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Executive Summary

This study examined the influence of variations in inputs, parameters, and algorithms on the estimated
2005 atmospheric mercury deposition to the Great Lakes with the HYSPLIT-Hg model. It represents an
extension of the baseline analysis carried out with FY2010 Great Lakes Restoration Initiative (GLRI)
funding (Cohen et al., 2011). The overall objective of this FY2011-funded 2" phase of the project was to
determine how robust the model results are with respect to various uncertainties in the analysis.

As described in the baseline analysis report, the overall modeling methodology is based on a series of
unit emissions (1 g/hr) simulations of Hg(0), Hg(ll), and Hg(p) from a number of standard source
locations (SSL’s). Each simulation with the HYSPLIT-Hg model was for 15 months, representing 3 months
of “model spin up” before the start of 2005 and the 12 months of 2005. Results from the unit emissions
simulations are then used, through spatial and chemical interpolation, to estimate the 2005 impacts on
the Great Lakes and other key receptors from each source in the emissions inventory used in the
analysis. In the baseline analysis, a total of 408 15-month HYSPLIT-Hg unit-emissions simulations were
carried out to provide the basis for the analysis. As described below, a total of 828 additional 15-month
HYSPLIT-Hg simulations were carried out in this 2" phase of the project.

Due to computational resource constraints, only a few different overall variations in the “full” analysis
could be undertaken. However, numerous variations were examined for a subset of five “illustrative”
standard source locations (SSL’s), representing local, regional, national/continental, and global sources.
Several different types of variations were investigated for these illustrative source locations, including
input meteorological data, and dispersion, deposition, and chemical transformation methodologies. A
total of 320 different 15-month HYSPLIT-Hg simulations were carried out. The variations that were
generally found to have the biggest influence on the simulations were: (a) the choice of input
meteorological data [NARR (North American Regional Reanalysis) vs. EDAS (Eta Data Assimilation
System)]; (b) variations in a particular model parameter affecting the wet deposition of atmospheric
particles; and (c) variations in the emissions release height, primarily for the “local” impacts examined.
Other variations examined, in numerous dispersion and chemical transformation parameters, generally
had relatively small impacts on the simulations.

As discussed in the report, the NARR meteorological dataset is believed to be more accurate than then
comparable EDAS dataset for 2005, and so the changes resulting from the use of the NARR rather than
EDAS dataset to drive the HYSPLIT-Hg model can be viewed more as an “improvement” in the results
rather than strictly a representation of the uncertainty associated with the choice of meteorological
data.

Similarly, the impacts associated with variations in release height, while significant for near-field
deposition impacts, should not be thought of strictly as an uncertainty. This is because the emissions
release height used as the default was chosen to be representative of the mercury sources with the
largest impacts. Thus, while a different (e.g., lower) release height was found to influence the results
immediately downwind of the source, this would generally affect sources with relatively small impacts.



Moreover, most of the emissions impacting the Great Lakes are not immediately upwind of a given lake.
Therefore, this issue is not expected to have an overly significant impact on the overall results.

The variation if the particle-wet-deposition parameter (WETR), found to exert significant influence over
the modeling results in some cases, does represent more of an uncertainty in the simulation. The “true”
value of this parameter is not known accurately. However, variations in this parameter primarily
affected emissions of Hg(p), which accounted for only 2% of the total emissions used as input for the
analysis. Therefore, the impact on the overall results of this uncertainty is not expected to be significant.

An additional 154 HYSPLIT-Hg 15-month simulations were carried out examining the impact of range of
numerical issues on the modeling results. Numerical issues examined included changes in operating
systems and compilers, changes in optimization schemes employed by the compiler, and changes in
array handling algorithms within the HYSPLIT-Hg model. This analysis, presented in the Appendix,
showed that these numerical issues did not generally cause changes in any key results greater than a
few percent. In most cases, the numerically-related deviations in results — e.g., the modeled deposition
to a given Great Lake -- were smaller than 1%

The variations examined for the full analysis, requiring 354 additional 15-month HYSPLIT-Hg simulations,
were: (a) the use of NARR vs. EDAS meteorological data to drive the HYSPLIT-Hg model; (b) the use of
additional standard source locations (SSL’s) to reduce errors in spatial interpolation; (c) variation in the
mercury re-emissions rate; and (d) variations in the spatial interpolation methodology.

Doubling the mercury re-emissions rate increased the model-estimated deposition to the Great Lakes by
about ~25%. Additional SSL’s and variations in spatial interpolation methodology were not found to
influence the model results significantly. The NARR-based analysis had results that were more consistent
with mercury wet deposition measurement in the Great Lakes region. However, while improved, the
model performance for 12 sites in the eastern Great Lakes region did not improve significantly, and the
tendency of the modeling analysis to over-predict the wet deposition flux at these sites remained. The
overall results from the NARR-based analysis for Great Lakes deposition were somewhat different than
those from the EDAS-based analysis. The most common difference was a decrease in model-estimated
deposition from local and regional sources in the NARR-based simulations relative to the EDAS-based
simulations.

An overall summary of the modeling results is provided below in Figure 1, which shows the overall
source-attribution results for the largest variations in “full-analysis” modeling methodology, i.e., NARR
vs. EDAS, and doubling the mercury re-emissions rate. While the overall fractions of the deposition
contributed by key source types and regions were impacted somewhat by the simulation variations, the
relative source-attribution results were not dramatically affected. This suggests that the results are
reasonably robust, at least from the perspective of the relative importance of different source types and
source regions to the deposition of mercury to the Great Lakes basin.
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Figure 1. Overall source attribution results for Lake Erie (top row) and the Great Lakes Basin (bottom row) for largest
variations in modeling methodology; 2005 baseline (left); key variations showing the largest differences (center & right)






1. Introduction

Mercury contamination in the Great Lakes Basin remains an important public and wildlife health
concern as well as an economic issue (Evers et al, 2011ab). This report describes work done with FY2011
Great Lakes Restoration Initiative (GLRI) funding. Work done with FY2010 GLRI funding was summarized
in Cohen et al. (2011), the “FY2010 report”. In that FY2010 work, a 2005 baseline analysis of
atmospheric deposition to the Great Lakes was carried out, including source-attribution for the model-
estimated deposition. The modeling results were found to be consistent with measurements of mercury
wet deposition in the Great Lakes region.

The overarching goal of the FY2011 work was to examine the sensitivity of the results to uncertainties in
key inputs and model parameters.

In this report we will refer to three “kinds” of atmospheric mercury: (i) elemental mercury, or Hg(0); (ii)
soluble oxidized mercury (Hg(ll)), also referred to as reactive gaseous mercury (RGM); and (iii)
particulate mercury, or Hg(p). Except where noted, results presented in this report are for total mercury
(the sum of the three different forms), for simplicity and brevity’s sake, even though the entire modeling
analysis has been done with explicit treatment of the different mercury forms. This FY2011-funded work
can be conceptually divided into two main sections:

(a) Detailed sensitivity analysis for illustrative sources. Since any given “full” analysis, e.g., with a
given set of input data and parameters, took on the order of 2.5 months to carry out with the
available computational resources, it was not possible to carry out multiple “full analyses” as
part of the sensitivity analysis. Therefore, we decided to carry out detailed sensitivity analyses
for five illustrative sources, examining numerous variations in modeling methodology.

(b) Sensitivity analysis of “full results”, including model evaluation. Two primary variations were
selected for examination of effects on the full analysis. One involved using a different choice for
input meteorological data. The second involved using additional “standard source locations” in
the analysis. For each variation studied, the impact on model evaluation —i.e., the degree of
consistency of the modeling predictions with observations — and deposition was analyzed.



2. Detailed sensitivity analysis for illustrative sources

2.1. Selection of illustrative source locations

As discussed in detail in the FY2010 report, the modeling analysis is based on carrying out simulations of
unit mercury emissions (i.e., 1 gram/hour) from numerous discrete source locations, called “standard
source locations”. Based on these simulations, the impacts on the Great Lakes of each source in the
input emissions inventory is estimated using spatial and chemical interpolation. In the 2005 baseline
analysis carried out previously, 136 such standard source locations (“SSL’s”) were used. The basic
overall analysis requires three simulations from each location — for unit emissions of just Hg(0), for just
Hg(Il), and for just Hg(p). Therefore, a total of 408 separate simulations were required. With the
computational resources available, this took ~2.5 months. For this reason, it was impractical to consider
carrying out a detailed sensitivity analysis of comparable “full analyses” for a number of different
variations. A few variations of the full analysis were carried out, and this is presented below, in Section
0. In the present section, a small number (5) of illustrative locations were selected and a detailed
sensitivity analysis was carried out for these few locations. The locations of the 136 SSL’s used in the
FY2010 work and the five locations chosen for the sensitivity analysis here are shown in Table 1 and
Figure 2.

