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Atmospheric deposition is believed to be the largest
current mercury loading pathway to the Great Lakes...

» How much is deposited and where does it come from?
(...this information can only be obtained via modeling...)




to the air?

AN

'é'ﬁ‘é’*@ﬂ i R ol ! F
2005 Atmospheric Mercury Emissions from Large Point Sources
5 oL / il ‘# \ ?»““3 --a/ﬁﬂz"“;
7 AR,
: \“ bw\% y I‘J’M ;i
| 3 Emissions
& (kelyn)
£ s 5-10
;ﬁ. N~ © 10-50
A 50-100
0O 100-300
O 300-500
(O 500-1000
(O 1000-3000

Type of Emissions Source

M coal-fired power plants
E other fuel combustion
B waste incineration

O metallurgical

O manufacturing & other




2005 Atmospheric Mercury Emissions
—(Direct Anthro ' -emit-

0 2,500 5,000 km
| ] |

Atmospheric mercury emissions (kg/yr)
from all sources in each 2x2 degree grid cell

O AN 9 5% 9 N O & O O & ®
3 % T N L S L
b N S 0 o 9 . . N B
= 4 0 1y000 km Q- o) )\Q QQ QQ Q’ Q"
oot I PN S ,\QQQ




When puffs grow to sizes
large relative to the
meteorological data grid, they
split, horizontally and/or
vertically

Puffs of

pollutant are

emitted and
dispersed
downwind
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Computational Challenge

==) 350,000 “sources” in global emissions inventory

=) Would like to keep track of each source individually

=) typical one-year simulation takes
~96 processor hours

=) ~3800 processor years, if ran explicit
simulation for each source

=) ~240 years on 16-processor workstation
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Impact of source 4 estimated from
weighted average of

impacts of nearby

explicitly modeled sources

Spatial Interpolation

Impacts from
Sources 1-3
are Explicitly
Modeled




Source

Impact of Source
Emitting

30% Hg(0)

50% Hg(I)
20% Hg(p)

03 x

05x

02x

Impact of Source Emitting Pure Hg(0)

_|_

Impact of Source Emitting Pure Hg(II)

+

Impact of Source Emitting Pure Hg(p)




source location,

we do three

unit-emissions

simulations:

O pure Hg(0),

O pure Hgll
(RGM)

O pure Hg(p)
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— 777\\\% //
Computational Solution

=) This analysis done with 136 standard source locations

=) 3 unit emissions simulations from each
location (Hg(0), RGM, and Hg(p)

=) ~4.5 processor years

== ~3.5 months on 16-processor workstation

instead of 240 years ... almost 1000x less!
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After all the standard source simulations have been run, and the impacts

of each of the ~350,000 sources worldwide are estimated using spatial
and chemical interpolation, is the model giving reasonable results?

Modeled vs. Measured Wet Deposition of
Mercury at Sites in the Great Lakes Region
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Keep track of the contributions from each source, and add them up

——
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Atmospheric mercury deposition contribution
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in each 2x2 degree grid cell
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Mercury Emissions (Mg/yr)

W

A tiny fraction of 2005
global mercury emissions

within 500 km of Lake Erie
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Modeling results show that
these “regional” emissions
are responsible for a large
fraction of the modeled 2005

atmospheric deposition

Important policy
implications!
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@ metallurgical

Based on estimated 2005 mercury emissions,

e.g., from the 2005 USEPA National
Emissions Inventory, and atmospheric fate

and transport simulations with the NOAA

Top 50 Atmospheric Deposition Contributors to Lake Erie
HYSPLIT-Hg model
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Sources of Mercury Deposition
to the Great Lakes Basin
2005 Baseline Analysis
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Comparison of precipitation measured by rain gauges at Mercury
Deposition Network sites with that in the EDAS and NARR
meteorological datasets used to drive the HYSPLIT-Hg model
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used in Phase 1 baseline analysis used in Phase 2 sensitivity analysis
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Thanks!

