared

Note: ADOM was not run for August, so for this graph, ADOM results for July were used 37

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II		Stage III			Conclu-		
	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Items of Hg atmospheric balances for the countries in 1999, t/yr [average modeled result (*with ranges in parentheses*)]

Item	The UK	Italy	Poland
Total deposition	3.5 (3.1-4.2)	4.7 (3.2-6.6)	11.8 (9.6-13.1)
Dep. from own emissions	1.3 (0.8-1.6)	1.3 (0.6-1.9)	7.4 (4.8-9.1)
Dep. from European emissions	0.3 (0.2-0.6)	0.8 (0.5-1.3)	2.1 (1.4-2.6)
Outflow	7.3 (7.0-7.8)	8.4 (7.9-9.2)	18.2 (16–21)

EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury											
Intro-	Stage I		Stage II			Conclu-						
duction	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions				
	EMEP model results in relation to the other models											
Ra	ange	Deposition over polluted area in Feb 1999, g/km ²			Total deposition over the countries in Feb 1999, kg							
		Wet	Wet Dry		The UK	K Ita	ly I	Poland				
Min	imum	0.24	0).10	76	14	3	300				
MSC	CE-HM	0.54	0	0.16	235	26	51	1070				
MSC E	E-HM- Iem	0.65 0.19		.19	170	16	54	730				
Max	kimum	1.03	().39	240	33	34	1190				

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II			Stage III				
	Chemistry	Hg^{0}	Hg ⁰ Hg(p) RGM			Dry Dep	Budgets	sions		

Stage III Publication:

2005 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Draxler, R., Ilyin, I., Munthe, J., Pacyna, J., Petersen, G., Syrakov, D., Travnikov, O. *Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury.* Stage III. Comparison of Modelling Results with Long-Term Observations and Comparison of Calculated Items of Regional Balances. Meteorological Synthesizing Centre – East, Moscow, Russia.

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II			Stage III				
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Conclusions: Uncertainties in Mercury Modeling

- Elemental Hg in air
- Particulate Hg in air
- Oxidized gaseous Hg in air
- Total Hg in precipitation
- Wet deposition
- Dry deposition
- Balances for countries

- factor of 1.2
- factor of 1.5
- factor of 5
- factor of 1.5
- factor of 2.0
- factor of 2.5
- factor of 2

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I	Stage II				Conclu-				
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Conclusions

- Based on this Intercomparison Study, EMEP operational models for mercury correspond to the most advanced scientific models in terms of formulation and with respect to the accuracy of modelling results;
- Based on this Intercomparision Study, EMEP operational models for mercury can provide useful, policy-relevant data in conjunction with the goals of the HM Protocol.

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II			Stage III				
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Thanks!

All of the participants in the mercury modeling study are grateful to MSC-East for their leadership and collegiality throughout the project

The scientific community's understanding of atmospheric mercury and models have benefited greatly from this project