Table 1. Five standard source locations for which a detailed sensitivity analysis was carried out

Standard . . Distance (km) from centroids of the Great Lakes
source . Lati- Longi-
. Location
location tude tude
number Erie Ontario Michigan Huron Superior
g | westernshore of Lake Erie, near 4170 | -83.44 187 | 494 387 353 763
Toledo, OH
6 western Ohio River Valley 37.68 -87.13 704 1,015 703 886 1,122
11 north-eastern Texas 32.65 -94.88 1,600 1,915 1,437 1,735 1,778
eastern China, at the centroid of
emissions inventory grid square
13 with the highest reported 2005 31.25 121.25 18,094 17,643 18,392 17,892 18,044
emissions in China
north-eastern India, at the centroid
of the emissions inventory grid
48 square with the 2™ highest reported 22.75 88.25 16,050 15,641 16,441 15,950 16,242
2005 emissions in India
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Figure 2. Five standard source locations for which a detailed sensitivity analysis was carried out
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Several variations in model configuration, inputs, and parameters were examined in the detailed
sensitivity analysis at these five locations. The different sensitivity “elements” were divided into several
main categories:

e Meteorological input data

e Dispersion methodology

e Deposition methodology

e Chemistry-related parameters
e Numerical issues

2.2. Types of Simulations

Before describing the various sensitivity analyses performed, a summary of the different types of
simulations carried out is needed. There were three basic types of simulations carried out, referred to
here as “PUF”, “GEM”, and “COM”.

e PUF simulations were done for Hg(ll) and Hg(p) emissions from standard source locations (SSL’s)
in the continental U.S. (CONUS) and nearby adjacent regions in Canada and Mexico. In these
simulations, 3-dimensional puffs of pollutants were emitted from the source and tracked as they
were blown downwind, based on the meteorological data used. The maximum lifetime of a puff
was chosen to be 504 hours (3 weeks) (parameter KHMAX, described below). The reason for
limiting the lifetime of the puffs is that as the puffs age, they grow, and when a puff gets large
enough relative to the meteorological grid size, it splits. This consequence of this puff splitting is
that substantial numerical resources are needed to simulate any given emitted puff for any
extended length of time. The 504-hour limit was believed to be sufficient to allow the emitted
puff to impact any receptors —i.e., the Great Lakes and their watersheds — but that by the end
of this time, the emitted material would be blown “past” the receptors and there would be no
further impact. The PUF-type simulations examined in detail were Hg(ll) and Hg(p) emissions
from SSL-6 (western Ohio River Valley), SSL-8 (western shore of Lake Erie), and SSL-11
(northeastern Texas).

e GEM —“Global Eulerian Model” -- simulations were done for all SSL’s outside of CONUS (and
nearby regions in Mexico and Canada). In these simulations, the emitted mercury was
immediately transferred to a global Eulerian grid, and the fate and transport simulated on that
grid. The grid used for this simulation is by default the grid used for the global meteorological
data, which in our case was the 2.5 degree NCEP-NCAR Global Reanalysis. This relatively coarse
simulation was believed to be sufficient to capture the major characteristics of the source-
receptor relationships between distant sources (e.g., in China) and the Great Lakes. The GEM-
type simulations examined in detail were Hg(0), Hg(ll), and Hg(p) emissions from SSL-13 (eastern
China) and SSL-48 (northeastern India).

12



e COM —“Combined PUF and GEM” — simulations were done for Hg(0) emissions from SSL’s in
CONUS and nearby adjacent regions in Canada and Mexico. In these simulations, puffs were
emitted and simulated as puffs for 504 hours (3 weeks), after which the material in the puffs
was transferred to the global Eulerian grid and simulated on that grid from then on. The reason
why this approach was taken for Hg(0) -- as opposed to the PUF simulations described above for
Hg(Il) and Hg(p) — was that Hg(0) has a relatively long atmospheric lifetime and long-term
impacts can be relatively large. The COM-type simulations examined in detail were Hg(0)
emissions from SSL-6 (western Ohio River Valley), SSL-8 (western shore of Lake Erie), and SSL-11
(northeastern Texas).

With the above overall framework in mind, the various sensitivity analyses can be described.
Throughout this section, we will refer to any given simulation by the name of the pure mercury form
being emitted (“elem”, “Hgll”, or “Hgpt”), the standard source location (“006”, “008”, “011”, “013”, or
“048") and the type of simulation performed (“PUF”, “COM”, or “GEM”"). So, for example, the simulation
referred to as “Hgll_008 PUF” is a simulation of pure Hg(ll) emissions, from SSL-8 (western shore of Lake
Erie), using the “PUF” transport and dispersion methodology as described above.
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2.3. Sensitivity to meteorological input data

In the FY2010 analysis, the EDAS dataset (with 40km resolution) was used over the Continental US (incl.
southern Canada and northern Mexico), and the NCEP-NCAR Global Reanalysis dataset (with 2.5 degree)
resolution was used outside of this region. To investigate the influence of input meteorological data,
i.e., the data provided to the HYSPLIT-Hg model during the simulation, the NCEP-NCAR North American
Regional Reanalysis (“NARR”) dataset (with 36km resolution) was used instead of the EDAS dataset. The
global dataset used, i.e., the NCEP-NCAR Global Reanalysis, was not changed. Due to systematic
problems in the EDAS dataset (Rogers, 2011), the NARR dataset is believed to have more accurate
precipitation data during 2005, and this was examined in the next section. It is noted that the
precipitation issues in the EDAS data have reportedly been resolved and so the use these data may be
very useful for analysis of more recent years.

2.3.1. Precipitation estimates in different meteorological datasets

The hypothesis that the NARR dataset was more accurate than the EDAS dataset for precipitation in
2005 was tested by comparing each model’s predicted precipitation with observations at mercury wet
deposition measurement sites in the Great Lakes region (Figure 3).

As can be seen in Figure 3, the EDAS dataset shows a systematic underprediction of precipitation at
these key model evaluation sites. In contrast, the NARR dataset is shows precipitation that is more
consistent with measured precipitation at these sites. Given the importance of this issue, it will be
examined in more detail in the following.
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Figure 3. Total 2005 precipitation at mercury wet deposition measurement sites in the Great Lakes region
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First, it is noted that there is some uncertainty in the “measured” precipitation at the MDN sites. The
precipitation at the sites is reported in two ways: (a) based on a precipitation gauge at the site and (b)
based on the amount of precipitation collected in the sample. Ideally, the two measures of precipitation
would be identical, but they are sometimes different. These two measures of precipitation are
compared in Figure 4 for all 86 MDN sites with “complete” data for 2005, including those outside of the
Great Lakes region. The rain gauge measure is believed to be the most accurate, but the difference
between the two for some of the sites suggests some degree of uncertainty in the precipitation
measurement itself and/or in the measurement of mercury wet deposition.

In Figure 5, the rain-gauge based precipitation measurements at these 86 sites are compared against the
values in the gridded EDAS meteorological dataset. It can be seen that there is an underprediction of
precipitation for most sites, consistent with the situation with the Great Lakes sites (only) shown in
Figure 3 above.

In Figure 6, the same comparison -- at 86 MDN sites with complete 2005 data -- is made with the
gridded NARR meteorological dataset. It is seen that the 2005 NARR precipitation values — while
certainly not perfect -- appear to be more consistent with measurements than the EDAS values at MDN
sites. A comparable comparison with the NCEP-NCAR Global Reanalysis is shown in Figure 7. Given the
relatively coarse grid of the global data (2.5 degrees, or roughly 250 km), it would not be expected that
the modeled and measured precipitation would be overly consistent. Therefore, the degree of
consistency found is somewhat unexpected. Finally, all of the above comparisons are shown in a
combined fashion in Figure 8.

With the finding that the NARR data appear to be “better” than the EDAS data, at least with regard to
precipitation data for 2005 — the year of this analysis — it was decided to use the NARR data as a new
baseline for the sensitivity analysis. That is, we carried out the sensitivity analysis comparing all
variations against a baseline NARR-based simulation. A comparison of this new baseline with the earlier
EDAS-based simulation was then just one of the sensitivity elements explored.

15
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2.3.2. Sensitivity to meteorological data inputs for simulations of illustrative sources

In Figure 9, the 2005 deposition to Lake Erie from standard source locations (SSL’s) 6, 8, and 11 are
shown for emissions of Hg(ll), Hg(p), and Hg(0). Only these three source locations are shown (out of the
five being studied in detail here), as they are the ones in which NARR or EDAS data are used. For the
other two source locations, global Eulerian model (“GEM-type”) simulations were performed that only
utilized global meteorological data. It can be seen that there are significant difference between the
NARR-based simulation and the EDAS-based simulation in many cases. Most notably, there is a
relatively big difference in the largest impact — the Hg(ll) emissions from SSL-8, on the western shore of
Lake Erie: the atmospheric deposition to Lake Erie from a 1 gram/hour source of Hg(Il) from this location
was 554 g/yr using the EDAS data, and only 353 g/yr using the NARR data, a difference of 44%. The other
comparisons showed somewhat smaller fractional differences, from 5% - 39%. In most cases the
deposition was greater with EDAS than NARR, but the reverse was true for two of the comparisons
(Hg(p) emissions from SSL-6 and Hg(ll) emissions from SSL-11).