‘ ThIS work was part:ally funded through
the Great Lakes Restoration Initiative

Great Lakes
RESTORATION ;




EXTRA SLIDES
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______Atmospheric Mercury Deposition to the Great Lakes
Multi-Year Study Supported by reat-Lakes Restoration Initiative

L Phase 1: Baseline analysis for 2005

>
>
>
>
>

Used “EDAS” meteorological data

One set of model parameters and emissions data

Summary: http://www.arl.noaa.gov/documents/reports/GLRI_Atmos_Mercury_Summary.pdf

Final Report: http://www.arl.noaa.gov/documents/reports/GLRI_FY2010_Atmospheric_Mercury_Final_Report_2011_Dec_16.pdf

Recent Presentation: http://www.arl.noaa.gov/documents/reports/Cohen_ARL_Seminar_Feb 7 2013.pptx

O Phase 2: Sensitivity analysis

>
>
>
>
>

Used “NARR” meteorological data

Numerous variations of model parameters and emissions data

Overall results — even for largest variations found — not changed dramatically (see pie charts below)
Conclusion: results are robust

Final Report being prepared

L Phase 3: Analysis of alternative future emissions scenarios

>

Work is beginning on this policy-relevant analysis

0 Phase 4: Updates to more recent years

>

To start when FY13 GLRI funding received

NOAA Air Resources Laboratory 24
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Next step: What happens to the mercury after it is emitted?

HYSPLIT-Hg Lagrangian Puff Atmospheric Fate and Transport Model
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——— Temporaltrends of mercuryin:Lake Erie /

45-55 cm walleye collected between 1990-2007
{Bhavsar et al. (2010), Environ. Sci. Technol. 44, 3273-3279}
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© Deposition explicitly modeled to actual lake/watershed areas

= As opposed to the usual practice of ascribing portions of gridded
deposition to these areas in a post-processing step

0 125 250 500 Kilometers
L 1 I e
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from 250 m

Source =+ 41.891 N 83.346 W

\
lllustrative simulation of reactive gaseous mercury (RGM) /

emissions from one power plant on the shore of Lake Erie:
hourly deposition estimates for the first two weeks in May 2005

Deposition (ng/m2-hr) at ground-level
Integrated from 0000 01 May to 0100 01 May 05 (UTC)
RGM Release started at 0000 01 May 05 (UTC)

84

->1 .0E+02 ng/m2-hr

>3.3E+01 ng/m2-hr
>1.0E+01 ng/m2-hr
>3.3E+00 ng/m2-hr
->1 .0E+00 ng/m2-hr
>3.3E-01 ng/m2-hr
>1.0E-01 ng/m2-hr

Maximum: 7.6E+00
(identified as a square)

- L—/ Minimum: 1.6E-03

Results scaled to actual RGM
emissions of 43.6 g/hr

-81
Lake Erie

oo 1 ng/m2-hr = 8.8 ug/m2-yr
(if it persisted the entire year)

Total deposition to Lk Erie is

Ao

— ~20 ug/m2-yr

NARR METEOROLOGICAL DATA
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{ an example for one source... the Monroe coal-fired
power plant on the shore of Lake Erie

Emissions
1 (kg/yr)

&
£ { s 5-10
verd o 10-50
70 A 50-100
'’ ff/
O 100-300

O 300-500
(O 500-1000

() 1000-3000

Type of Emissions Source

M coal-fired power plants
E other fuel combustion
B waste incineration

O metallurgical

O manufacturing & other

2005 Atmospheric Mercury Emissions from Large Point Sources 30



» Monroe emitted 561 kg of mercury in 2005 (EPA’s National Emissions Inventory)
» How much of this mercury was deposited into Lake Erie and its watershed?

Lake Erie

‘ ;,,a Detroit Edison Monroe ¢oal
. fired power plant on the

~ ——, shore of Lake Erl
-- .__
L1

|

3 .image ©‘-2012‘TerraMemcs
Sl e JmageNOAA




1 » Monroe emitted 561 kg of mercury in 2005 (EPA’s National Emissions Inventory)

» Modeling results for this specific source:
e 24 kg (~4%) of this emitted mercury was deposited directly into Lake Erie
e 107 kg (~19%) of this emitted mercury was deposited in the Lake Erie Watershed

| » We make this same type of estimate for every source in the national and global

emissions inventories used as model input... using spatial and chemical interpolation

. —a - ——

Lake Erie
==

Detroit Edison Monroe ¢oal
KA. fired power plant on the

e shore of Lake Eri
n ---5_ 3
———_




g

- Outline of Modeling Analysis /

HYSPLIT

@ HYSPLIT-Hg (with mercury-specific chemistry, ...)

@ unit Emissions Simulations of Hg(0), Hg(Il) and Hg(p)
from an array of standard source locations

@ Emissions Inventory — emissions of Hg(0), Hg(ll), and Hg(p)
from sources at specified latitudes and longitudes

@ “Multiplication” of emissions inventory by array of unit emissions
simulations using spatial and chemical interpolation

@ Evaluate overall model results: compare against ambient measurements

@ Source-attribution results for deposition to selected receptors
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- Outline of Modeling Analysis /

HYSPLIT

@ HYSPLIT-Hg (with mercury-specific chemistry, ...)