Comparable graphs for Lake Michigan, Lake Superior, Lake Huron, and Lake Ontario are shown in Figure
10 through Figure 13. One view of an overall summary of the data in this series of figures is shown in
Figure 14, where the fractional difference between the NARR and EDAS simulations are shown for all of
the lakes and source-location / emissions species simulations. Note that in some cases, the large
fractional differences are the result of small differences between small numbers, i.e., the overall impacts
are small, and the actual amount of difference between the NARR and EDAS simulations is relatively
small.

Another view of an overall summary of these deposition data is shown in Figure 15, where the NARR
estimates and EDAS estimates are plotted on an x-y scatterplot. It can be seen from this figure that the
differences are both positive and negative, and that generally, the largest deviations are in the
simulations of Hg(Il) emissions (red symbols).

A final summary is shown in Figure 16, in which the NARR vs. EDAS analysis is applied to MDN sites in
the Great Lakes region. It is seen that the simulations driven by EDAS meteorological data tend to
predict lower mercury wet deposition fluxes at these MDN sites, with the greatest impact seen for
simulations of Hg(Il) emissions (red symbols).
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Figure 15.

Wet deposition flux at Great Lakes MDN
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2.3.3. Sensitivity to meteorological data inputs for all 136 standard source locations

Because the meteorological data used to drive the HYSPLIT mercury simulations is such a fundamental
model input, and because the differences between the NARR and EDAS datasets for 2005 appear to be
significant, NARR simulations for each of the standard source locations (SSL’s) that utilized these data
were carried out. Of the 136 SSL’s used in the baseline analysis, 75 were simulated using the PUF/COM
approach, and 61 employed the GEM approach. In the PUF/COM approach, NARR or EDAS data are used
until the pollutant is transported out of the data’s domain. In the GEM approach, the NCAR/NCEP global
reanalysis dataset is used throughout the simulation. The new NARR simulations for the 75 PUF/COM
SSL’s can be compared with the baseline analysis using EDAS data. Here we will simply show the basic
results from each SSL, and examine the differences between the NARR- and EDAS-driven simulations.
The overall impact on deposition to the Great Lakes after applying chemical and spatial interpolation is
presented in Section Error! Reference source not found., below.

Comparisons for each of the Great Lakes and the Great Lakes Basin as a whole are shown in Figure 17
through Figure 22. The general tendencies evident in all of these figures include the following:

e For Hg(0) emissions, modeled deposition is relatively low, and there is little difference between
the EDAS- and NARR-driven simulations; because there is little wet deposition arising from
Hg(0) emissions, differences in precipitation between the two datasets don’t influence the
results very much.

e For Hg(ll) emissions, when the deposition is low, e.g., because the source location is relatively
far from the receptor, the NARR-driven simulation results in a higher flux than the EDAS-driven
simulation. However, when the deposition flux is high, the NARR-driven simulation generally
shows a lower flux than the EDAS-driven simulation. There is no simple explanation for this
trend, as the results are dependent on the fate and transport of the emitted pollutant for each
source, and the precipitation differences exhibit complex, time-dependent and location-
dependent patterns. For example, increased deposition might arise because the precipitation is
greater over the receptor, but it also might arise because there was less precipitation affecting
the pollutant as it made its way to the receptor.

e For Hg(p) emissions, the NARR- and EDAS-driven simulations are relatively consistent, but the

NARR-driven fluxes tend to be slightly higher than the EDAS-driven fluxes. As for Hg(ll), it is not
possible to provide a simple explanation for the differences observed.
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Figure 17. Annual (2005) mercury deposition flux to Lake Erie from 75 standard source locations,
comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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Figure 18. Annual (2005) mercury deposition flux to Lake Superior from 75 standard source locations,
comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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Figure 19. Annual (2005) mercury deposition flux to Lake Michigan from 75 standard source locations,
comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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Figure 20. Annual (2005) mercury deposition flux to Lake Huron from 75 standard source locations,
comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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Figure 21. Annual (2005) mercury deposition flux to Lake Ontario from 75 standard source locations,
comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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Figure 22. Annual (2005) mercury deposition flux to the Great Lakes Basin from 75 standard source
locations, comparing NARR- and EDAS-driven simulations, for 1 g/hr emissions of Hg(0), Hg(ll), and Hg(p).
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2.4. Sensitivity to dispersion methodologies

2.4.1. Introduction

In the HYSPLIT model — as well the HYSPLIT-Hg model used in this analysis — there are a number of
alternative dispersion methodologies and parameter variations that can be employed. A large group of
different simulation variations was explored for the five selected illustrative standard source locations.
Each of these parameter or methodological variations, and their influence on the fate and transport of
emitted mercury, will be described and presented here.

2.4.2. KHMAX

The KHMAX parameter is the number of hours that any given emitted material is tracked in the PUF
simulations. At this number of hours past emission, the material is removed from the simulation. As
noted above, the baseline value used was 504 hours (3 weeks). The reason why this limitation is
imposed is that increasingly large amounts of computational resources are required to track puffs as
they age, due to puff-splitting. As the puffs age and grow, they split whenever their size becomes
comparable to the meteorological grid size. Once they split, they will split again when the fragment
again attains a size comparable to the meteorological grid size. For emission of Hg(Il) and Hg(p), the
reasoning is that if the deposition to a given receptor has not occurred within this time, then it is likely
that the pollutant has already been deposited, or, that it has been transported out of the Great Lakes
region.

To examine the influence of this parameter on the simulations, PUF-type simulations were carried out
with KHMAX values of 336 hours (2 weeks) and 672 hours (4 weeks) to see what impact this would have
on the simulation results. As described above, the only PUF-type simulation being examined in detail
were emissions of Hg(ll) and Hg(p) from SSL-6 (western Ohio River Valley), SSL-8 (western shore of Lake
Erie), and SSL-11 (northeastern Texas). Emissions of Hg(0) at these locations were simulated with a
COM-type simulation and were not affected by the KHMAX parameter variations. The overall results for
deposition to the Great Lakes arising from 1 gram/hr emissions are shown in Figure 23. It can be seen
that variation in KHMAX does not significantly impact the modeling results.

The small differences that do exist — slight decreases in deposition with longer KHMAX — are perhaps
counterintuitive. One would generally expect that allowing the emitted material to last longer in the
simulation would result in the same or more deposition, all things being equal. To consider this further,
data from these same simulations for deposition to the Great Lakes and their watersheds are shown in
Figure 25, in which the deposition flux (g/km2-year) results for variations in KHMAX are shown
compared to the default value. The left panel gives results for KHMAX = 336, and the right panel shows
results for KHMAX = 672. It can be seen that there is perhaps a slight tendency towards increased
deposition flux with KHMAX = 336 and a slight tendency towards decreased deposition flux with KHMAX
=672, but, these slight tendencies are present only in the lower estimated fluxes. The estimates for the
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highest impacts, i.e., the highest deposition fluxes, do not seem to be influenced at all. This type of
result illustrates a general philosophy adopted in this analysis: since small differences in the “small
impacts” will not have a big impact on the overall results, they are relatively unimportant. As long as
there are not significant differences in the “big impacts”, the overall results will not be strongly affected.

600
500 - Bg Hg T Lk Ontario
Deposition to the Do He T Lk H
Great Lakes (g/yr) g1t Huron
from a series of 400 mg Hg T Lk Superior
1 g/hr emissions Bg_Hg_T_Lk Michigan
simulations in 300 mg Hg T Lk Erie
which KHMAX
was varied 200
between 336, 504,
and 672 hours
100
O -
Hgll_008 Hgpt_008 Hgll_006 Hgpt_006 Hgll_011 Hgpt_011

KHMAX (hrs), mercury emissions form, standard source location

Figure 23. Variations in modeled deposition to the Great Lakes arising from variations in KHMAX (hrs)

In Figure 24. Variations in modeled wet deposition to MDN sites in the Great Lakes region arising from
variations in KHMAX (hrs)Figure 24, the same types of comparisons are shown for wet deposition to
MDN sites in the Great Lakes region. It is seen that there are moderate differences in wet deposition
among the simulations with different KHMAX values. The largest differences occur for SSL-11 (NE Texas)
which is the furthest of the illustrative locations from the Great Lakes. It is seen that with higher values
of KHMAYX, the deposition decreases. This is a counterintuitive result, as one would expect that if
anything, the deposition would increase when puffs were allowed to impact the receptors for a longer
time. The reason why the deposition decreases is likely a reflection of reductions in puff splitting due to
the increased computational load of tracking the puffs for a longer time. In running HYSPLIT, one sets a
maximum number of puffs that can exist in the simulation. With a higher value of KHMAX, more of this
computational array is spent tracking older puffs, and this also affects the transport and dispersion of
younger puffs. The finding that the deposition decreases with higher values of KHMAX suggests that if
such a higher value was used, a higher maximum number of puffs would have to be used to keep a
comparable accuracy in the simulation.