@ unit Emissions Simulations of Hg(0), Hg(Il) and Hg(p)
from an array of standard source locations

@ Emissions Inventory — emissions of Hg(0), Hg(ll), and Hg(p)
from sources at specified latitudes and longitudes

@ “Multiplication” of emissions inventory by array of unit emissions
simulations using spatial and chemical interpolation

@ Evaluate overall model results: compare against ambient measurements

@ Source-attribution results for deposition to selected receptors
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Sources of Mercury Deposition
to the Great Lakes Basin
2005 Baseline Analysis

Other Countries

12%
India
2%
Canada

39% China
14%

Re-emission

Total = 11,300 kg/yr
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Sources of Mercury Deposition
to the Lake Erie Basin
2005 Baseline Analysis

Other Countries

9%
India
1%
Natural
Canada 17%

Ocean Re-
emission
10%

4%

Total = 2,300 kg/yr
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A multi-phase project - = B

e

ARL’s GLRI Atmospheric Mercury Modeling Project

Jan 1, 2009 e eOnEEEEEEEEEE R R PR

Initial Inter- and Intra-Agency
Planning for FY10 GLRI Funds

Jan1, 2010

Jan1,201] o —— FY10 $ Baseline Analysis  |--------— oo
for 2005

IENR Pl — — ——————————————

FY11 S Sensitivity Analysis +

Extended Model Evaluation
Jan 1, 2013 —— - it e L e

FY12 S Scenario Analysis
Jan 1, 2014 SEEEEEEE e I e TS
FY13 $ (proposed)

Update Analysis (~2008)
Jan 1, 2015 SEEEEE e g T

FY14 S (proposed)
Update Analysis (~2011)

Jan 1, 2016 g




Phase 1: Baseline Analysis for 2005
(Final Report Completed December 2011)

2005 was chosen as the analysis year, because 2005 was the
latest year for which comprehensive mercury emissions
inventory data were available at the start of this project

Using 2005 meteorological data and emissions, the
deposition and source-attribution for this deposition
to each Great Lake and its watershed was estimated

The model results were ground-truthed against 2005
Mercury Deposition Network data from sites in the
Great Lakes region
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Modeling Atmospheric Mercury Deposition to the Great Lakes.
Final Report for work conducted with FY2010 funding from the
Great Lakes Restoration Initiative. December 16, 2011.

Mark Cohen, Roland Draxler, Richard Artz. NOAA Air Resources
Laboratory, Silver Spring, MD, USA. 160 pages.

http://www.arl.noaa.gov/documents/reports/GLRI_FY2010 _
Atmospheric_Mercury_Final_Report 2011 Dec 16.pdf

http://www.arl.noaa.gov/documents/reports/Figures _Tables
_GLRI_NOAA _Atmos_Mercury_Report Dec_16 _2011.pptx

One-page summary:

http://www.arl.noaa.gov/documents/reports/
GLRI_Atmos_Mercury_Summary.pdf
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Some Kewa th is Ana |ysis// e =

© Deposition explicitly modeled to actual lake/watershed areas

= As opposed to the usual practice of ascribing portions of gridded
deposition to these areas in a post-processing step

© Combination of Lagrangian & Eulerian modeling

= allows accurate and computationally efficient estimates of the fate and transport of
atmospheric mercury over all relevant length scales — from “local” to global.

© Uniquely detailed source-attribution information is created

= deposition contribution to each Great Lakes and watersheds from each source in the
emissions inventories used is estimated individually

= The level of source discrimination is only limited by the detail in the emissions inventories

= Source-type breakdowns not possible in this 1t phase for global sources, because the global
emissions inventory available did not have source-type breakdowns for each grid square

41



Some Key Findings of this Analysis g

© “Single Source” results illustrate source-receptor relationships

= For example, a “typical” coal-fired power plant near Lake Erie may
contribute on the order of 1000x the mercury — for the same emissions
— as a comparable facility in China.

© Regional, national, & global mercury emissions are all important
contributors to mercury deposition in the Great Lakes Basin
= For Lakes Erie and Ontario, the U.S. contribution is at its most significant
= For Lakes Huron and Superior, the U.S. contribution is less significant.