In Figure 25 and Figure 26, all of the data from the illustrative simulations for the Great Lakes and the

MDN sites in the Great Lakes region are shown, respectively. In these figures, the left panel shows a
comparison between the KHMAX=508 hr default and the KHMAX=336 variation, and the right panel
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shows a comparable comparison between the default and KHMAX=672 hrs. It can be seen that there

are no obvious or systematic tendencies in these comparisons.
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2.4.3. PUF vs. COM simulation

As discussed above in Section 2.2 (page 12), there were two types of simulations performed for standard
source locations in the Continental U.S. and surrounding regions in Canada and Mexico. For Hg(ll) and
Hg(p) emissions, PUF-type simulations were carried out. For Hg(0), COM-type simulations were used, in
which the emitted pollutant was tracked using 3-D puffs for 504 hours (3 weeks), and then any
remaining pollutant at that time was converted over to a global Eulerian grid and tracked from that
point forward on that global grid. In this section, we show comparisons between PUF and COM
simulations for all emitted pollutants.

In Figure 27, the fractional difference between PUF-type and COM-type simulations are shown for
emissions of Hg(0) (“elem”), Hg(ll) (“Hgll”), and Hg(p) (“Hgpt”), for the relevant illustrative standard
source locations (SSL-6, SSL-8, and SSL-11). Inspection of the figure shows why this differential approach
was taken. It can be seen that for elemental mercury, there is a big fractional difference between the
estimated COM-type deposition and the comparable PUF-type deposition. In essence, the long
atmospheric lifetime of Hg(0) means that the simulation must track the emitted pollutant for a
comparably long time. For Hg(ll) and Hg(p), there are only minor differences between the PUF- and
COM-types simulations, and this is expected as the atmospheric lifetimes of these emitted pollutants is
much less than that of Hg(0). These examples show that tracking Hg(ll) or Hg(p) using only 3-D puffs for
3 weeks is sufficient for sources in CONUS and the nearby regions for predicting their impact on the
Great Lakes.

It should be noted, however, that the deposition arising from Hg(0) emissions in these simulations is
relatively small. This can be seen in Figure 28, showing the total (wet + dry) mercury deposition to each
of the Great Lakes and their watersheds, individually, simulated with COM-type vs. PUF-type
methodologies, from the three relevant illustrative SSL’s (6,8, and 11). This figure shows that the
simulations of pure Hg(0) emissions (blue symbols) are much less that the impacts of Hg(Il) and Hg(p)
emissions. Thus, while the fractional differences between COM vs. PUF methodologies for simulating
Hg(0) emissions are large (Figure 27), the magnitudes of the differences are actually relatively small.

In Figure 29 and Figure 30, it can be seen that the same general finding applies to wet deposition at
MDN sites in the Great Lakes region. The biggest fractional impact occurs for elemental mercury
emission simulations, but the magnitudes of the differences are relatively small for these Hg(0)
simulations, as well as for the Hg(ll) and Hg(p) simulations. Even though the magnitudes of the
differences between PUF and COM-type simulations were small for Hg(0), and even though the COM-
type simulations required approximately 3 times as much computational resources, it was decided to
use the COM-type simulation for all of the SSL’s in the CONUS and surrounding regions.
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Figure 28. Total mercury deposition to individual Great Lakes and
their watersheds using PUF- or COM-type simulation methodologies
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2.4.4. Model time step

In HYSPLIT simulations, the time-step is fixed at 60 minutes for GEM simulations, but for any simulation
involving 3-D puffs, one has the option of specifying a fixed time-step or to let the model adjust the time
step. In either case, the maximum time-step is 60 minutes, and the minimum time-step is 1 minute. In
carrying out the HYSPLIT-Hg PUF-type and COM-type simulations in this study, the fixed time-step
approach was used. For any given simulation, the time-step for any given simulation was chosen to be
small enough that emitted puffs would not “leapfrog” any key receptors. Computational resources for
any simulation were strongly influenced by model time-step used, and so the goal was to use a time-
step small enough to avoid leapfrogging, but not overly small, to optimize computational resources. In
practice, this meant that for many of the standard source locations, a 60 minute time-step was
determined to sufficient. The minimum time-step used for any standard source location was 12 minutes.
In this section, results are presented for time-steps shorter or longer than the default, for the three
illustrative PUF- or COM-type standard source locations being investigated (SSL-6, SSL-8, and SSL-11).

Results for total mercury 2005 deposition to Lake Erie are shown in Figure 31 for the default time-steps
used, as well as time-steps shorter and longer than the default. It is seen that the differences arising
from variations in model time-step are generally small. Results for all of the Great Lakes for deposition
arising from SSL-8 (western shore of Lake Erie) are shown in Figure 32, where the non-default time-step
results are plotted against the default time-step results. It is seen that the choice of time step does not
significantly affect the modeled deposition.
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Figure 31. Modeled mercury deposition to Lake Erie from three illustrative standard source locations using
different model time steps (minutes) (note: the time steps in the run labels are denoted by “delta”, and the
default value is also indicated)
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2.4.5. Maximum number of puffs

As discussed above, in Section 2.2 (page 12), HYSPLIT simulations with 3-D puffs requires that the
maximum number of puffs allowed be specified by the user (“MAXPUFF”). When the number of puffs
approaches this limit, puff-splitting is turned off. The program takes care to leave enough room for new
puffs to be emitted. The computational resources required for any PUF-type or COM-type simulation are
strongly influenced by this specified MAXPUFF parameter. In all PUF-type and COM-type simulations,
the default value used was 20,000. Splitting was allowed to occur once every 24 hours, and puffs were
released throughout the simulation every 3 hours.

In Figure 33, the total modeled mercury deposition to Lake Erie, from SSL-8 (western shore of the lake)
is shown for the default value of MAXPUFF (20,000) and values of 10,000 and 40,000. It can be seen that
there is very little influence on the overall modeled deposition. The largest fractional difference is seen
for SSL-11 (NE Texas), but the deposition is relatively small and the magnitudes of the differences are
very small. The differences observed for this case make sense, as the changes in puff splitting — due to
different values of MAXPUFF -- would likely affect receptors further away from the source to a greater
extent. The impact could be increased or decreased deposition, and would depend on the paths and
fate of individual puffs that either split or didn’t split in any given simulation. Figure 34 shows
comparable data for deposition to each of the Great Lakes individually, and Figure 35 shows
comparisons for wet deposition at MDN sites in the Great Lakes region. The results shown in both of
these figures are consistent with the general finding that the MAXPUFF variations investigated did not
have a significant impact on the results.
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Figure 33. Modeled mercury deposition to Lake Erie from three illustrative standard source
locations using different MAXPUFF values (note: the MAXPUFF values in the labels are
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2.4.6. Frequency of puff releases and splitting

In carrying out HYSPLIT simulations, the frequency of pollutant emissions can be specified. The
frequency can be hourly or more or less often. In the default PUF-type and COM-type simulations,
pollutants were released once every three hours. A total of 3 grams of pollutant were emitted during
each hour of release, so that the resulting average emissions amount would be 1 gram/hr for any given
simulation. A series of simulations were carried out for Hg(ll) emissions from SSL-11 (northeast Texas)
using a range of release frequencies, from once every hour up through once every 7 hours. In each case,
puff splitting was allowed to occur once every 24 hours. In any given variation, the MAXPUFF parameter
was adjusted in order to compensate for the change in number of puffs emitted. For example, with puffs
being emitted every hour, 3 times as many puffs would be emitted as compared to the default case, and
so a MAXPUFF limit of 60,000 puffs was used in the simulation. Further, the emissions intensity in each
simulation was adjusted so that the average emissions rate would be the same. So, for example, in the
case with emissions every 6 hours, the emissions rate was 6 g/hr. The results for atmospheric mercury
deposition flux to each of the Great Lakes with these different emissions frequencies are shown in
Figure 36. It can be seen that there is moderate variations (on the order of +/- 10%), but no consistent
pattern as the frequency is varied.
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An additional parameter is the frequency of puff splitting, with the default in these simulations being 24
hours. In the default simulations as described above, puff-scheme #11 was used, in which puffs were
emitted every 3 hours and splitting was allowed to occur every 24 hours. In one of the variations, puff-
scheme #10, emissions occurred every 7 hours, and splitting was also allowed to occur every 7 hours. In
a second variation, emissions occurred every 7 hours but splitting was allowed to occur only once every
48 hours. The influence of these variations for model predicted wet deposition at MDN sites in the Great
Lakes region is shown in Figure 37 and Figure 38. It can be seen that again, there is moderate influence,
on the order of +/- 20%, but that there is no obvious trend, especially in the overall perspective offered
by Figure 38.
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Figure 37. Modeled wet deposition at MDN sites in the Great Lakes
region using different puff schemes (stacked bar graph)
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2.4.7. Release height

In HYSPLIT simulations, one of the fundamental emissions parameters is the release height. In this work,
a constant release height of 250 meters was assumed. A constant release height was used so that only
one “set” of simulations at standard source locations would be needed to carry out the interpolation for
all sources. Additional sets of SSL-simulations could have been carried out, for releases at different
elevations, but each such set would mean an additional 2-3 months of computational resources. The
fixed height of 250 meters was chosen as this is a common height for stacks at coal-fired power plants
and other sources with large emissions. Stacks this high are commonly employed at such sources to
reduce the adverse impacts in the immediate vicinity of the facility. The reasoning is that by the time the
emissions plume reaches the ground, dispersion will have reduced its atmospheric concentrations
significantly. It is recognized that not all sources have stacks this high. The decision to use this release
height was made with the aim of characterizing the largest sources well, and accepting some loss of
accuracy for emissions with much lower release heights. How big of an influence does this assumption
have?