" Local & regional sources have a much greater atmospheric deposition
contributions than their emissions, as a fraction of total global mercury
emissions, would suggest.
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Some Key Findings of thisiAnalysis (...continued)

© Reasonable agreement with measurements

= Despite numerous uncertainties in model input data and other
modeling aspects

= Comparison at sites where significant computational resources were
expended — corresponding to regions that were the most important
for estimating deposition to the Great Lakes and their watersheds —
showed good consistency between model predictions and measured
quantities.

= For a smaller subset of sites generally downwind of the Great Lakes
(in regions not expected to contribute most significantly to Great
Lakes atmospheric deposition), less computational resources were
expended, and the comparison showed moderate, but
understandable, discrepancies.
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Phase 2: Sensitivity Analysis + Extended Model Evaluation
(current work, with GLRI FY11 funding)

O Examining the influence of uncertainties on the
modeling results, by varying critical model
parameters, algorithms, and inputs, and analyzing the
resulting differences in results

O Ground-truthing the model against additional
ambient monitoring data, e.g., ambient mercury air
concentration measurements and wet deposition data
not included in the Mercury Deposition Network
(MDN)

44
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Phase 3: Scenarios
(next year’s work, with GLRI FY12 funding)

A modeling analyses such as this is the only way to
quantitatively examine the potential consequences of
alternative future emissions scenarios

We will work with EPA and other Great Lakes
Stakeholders to identify and specify the most policy
relevant scenarios to examine

For each scenario, we will estimate the amount of
atmospheric deposition to each of the Great Lakes and
their watersheds, along with the detailed source-
attribution for this deposition
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@Atmospherlc Mercury Fate Processes I Elemental Mercury [Hg(0)]
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:-'- Upper‘ atmOSpherIC ..... Polar sunrise :-_ - Particulate Mercury [Hg(p)]

halogen-mediated “mercury depletion events”
oxidation? 5L

Br  mm
L —
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.
----------------------------------------------------

Vapor phase: Hg(ll) reduced to Hg(0)

by SO, and sunlight
Hg(O) oxidized to RGM Hg(p) .....:.:.:.::::. Adsorption/
and Hg(p) by O3, H,0,, Cl,, G SRREEREEEAESEREREREFQSONNa desorption
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'%—jng) Atmospheric Chemical Reaction Scheme for Mercury

| Reaction Rate Units Reference
GAS PHASE REACTIONS
? | Hg® + O; > Hg(p) 3.0E-20 | cm¥molec-sec Hall (1995)
Hg® + HCI - HgCl, 1.0E-19 cm3molec-sec Hall and Bloom (1993)
Hg® + H,0, - Hg(p) 8.5E-19 cm3¥molec-sec Tokos et al. (1998) (upper limit
based on experiments)
Hg® + Cl, - HgCl, 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)
? | Hg® +OH — Hg(p) 8.7E-14 cm3/molec-sec Sommar et al. (2001)
new | Hg® + Br —» HgBr,
AQUEOUS PHASE REACTIONS
Hg® + O; —> Hg*? 4.7E+7 (molar-sec)? Munthe (1992)
Hg® + OH — Hg*? 2.0E+9 (molar-sec)? Lin and Pehkonen(1997)
HgSO; — Hg° T*e((81.971°T)-12595.0/1) - gec-l Van Loon et al. (2002)
[T = temperature (K)]
? | Hg(n) + HO, — Hg®° ~0 (molar-sec)? Gardfeldt & Jonnson (2003)
Hg® + HOCI — Hg*? 2.1E+6 (molar-sec)? Lin and Pehkonen(1998)

Hg® + OCIt —» Hg*? 2.0E+6 (molar-sec)* Lin and Pehkonen(1998)
Hg(ll) < Hg(ll) sooy 9.0E+2 liters/gram; eqlbrm: Seigneur et al. (1998)

t = 1/hour rate: Bullock & Brehme (2002).
Hg*? + hv —» Hg° 6.0E-7 (sec)* (maximum) | Xiao et al. (1994);

Bullock and Brehme (2002)




5 =
What year to model? =

O Mercury Emissions Inventory | D ataset
= U.S. anthropogenic emissions inventory Available
= Canadian anthropogenic emissions inventory " for 2005
= Mexican anthropogenic emissions inventory e ’
= Global anthropogenic emissions inventory
= Natural emissions inventory Need all
= Re-emissions inventory = | of these
. . datasets
© Ambient Data for Model Evaluation
for the
= Wet deposition (Mercury Deposition Network)
Ui e 13 A : same year
= “Speciated” Air Concentrations
O Meteorological Data to drive model 2005 chosen
= NCEP/NCAR Global Reanalysis (2.5 deg) — .
= NCEP EDAS 40km North American Domain fOI‘ baseline

= North American Regional Reanalysis (NARR) analysis
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Over the entire modeling period
(e.g., one year), puffs are released
at periodic intervals
{e.g., once every 7 hours).

@g?ﬁ Ry R

Each released puffis advected and
dispersed, and the pollutant within
the puff is transformed and deposited.

% ¥ 3

| Release at Time = §——=

| Release at Time = 15|
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=

Prevailing wind direction

1 2] 3
a%e 5
6 7] |8

100 km

N

[[] Mercury emissions source

* Mercury monitoring site

. Standard source location

‘ Receptor of interest

One Standard
Source Location
(green dot)
would do a
decent job of
estimating
deposition to the
receptor, for all
of the
hypothetical,
“actual” source
locations shown
(numbered
boxes)

But the same
Standard Source
Location would
be completely
inadequate to
estimate
deposition and
concentrations at
the monitoring
site (red star)
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P% Standard Source Locations for lllustrative ModW

qo‘
i

Standard Source Locations for which lllustrative Modeling Results will be Shown

150'°W 12(3°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 12?°E 15?°E
90° ‘ i i |

60°N-{- -~

30°N--

30°S+

1,000 km
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Coefficients for tw

of Generic Coal-Fired Power Plants (logarithmic scale)

Transfer Flux Coefficient to Lake Erie (1/km2)

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

1.0E-11

M Transfer Flux Coefficient to Lake Erie for a "Typical" Coal-Fired Power Plant

B Transfer Flux Coefficient to Lake Erie for a Coal-Fired Power Plant with a higher RGM emissions fraction

T
TR T

NOIOldINOO|H|OQlOIN T NN N I NINIT N OINO NN AININIONOILLI O T FTIOINFTION|INN KV OO O
Great Lakes Regional Inset Map North American Regional Inset Map Global Map

Standard Source Location Number

The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.

With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdeposition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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2.0E-06

1.8E-06 % M Transfer Flux Coefficient to Lake Erie for a "Typical" Coal-Fired Power Plant -

EA 1.6E-06 ; B Transfer Flux Coefficient to Lake Erie for a Coal-Fired Power Plant with a higher RGM emissions fraction |—
S g ]
= 1.4E-06 -
23 |
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5 = 7
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Great Lakes Regional Inset Map ‘ North American Regional Inset Map Global Map ‘

Standard Source Location Number

The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.

With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdeposition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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In order to-conveniently compare different model results
a “transfer flux coefficient” X will-be-used,

defined as the following:

grams Hg deposited per vear
X deposition flux rate km? of receptor area 1

emissions rate grams Hg emitted per year from the source km?

rams Hg deposited per vear
deposition flux rate g a4 Per. ( g )

km? of receptor area km?yr

= transfer flux coef ficient ( P ) * SOUrce Mercury emissions (g—j
m yr

=y
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deposition flux rate =

grams Hg deposited per year ( g )

km? of receptor area km?yr

.. )
> ) * SOUrce mercury emissions (— )

= transfer flux coef ficient ( o
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Standard Sou ions, for Deposition Flux Contributions to Lake Erie
/ Transfer Flux Coefficient "X" for Elemental Mercury e (grams Hg deposited per year) / (km2) 1 1/km2
= Emissions from Selected Locations to Lake Erie "~ (grams Hg emitted per year from the source) =]
150°W  120°W 20°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E
90° [ 1 1 1 [ 1 1 1 1 [ 1
o
60°N-{—
30°N-
0°
30°S
2,500 5,000 km
L« 1

1,000 km

< 1.0E-10 1.0E-08 - 3.0E-08

1.0E-10 - 3.0E-10 3.0E-08 - 1.0E-07
3.0E-10 - 1.0E-09 1.0E-07 - 3.0E-07

1.0E-09 - 3.0E-09 3.0E-07 - 1.0E-06

L N NONOX

3.0E-09 - 1.0E-08 1.0E-06 - 4.0E-06
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Transfer Flux Coeff. "X" for Reactive Gaseous Mercury
Emissions from Selected Locations to Lake Erie

(grams Hg deposited per year) / (km2)

(grams Hg emitted per year from the source)