In Figure 39, the atmospheric mercury deposition to Lake Erie for 2005 is shown arising from each of the
five illustrative standard source locations, for each of the 3 emitted mercury forms. This is the first

IM

parameter variation for which results for the two “global” illustrative locations are shown: SSL-13
(China) and SSL-48 (India). It can be seen from this figure that for the nearby source — SSL-8 — on the
western shore of Lake Erie —there is a substantial influence of release height on the results. For
emissions of Hg(ll), the modeled deposition increases by almost a factor of 3. For sources further away
from the lake, the influence of the release height is much less. This result is expected, but it does
indicate that the height specification will have an important influence on the result. The importance of
nearby sources with effective release heights less than 250 meters has likely been underestimated. But,

as discussed above, it is hoped that the largest sources will have been reasonably well characterized.

In Figure 40, the model estimated deposition to each of the individual Great Lakes from each of the 5
SSL’s is shown, as a scatterplot with 50m release-height results plotted against 250m results. It is seen
that except for SSL-8’s impact on Lake Erie — an expected, large influence — the influence of release
height on the modeled deposition is very small. Figure 41 and Figure 42 show cumulative wet deposition
at MDN sites in the Great Lakes region for 250m and 50m release heights for SSL’s 6,8, and 11 and SSL’s
13 and 48, respectively. For SSL-6 and SSL-8, which are inside the Great Lakes region, the choice of
release height has a moderate influence. This is expected, as some of the MDN sites are relatively close
to these SSL's.

However, it can be seen from Figure 43 that there is not a dramatic trend one way or another for the
modeled wet deposition as a function of release height. The change from 250m to 50m release height
results in lower wet deposition at some MDN sites and higher wet deposition at other sites. It is also
seen in this figure that the greatest differences occur for the largest impacts, i.e., sources that are
relatively close to the MDN sites.

41



1107

10000

atmospheric
deposition

1000 -

to Lake Erie

(g/yr) arising

from 1 g/hr
emissions of

different species

from different
standard source
locations, using

different

release
elevations

(default
250 meters)

w0S0_A9J2_INID_8v0_ WD
WSz A9J3TINID T 8Y0” WD

w0S0_A9J3_INID 80 1dSH
WSz A912TINID 80 1dBH

w0So_A319_INID_8K0_IISH
WOSZ A9 INID 8Y0 11SH

WSO A3l INID_ETO_ W32
woSg ARTINID ETO WD

woS0_A3|2_INIDET0 1dBH
WSz~ A3|2 INIDET0 1dBH

W0S0~_A913_INID_ET0_IISH
WwoSz " A913 NI ET0 1ISH

WS A3[3_INOD_TT0_W3|@
WSz ARRTINOD TTO Wa3lR

WSO A3l 4Nd_TT0 d8H
woSz™A913 4Nd TT0 3dSH

WOSO_AS13_4Nd_TTO_I18H
wQsz A9 4Nd TT0 118H

wS0_A3|3_INOD 900 WRj2
WSz~ A3 INOD 900 W32

W0S0_A913_4Nd 900 3d8H
WwoSz ™ A913 4Nd 900 3d8H

wS0_A3[3"4Nd_900_118H
WSz A31374Nd 900 118H

WSO _A3|9_INOD_800_Wd|d
WwosZ A913 INOD 800 W

WS0_A3|2”4Nd 800 1d3H
WSz A3|2™4Nd 800 3d8H

wS0_A9(2"4Nd_800_118H
WSz A3J274Nd 800 118H

Figure 39. Atmospheric mercury deposition to Lake Erie from illustrative
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Figure 41. Atmospheric mercury wet deposition flux to MDN sites in the Great Lakes region

from SSL's 6,8, and 11 (US) using release heights of 250m and 50m
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Figure 42. Atmospheric mercury wet deposition flux to MDN sites in the Great Lakes

region from SSL-13 (China) and SSL-48 (India) using release heights of 250m and 50m

43



T 10E08

[

>

I

£ A

- 1.0E-09 le) %

€

2 A O

n

% 10810 2

[}

=

3

3 LA

[4 1.0E-11 x

£ 71y

>§< O Hg(0) emit

= 10E-12 A Hg(ll emit

% O Hg(p) emit

g —1:1line
1.0E-13 1

1.0E-13 1.0E-12 1.0E-11  1.0E-10  1.0E-09 1.0E-08

Wet dep flux with release height = 250 m (g/m2-year)

Figure 43. Atmospheric mercury wet deposition flux to MDN sites in
the Great Lakes region from all five illustrative standard source
locations with release heights of 250m and 50m

44



2.5. Sensitivity to deposition methodologies

2.5.1. Introduction

After puffs are released in the HYSPLIT model, they are advected downwind, expanded due
to dispersion, and the pollutants contained within them are subject to dry and wet
deposition phenomena. There are two basic types of wet deposition processes simulated in
the HYSPLIT model: within-cloud and below-cloud. In the within-cloud process, gaseous and
particulate pollutants are incorporated into precipitation, which then subsequently falls to
the earth’s surface. In the below-cloud process, pollutants are incorporated into falling
precipitation. Dry deposition of gaseous and particulate pollutants is applied to pollutants if
they are in the lowest model layer. The rate is based on a dry deposition velocity estimated
with a resistance-based approach. A description of the algorithms used in these estimates is
provided by Draxler and Hess (1998, 2010). In this section we will investigate the influence
of different parameterizations and methodologies for estimating the rate of these
deposition phenomena.

2.,5.2. WETR

The WETR parameter governs the incorporation of particle-phase pollutant in within-cloud
wet deposition processes. It is the “scavenging coefficient”, the ratio of the pollutants
concentration in water to its concentration in air. The default value used in these
simulations was 40,000 [(g/m>-water) / (g/m*-air)] = 40,000 m>-air / m*-water. To investigate
the influence of this parameter value on the modeling results, a value of 10,000 m*/m?® and
a value of 160,000 m?/m? were used and compared with the results using the default value
of 40,000 m*/m>.

Figure 44 shows the total modeled mercury deposition to Lake Erie from each of the five
illustrative standard source locations, for each form of mercury emitted, using the different
values of WETR. As might be expected, the largest impacts are for the emissions of Hg(p).
This can be seen more clearly by comparing Figure 45 [for emissions of Hg(p)] with Figure 46
[for emissions of Hg(Il)] and Figure 47 [for emissions of Hg(0)]. It is clear from these figures
that the largest differences are seen for emissions of Hg(p). As the WETR parameter is
directly related to wet deposition of particles, this is not surprising. Differences do arise in
the simulations of Hg(0) and Hg(Il) emissions, as there is some conversion to Hg(p) in these
simulations due to chemical and physical processes.

Figure 48, Figure 49, Figure 50 show the influence of the WETR value on modeled wet

deposition to MDN sites in the Great Lakes region. As with deposition to the Great Lakes,
the largest differences are generally seen for the simulations in which Hg(p) is emitted.
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Figure 49. Modeled atmospheric mercury wet deposition to MDN sites in the Great Lakes region using different
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2.5.3. Hg(0) deposition

In the default simulations using HYSPLIT-Hg, each form of mercury is subjected to wet and dry
deposition processes. There are significant uncertainties in the rate of dry deposition of elemental
mercury due to its bidirectional nature. To explore the influence of this uncertainty, simulations were
done in which the dry deposition of Hg(0) was artificially set to “0”, and these simulations were
compared with those in which the dry deposition of Hg(0) was estimated via the normal HYSPLIT-Hg
procedure involving a resistance-based deposition velocity.

Figure 51 shows the results of this comparison for the simulated deposition of mercury to Lake Erie,
from each of the five illustrative standard source locations. It is seen that the largest differences are for
simulations of Hg(0) emissions, as would be expected. It is also noted that the deposition arising from
these emissions is generally much smaller than that arising from Hg(ll) or Hg(p) emissions — for any given
standard source location —and so the magnitude of the differences is relatively small. For example, the
largest difference seen in this example is that for elemental mercury emissions from SSL-8, on the
western shore of Lake Erie. The simulated deposition from 1 g/hr emissions of Hg(0) from this location
is 11.5 g/year to Lake Erie. With Hg(0) dry deposition set to zero, the simulated deposition is 1.1 g/year,
a difference of ~10 g/year. This difference can be compared with the deposition arising from analogous
emissions of Hg(ll) and Hg(p) with modeled deposition of ~¥350 g/year and ~100 g/year, respectively.
Figure 52 through Figure 55 show analogous comparisons for individual Great Lakes and for MDN sites in
the Great Lakes region. The overall influence of this variation in Hg(0) dry deposition is relatively small,
although there are larger fractional differences seen in some of the Hg(0) emissions simulations.
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Figure 51. Atmospheric mercury deposition to Lake Erie arising from emissions of
three different forms of emitted mercury from five illustrative standard source
locations: results for default simulation and results of simulations with Hg(0) set to 0
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Figure 54. Atmospheric wet mercury deposition to MDN sites in the Great Lakes
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Figure 55. Atmospheric wet mercury deposition to MDN sites in the Great Lakes

region from all SSL's Hg(0): dry deposition = 0 vs. default Hg(0) dry deposition
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2.6. Sensitivity to chemical transformation methodologies

2.6.1. Introduction

In the HYSPLIT-Hg model, atmospheric mercury can be transformed by chemical and physical processes
from one form to another. In the model, there are four forms of mercury tracked: Hg(0), Hg(ll), Hg(p),
and Hg(ll) adsorbed to soot, which is abbreviated “Hg2s”. The chemical transformations in the gas and
liquid phase, as well as the process of Hg(ll)-agueous sorption to aqueous soot, are shown in Figure 56
and Table 2. In this section, the reaction rates and parameters shown in Table 2 were varied and the
influence on the results was examined. In essentially every case, the variations chosen were % the
default value and twice the default value.

As can be seen from close inspection of Table 2 and Figure 56, there are no processes in the model in
which Hg(p) is transformed to another form of atmospheric mercury. Thus, for simulations of pure
Hg(p) emissions, there should be no sensitivity to these chemical reaction parameters, and
concentrations and deposition of the other mercury forms should all be zero. As a preliminary check,
this will be examined in the next section.

- Elemental Mercury [Hg(0)]
- Hg(ll), ionic mercury, RGM
m Particulate Mercury [Hg(p)]

CLOUD DROPLET or

deliquesced aerosol aqueous phase

E
Vapor phase: Hg(ll) reduced to Hg(0)
by SO, and sunlight
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and Hg[p} b‘f 03, Hzoy ciz, m EEEEEEEEENEEEEEEEEN 15: 8 d:sor{pt}ion
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Anthropogenic Hg(ll) species by O;, OH,
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Wet deposition

Natural Re-emission of previously Dry deposition
deposited anthropogenic

and natural mercury l

Figure 56. Schematic of mercury transformations in the HYSPLIT-Hg model
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Table 2. Chemical Transformations in the HYSPLIT-Hg Model

Reaction Rate Units Reference
GAS PHASE REACTIONS
0
Hg +0, - Hg(p) 3.0E-20 e e G Hall (1995)
0
Hg + HCl > HgC|2 1.0E-19 Cm3/m0|ec-sec Hall and Bloom (1993)
g 3 Tokos et al. (1998) (upper limit
Hg +HO,—>Hg(p) | 8.5E-19 cm /molec-sec based on experiments)
0
Hg + CI2 - HgCI2 4.0E-18 cm3/molec-sec Calhoun and Prestbo (2001)
0 3
Hg +OH —> Hg(p) 8.7E-14 cm /molec-sec Sommar et al. (2001)
AQUEOUS PHASE REACTIONS
0 +2 1
Hg + 03 — Hg 4.7E+7 (mo|ar-sec) Munthe (1992)
Hgo +OH > Hg+2 2.0E+9 (molar—sec)_l Lin and Pehkonen(1997)
((31.971*T)-12595.0)/T) -1
T*e sec

0
HgSO, — Hg

[T = temperature (K)]

Van Loon et al. (2002)

0
Hg(ll) + HO2 — Hg

1
~0 (molar-sec)

Gardfeldt & Jonnson (2003)

0 +2
Hg +HOCI — Hg

1
2.1E+6 (molar-sec)

Lin and Pehkonen(1998)

Hgo + o(;|_1 N Hg+2 2.0E+6 (moIar-sec)_l Lin and Pehkonen(1998)
liters/gram; eglbrm: Seigneur et al. (1998)
Hg(ll) < Hg(ll 9.0E+2
20 9D o0y t = 1/hour rate: Bullock & Brehme (2002).
Al, : 5
Hg+2 hy 5 HgO 6.0E-7 (sec) (maximum) Xiao et al. (1994),

Bullock and Brehme (2002)
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2.6.2. Check Hg(p) not influenced by chemical parameters

As discussed immediately above, the fate and transport of Hg(p) emissions should not be influenced by
variations in the HYSPLIT-Hg chemical transformation rates and parameters being examined here. This
was tested by carrying out a simulation in which all of the rates and parameters were adjusted. All
oxidation reaction rates were multiplied by 2, and all reduction reaction rates were divided by 2,
creating a “maximum oxidation” variation (often shown as “max oxid” in the figures below).

In Figure 57 through Figure 61, below, numerous comparisons are presented, showing the results of
simulations of Hg(p) emissions with default and “maximum oxidation” chemical rate parameters. It can
be seen in all of the figures that the deposition to the Great Lakes and the wet deposition to MDN sites
in the Great Lakes region are identical. This is the expected result, and it serves as a useful QA/QC check
on the simulation.
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Figure 57. Atmospheric deposition to Lake Erie arising from Hg(p) emissions with
"maximum oxidation" parameters vs. default chemical rate parameters
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Figure 58. Atmospheric deposition to individual Great Lakes arising from Hg(p) emissions
with "maximum oxidation" parameters vs. default chemical rate parameters
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Figure 59. Atmospheric wet deposition to MDN sites in the Great Lakes region arising from Hg(p) emissions with
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56



8.0E-11

WI99
7.0E-11 Wi36
Wi32
wi31
mWI22
WI09
= WI08
m OHO02
m MN27
= MN23
H MN22
= MN18
mMN16
m MI48
mIN34
mIN28
mIN26
mIN21
HIN20
mIL11

6.0E-11

5.0E-11
4.0E-11

3.0E-11
2.0E-11

1.0E-11

sites from 1 g/hr Hg(p) sources, using
different chemical rate parameters

0.0E+00

Wet deposition (g/m2-yr) to selected MDN

rept 0GR default chem -I I
rept- O GEM max dation -I I

et 048 GEM defaultchem -I I
HEPL 048 GEM max dation -l I
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Figure 61. Atmospheric wet deposition to MDN sites in the Great Lakes region arising from Hg(p) emissions
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2.6.3. Aqueous-phase reduction of Hg(II) by hv

In this section, the rate of aqueous phase reduction of Hg(ll) by sunlight is varied, and the influence on
the modeled fate and transport of emitted mercury is examined. It can be seen in Figure 62 through
Figure 66 that the variation in this chemical reduction rate has little effect on the modeled fate and
transport of emitted mercury, in almost every case. Note that only simulations for Hg(0) and Hg(ll)
emissions are shown. As discussed earlier, emissions of Hg(p) are not affected by this process.
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Figure 62. Atmospheric deposition to Lake Erie with Hg(ll)-aq reduction at 0.5, 1.0, and 2.0x the default rate
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Figure 64. Atmospheric wet deposition to MDN sites in the Great Lakes region with

different rates of sunlight-mediated Hg(ll)-aq reduction for SSL's 6,8, and 11 (U.S.)
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Figure 65. Atmospheric wet deposition to MDN sites in the Great Lakes region with different
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59



Wet dep flux at Great Lakes MDN sites with

1.0E-08

-
©
]
=
~
€ 1.0E-09
S~
0
o
=
©
>
£  1.0E-10
O
@
=
©
©
o 1.0E-11
)
)
7}
(7]
.g O hv reduction * 0.5
ey
o -
'g 1012 O hvreduction * 2.0
Q
S
> —1:1 line
<
1.0E-13 | |
1.0E-13 1.0E-12 1.0E-11 1.0E-10 1.0E-09 1.0E-08

Wet dep flux at Great Lakes MDN sites
using hv reduction at default rate (g/m2-year)

Figure 66. Atmospheric wet deposition to MDN sites in the Great Lakes region with different
rates of sunlight-mediated Hg(ll)-aq reduction for all five illustrative SSL's (scatterplot)

60



2.6.4. Gas-phase oxidation of Hg(0) by 03

In this section, the rate of gas-phase oxidation of Hg(0) by ozone is varied, and the influence of this
variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be seen from Figure
67 through Figure 71 that the variation of this rate has little effect on the fate and transport of emitted
Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this parameter.
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Figure 67. Atmospheric deposition to Lake Erie with gas-phase oxidation of Hg(0) by ozone at 0.5, 1.0, and
2.0x the default rate, for emissions of Hg(ll) and Hg(0), from all five illustrative standard source locations
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Figure 68. Atmospheric deposition to individual Great Lakes with gas-phase oxidation
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Hg(0), from all five illustrative standard source locations (scatterplots)
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Figure 69. Atmospheric wet deposition to MDN sites in the Great Lakes region with gas-phase oxidation of Hg(0)

by O; at 0.5, 1.0, and 2.0x the default rate, for emissions of Hg(ll) and Hg(0), from the 3 U.S. illustrative SSL's
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Figure 70. Atmospheric wet deposition to MDN sites in the Great Lakes region with gas-phase oxidation of Hg(0)

by O;at 0.5, 1.0, and 2.0x the default rate, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Figure 71. Atmospheric wet deposition to MDN sites in the Great Lakes region
with gas-phase oxidation of Hg(0) by ozone at 0.5, 1.0, and 2.0x the default
rate, for emissions of Hg(ll) and Hg(0), from all 5 illustrative SSL's (scatterplot)
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2.6.5. Aqueous-phase oxidation of Hg(0) by OH