[=] 1/km2

150°W 120°W 90°W 60°W 30°wW 0 30°E 60°E 90°E 120°E 150°E
900 1 L L 1 L 1 1 L 1 [ L
=
60°N——
30°N--
0°4
30°S-
2,500 5,000 km
I T |

1,000 km

<1.0E-10

1.0E-10 - 3.0E-10
3.0E-10 - 1.0E-09
1.0E-09 - 3.0E-09

L N NONOX

3.0E-09 - 1.0E-08

1.0E-08 -
3.0E-08 -
1.0E-07 -
3.0E-07 -
1.0E-06 -

3.0E-08
1.0E-07
3.0E-07
1.0E-06
4.0E-06
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ients For Hg(0), Hg(

and Hg(p) to Lake Erie (logarithmic scale)

1.0E-05 E
] M Transfer Flux Coefficient to Lake Erie for Pure Hg(ll) Emissions
1.0E-06 - M Transfer Flux Coefficient to Lake Erie for Pure Hg(p) Emissions —
© E
q:, ~ ] I Transfer Flux Coefficient to Lake Erie for Pure Hg(0) Emissions
= € 1.0E-07 - i
E x 3
v~ 3
s ]
x .2 1.0E-08 - ] I 1
34 E
e 3
- & .
-g <  1.0E-09 - — —{—
c o 3
£® :
1.0E-10 3 ——
1.0E-11 -
NV O AdAINO AH|QOQlOUINTS IO N IE NN TN O NONNDANNONOO UMWV SIONTIO NN VOV O T O
Great Lakes Regional Inset Map North American Regional Inset Map Global Map
Standard Source Location Number
The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.
With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdeposition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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and Hg(p) to Lake Erie (linear scale)

Transfer Flux Coefficient

to Lake Erie (1/km2)

3.0E-06

2.5E-06

2.0E-06

1.5E-06

1.0E-06

5.0E-07

0.0E+00

B Transfer Flux Coefficient to Lake Erie for Pure Hg(ll) Emissions

M Transfer Flux Coefficient to Lake Erie for Pure Hg(p) Emissions —

Transfer Flux Coefficient to Lake Erie for Pure Hg(0) Emissions

L1

by

b L = B ® W o o e e e
o ~NO O Ol T NN N I NN NOINO NN AININIONOULI O T FTIOINFTION|INN KV OO O
Great Lakes Regional Inset Map ‘ North American Regional Inset Map ‘ Global Map ‘

Standard Source Location Number

The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.

With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdeposition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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2,500 5,000 km
| ] J

Atmospheric mercury emissions (kg/yr) from direct
anthropogenic sources in each 2x2 degree grid cell
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2,500 5,000 km
| ] ]

Atmospheric mercury emissions (kg/yr)
from natural sources in each 2x2 degree grid cell
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Figure 55 Merc drv-Denaosition Network Sites in the Great Lz /

___/
Region Considered in an Initial Model Evaluz Analysis
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Modeled Mercury Wet Deposition (ug/m2-yr)
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Error bars shown are the range

in model predictions obtained
with different precipitation
adjustment schemes (none, all,

EDASonly, NCEP/NCAR only)
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Measured Mercury Wet Deposition (ug/m2-yr)
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Summary of Mercury Emissions Inventories Used in GLRI Analysis

Total
Number Hg(0) RGM Hg(p) ota
. L - L mercury
Inventory domain of | emissions | emissions | emissions emissions
records (Mg/yr) (Mg/yr) (Mg/yr)
8/y g/y 8/y (Mg/yr)
U.S. Point Sources United States 19,353 50.6 35.5 9.1 95
U.S. Area Sources United States 44,848 4.5 1.8 1.1 7.4
Canadian Point Sources Canada 166 3.0 1.7 0.4 5.1
Canadian Area Sources Canada 12,372 1.0 0.96 0.42 2.4
Mexican Point Sources Mexico 268 28 0.81 0.46 29
Mexican Area Sources Mexico 160 1.25 0.38 0.25 1.9
Global Anthropogenic Global, except for
Sources not in U.S,, the U.S., Canada, 52,173 1,239 434 113 1,786
Canada, or Mexico and Mexico
Global Re-emissions Global land (and 129,180 750 0 0 750
from Land freshwater) surfaces
Global Re-emissions Global oceans 43,324 1,250 0 0 1,250
from the Ocean
Global Natural Sources Global 64,800 1,800 0 0 1,800
Total 366,804 5,127 475 125 5,728
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Model-estimated per capita 2005 deposition to the Great Lakes Basin from cou
ion from direct & re-emitted anthro 0
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