In this section, the rate of agueous-phase oxidation of Hg(0) by hydroxyl radical is varied, and the
influence of this variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be
seen from Figure 72 through Figure 76 that the variation of this rate has little effect on the fate and
transport of emitted Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this

parameter.
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Figure 72. Atmospheric deposition to Lake Erie with aqueous-phase oxidation of Hg(0) by OH at 0.5, 1.0, and
2.0x the default rate, for emissions of Hg(ll) and Hg(0), from all five illustrative standard source locations
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Figure 73. Atmospheric deposition to individual Great Lakes with aqueous-phase
oxidation of Hg(0) by OH at 0.5, 1.0, and 2.0x the default rate, for emissions of
Hg(ll) and Hg(0), from all five illustrative standard source locations (scatterplots)

64



1.2E-08

65

“— IS
=B
c
N O N 0 © o o N M N 0 ©
8882888282222 22388588 2 s 2 88853382222 838838 <
2323235555553z =zz=z¢zz:2 % 23323232323 55553555z=z=zzz=z:Z
n EEEEEEEEEENEERR < 5 n E B EEEEEEEEENEEREN
(7]
o3
w =
(0°Z « pIxo be yo) NOD TTO Wal? ...nDa. S (0°Z « PIX0 be yo) WID 80 WD
(0°T « pIx0 be yo) WOD TTO WalP & w
(5°0 & PIX0 be yo) WOD TTO WD m ()] (0°T & PIX0 be yo) INID"8K0™ WD
s
o SE (570 « pIX0 be yo) NID"8Y0 W32
(0'Z « pixo be Yo) 4nd"TTO™ 11BH = 9
— _ e
(0°T « pixo be yo) 4nd"TTO 118H 3 =
- o
(50 « Px0 be yo) INd"TTO 118H S
‘B T (0°Z « pixo be yo) W3D™8¥0 1ISH
v o3
1
- 1xo be yo 800 W9 = _
(0« P! 4 vs_oulwoﬁﬁ ! = (0T 4 pIxo be yo) N3ID ™80 11SH
(0'T « pIxo be yo) WOD 80O Wajd m »
(S0 « P10 be yo) WOD "800 W2 = ‘e (S0 « px0 be yo) W39 "8v0™ 113H
(0°Z « p1xo be yo) 4nd "800 118H 0@
_ < 2
(0°T & P1X0 be yo) 4nd "800 118H ..m m (0°Z « PIX0 be Yyo) NIDET0 W2
(S°0 « PIx0 be yo) 4nd "800 11H @ 5
m = (0'T « pIxo be yo) WID €10 w32
)
: 1xo be yo 7900 W 26 R
(0T « P! 4o) INOD 900 W3] g¢c (50 4 PIXO be 4o) WID"ET0- WS}
(0°T & p1xo0 be yo) NOD 900 wd|d S m
(5°0 « P10 be yo) NOD"900™ Wae 2s
c @
o T _
e =9 (0°Z « PIx0 be yo) W39 €TO 118H
(0°Z « PIxo be yo) 4nd 900" 11SH g <
(0°T « pIxo be yo) 4nd 900 118H @ W (0°T % P1X0 be yo) WIDETO 118H
(50 « pix0 be yo) 4nd~9007 118H S ..M
g < (S0 « PIX0 be Yo) N9 ETO 11BH
=)
[T o o o o o — o
<5 S &S S o9
W 1 (] ] 0] w Ll o] _H
g o S m o mw o 9o g
Ew Mm & &N =S = n g
S3N|eA JUAIYIP 0} 13S M T
(0)8H j0 uonepixo HO aseyd snoanbe - O SONIEA JUSISHIP 01135
. < > (0)8H j0 uonepixo HO aseyd snoanbe
YUM ‘s224n0s 4y/3 T wouy saxs NAIN ~ 2
o YUM ‘s324n0s 1y /3 T woly saus NAIN
pa3d3|as 03 (4A-zw/3) uonisodap 19Mm o =
s S pa3d3)as 03 (4A-zw/3) uonisodap 19m
.20 bo
w I

Figure 75. Atmospheric wet deposition to MDN sites in the Great Lakes region with aqueous-phase oxid. of Hg(0)
by OH at 0.5, 1.0, & 2.0x the default rate, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Figure 76. Atmospheric wet deposition to MDN sites in the Great Lakes region with
aqueous-phase oxidation of Hg(0) by OH at 0.5, 1.0, and 2.0x the default rate, for
emissions of Hg(ll) & Hg(0), from all 5 illustrative SSL's (scatterplot)
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2.6.6. Gas-phase oxidation of Hg(0) by OH radical

In this section, the rate of gas-phase oxidation of Hg(0) by hydroxyl radical is varied, and the influence of
this variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be seen from
Figure 77 through Figure 81 that the variation of this rate has little effect on the fate and transport of
emitted Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this parameter.
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Figure 77. Atmospheric deposition to Lake Erie with gas-phase oxidation of Hg(0) by OH at 0.5, 1.0, and 2.0x the
default rate, for emissions of Hg(ll) and Hg(0), from all five illustrative standard source locations

© = © =
£ % 1.0E-01 P 1.0E-03
-‘é ~ ‘;‘ ~
2 £ ZE
£3 5§
52 53
=8 1.0E-02 xS
g ¥ L
338 53 1.0E-04
c E g o
22 1.06-03 2 £
2 T T
£ 3 K g
Sz 2z
x oS H o
= g 1.0E-04 <3
s O Hegl(ll) emit: rate of gas phase OH s 1.0E-05 21 O Hg(0) emit: rate of gas phase OH ||
a oxidation of Hg(0) x 0.5 ] oxidation of Hg(0) x 0.5
bl
> ‘s 1.0E-05 O Hg(ll) emit: rate of gas phase OH ‘s O Hg(0) emit: rate of gas phase OH
T -OE- oxidation of Hg(0) x 2.0 [ e oxidation of Hg(0) x 2.0
o = 2
s g ——1:1line E —— 1i1line
5 5
g ]
£ 1.0E-06 1 1 £ 10e06 !
d ©0 n < o0 N o < T © 0 < o0
=] (=] =) =} =) =) Q <] [S] =]
w s w s s w w i w w
S} S} S} S} S} o o o o S}
- Ll Ll Ll Ll Ll il - - -
icd ition flux to individual Great Lakes with A pheric deposition flux to individual Great Lakes with
default rate of gas phase OH oxidation of Hg(0) (g/km2-yr) default rate of gas phase OH oxidation of Hg(0) (g/km2-yr)
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Figure 79.Atmospheric wet deposition to MDN sites in the Great Lakes region with gas-phase oxidation of Hg(0)

by OH at 0.5, 1.0, and 2.0x the default rate, for emissions of Hg(ll) & Hg(0), from the 3 U.S. illustrative SSL's
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Figure 80.Atmospheric wet deposition to MDN sites in the Great Lakes region with gas-phase oxid. of Hg(0) by

OH at 0.5, 1.0, & 2.0x the default rate, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Figure 81.Atmospheric wet deposition to MDN sites in the Great Lakes region
with gas-phase oxidation of Hg(0) by OH at 0.5, 1.0, and 2.0x the default rate,
for emissions of Hg(ll) & Hg(0), from all 5 illustrative SSL's (scatterplot)
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2.6.7. Aqueous-phase reduction of Hg(II) by S(IV)

In this section, the rate of aqueous-phase reduction of Hg(ll) by S(IV) is varied, and the influence of this
variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be seen from Figure
82 through Figure 86 that the variation of this rate has little effect on the fate and transport of emitted
Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this parameter.
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Figure 82. Atmospheric deposition to Lake Erie with aqueous-phase reduction of Hg(ll) by S(IV) at 0.5, 1.0, and
2.0x the default rate, for emissions of Hg(ll) and Hg(0), from all five illustrative standard source locations
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Figure 83. Atmospheric deposition to individual Great Lakes with aqueous-phase
reduction of Hg(ll) by S(IV) at 0.5, 1.0, and 2.0x the default rate, for emissions of Hg(ll)
and Hg(0), from all five illustrative standard source locations (scatterplots)
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Figure 84.Atmospheric wet deposition to MDN sites in the Great Lakes region
with aqueous-phase reduction of Hg(ll) by S(IV) at 0.5, 1.0, and 2.0x the default

rate, for emissions of Hg(ll) & Hg(0), from the 3 U.S. illustrative SSL's
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Figure 85.Atmospheric wet deposition to MDN sites in the Great Lakes region

with aqueous-phase reduction of Hg(ll) by S(IV) at 0.5, 1.0, & 2.0x the default

rate, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Wet dep flux at Great Lakes MDN sites with aqueous phase
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Figure 86.Atmospheric wet deposition to MDN sites in the Great Lakes region
with aqueous-phase reduction of Hg(ll) by S(IV) at 0.5, 1.0, and 2.0x the default

rate, for emissions of Hg(ll) & Hg(0), from all 5 illustrative SSL's (scatterplot)
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2.6.8. Aqueous-soot adsorption partitioning factor for Hg(II)

In this section, the equilibrium constant for aqueous Hg(ll)-soot partitioning is varied, and the influence
of this variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be seen from
Figure 87 through Figure 91that the variation of this rate has little effect on the fate and transport of
emitted Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this parameter.
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Figure 87. Atmospheric deposition to Lake Erie with the equilibrium constant for
aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the default value, for
emissions of Hg(ll) and Hg(0), from all five illustrative standard source locations
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Figure 88. Atmospheric deposition to individual Great Lakes with the equilibrium constant for
aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the default value, for emissions of Hg(ll)
and Hg(0), from all five illustrative standard source locations (scatterplots)
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Figure 89. Atmospheric wet deposition to MDN sites in the Great Lakes region with the
equilibrium constant for aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the

default value, for emissions of Hg(ll) & Hg(0), from the 3 U.S. illustrative SSL's
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Figure 90. Atmospheric wet deposition to MDN sites in the Great Lakes region with the
equilibrium constant for aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the

default value, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Figure 91. Atmospheric wet deposition to MDN sites in the Great Lakes region with the
equilibrium constant for aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the
default value, for emissions of Hg(ll) & Hg(0), from all 5 illustrative SSL's (scatterplot)
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2.6.9. Aqueous-soot adsorption partitioning time constant for Hg(II)

In this section, the time constant for aqueous Hg(ll)-soot partitioning is varied, and the influence of this
variation on the fate and transport of emitted Hg(0) and Hg(ll) is examined. It can be seen from Figure
87 through Figure 91that the variation of this rate has little effect on the fate and transport of emitted
Hg(0) or Hg(ll). As discussed earlier, emissions of Hg(p) are not affected by this parameter.
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Figure 93. Atmospheric deposition to individual Great Lakes with the time constant for
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Figure 94. Atmospheric wet deposition to MDN sites in the Great Lakes region with
the time constant for aqueous Hg(l1)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the

default value, for emissions of Hg(ll) & Hg(0), from the 3 U.S. illustrative SSL's
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Figure 95. Atmospheric wet deposition to MDN sites in the Great Lakes region with
the time constant for aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the

default value, for emissions of Hg(ll) & Hg(0), from SSL-13 (China) & SSL-48 (India)
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Figure 96. Atmospheric wet deposition to MDN sites in the Great Lakes region with
the time constant for aqueous Hg(ll)-soot partitioning S(IV) at 0.5, 1.0, and 2.0x the
default value, for emissions of Hg(Il) & Hg(0), from all 5 illustrative SSL's (scatterplot)
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3. Synthesis of sensitivity analyses of illustrative source locations
3.1. Introduction

In this section, the numerous variations discussed above will be combined for each of the illustrative
standard source locations. This will allow us to compare the influences of each perturbation on the
overall simulation results.

In the graphs presented in the following sections, simulation names are constructed to give an
abbreviated “cryptic” description of the nature of the simulation. The first part of any simulation name
uses the standard naming convention, e.g., “elem_013_GEM” refers to a simulation with emissions of
pure elemental mercury, Hg(0), from standard source location 13, using the GEM methodology. The
types of basic runs (PUF, COM, and GEM) are described above in Section 2.2 (page 12).

Variations on the basic simulations are indicated by additional labels in the name, according to the
following table.

Label text | Description Notes
In default simulations, the
elem_dep_0 | Dry deposition of Hg(0) set to zero dry deposition is estimated

via a resistance method

wetr_010000 | WETR in-cloud particle rainout coefficient set to 10,000

wetr_160000 | WETR in-cloud particle rainout coefficient set to 160,000 Default WETR = 40,000

elev_50 | Release height set to 50m Default is 250m

hvx2 | Rate of reduction of Hg(ll)-aq by hv multiplied by 2

hvxp5 | Rate of reduction of Hg(ll)-aq by hv multiplied by 0.5

03gx2 | Rate of oxidation of gas-phase Hg(0) by O; multiplied by 2

03gxp5 | Rate of oxidation of gas-phase Hg(0) by O; multiplied by 0.5

ohax2 | Rate of aqueous phase oxidation of Hg(0) by OH multiplied by 2 In the default simulation, the

ohaxp5 | Rate of aqueous phase oxidation of Hg(0) by OH multiplied by 0.5 rates of any given chemical

so2x2 | Rate of aqueous phase reduction of Hg(ll) by S(1V) multiplied by 2 transformation are not

so2xp5 | Rate of aqueous phase reduction of Hg(ll) by S(IV) multiplied by 2 multiplied by 2 or 0.5

zkx2 | Aqueous Hg(ll)-soot partition factor multiplied by 2

zkxp5 | Aqueous Hg(ll)-soot partition factor multiplied by 0.5

ztx2 | Aqueous Hg(ll)-soot partitioning time constant multiplied by 2

ztxp5 | Aqueous Hg(ll)-soot partitioning time constant multiplied by 0.5

In some of the run labels, a model version number is given, e.g., “v25ir”. Variations between model
versions are discussed and presented in the Appendix. For the purposes of the comparisons in this
section, it can be safely assumed that any differences due to different model versions can be ignored.

Using the above information, it is possible to interpret what any given simulation was. For example,
“Hgll_008_PUF_v25ir_03gxp5” indicates that the simulation was for emissions of Hg(ll), from standard
source location #8, using the “PUF” methodology, with model version 25ir, in which the rate of gas-
phase oxidation of Hg(0) by O; is multiplied by 0.5.
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3.2. Standard Source Location 13 (China)

An overview of the influences on the atmospheric fate and transport of mercury emitted from SSL-13
(China) is shown in the figures below.

Figure 97 shows the results for emissions of Hg(0). It is seen from this figure that the various changes in
parameters investigated here do not make a very significant difference in the predicted deposition of

mercury to the Great Lakes.

Figure 98 shows the results for emissions of Hg(ll). It is seen that variations in WETR and release height
do make a significant difference, as well as a few of the chemical transformation variations. For
example, it is seen that doubling the rate of Hg(ll) reduction by S(IV) results in an increase in deposition
flux to the Great Lakes. The increased reduction renders the mercury less vulnerable to wet and dry
deposition, and thus more of the mercury reaches the Great Lakes region for potential deposition.

Figure 99 shows the results for emissions of Hg(p). There are fewer variations shown for Hg(p) emissions
as the chemical transformation variations are not relevant for emissions of pure Hg(p), as discussed in
Section 2.6.2 (page 55). The “elem_dep_0" simulation is shown as a QA/QC check — it should introduce
no changes in the Hg(p) results, and it can be seen that it doesn’t. It can be seen that differences in
WETR make a big difference in the results for the Great Lakes. With a lower WETR, more of the emitted
Hg(p) makes it to the Great Lakes region from this far-away source location. With a higher WETR, more
of the emitted Hg(p) is wet-deposited before it reaches the Great Lakes region.
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Figure 97. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(0) emissions from
SSL-13 (China) using different simulation methodologies and/or parameters
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Figure 98. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(ll) emissions from
SSL-13 (China) using different simulation methodologies and/or parameters
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Figure 99. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(p) emissions from
SSL-13 (China) using different simulation methodologies and/or parameters
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3.3. Standard Source Location 48 (India)

An overview of the influences on the atmospheric fate and transport of mercury emitted from SSL-48

(India) is shown in the figures below.

Figure 100 shows the results for emissions of Hg(0). The WETR variations — affecting wet deposition —
have a slightly larger impact than the results for SSL-13 (China). As with SSL-13, though, the chemical
transformation variations do not appear to make a significant difference.

Figure 101 shows the results for emissions of Hg(ll). It is seen that variations in WETR make the most
significant difference. In contrast to SSL-13, changing the release height to 50m did not have a significant
impact. Further, the influence of variations in the chemical transformation parameters was not as great

as was seen for SSL-13.

Figure 102 shows the results for emissions of Hg(p). There are fewer variations shown for Hg(p)
emissions as the chemical transformation variations are not relevant for emissions of pure Hg(p). The
“elem_dep_0" simulation is shown as a QA/QC check — it should introduce no changes in the Hg(p)
results, and it can be seen that it doesn’t. Consistent with the results for SSL-13, differences in WETR
make a big difference in the results for the Great Lakes. With a lower WETR, more of the emitted Hg(p)
makes it to the Great Lakes region from this far-away source location. With a higher WETR, more of the
emitted Hg(p) is wet-deposited before it reaches the Great Lakes region.
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Figure 100. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(0) emissions from
SSL-48 (India) using different simulation methodologies and/or parameters
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Figure 101. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(ll) emissions from
SSL-48 (India) using different simulation methodologies and/or parameters
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Figure 102. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(p) emissions from
SSL-48 (India) using different simulation methodologies and/or parameters
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3.4. Standard Source Location 11 (northeastern Texas)

An overview of the influences on the atmospheric fate and transport of mercury emitted from SSL-11
(northeastern Texas) is shown in the figures below.

Figure 103 shows the results for emissions of Hg(0). The input meteorological data — the default NARR
vs. EDAS — has a big influence, as expected. Further, the simulation methodology (COM vs. PUF) also has
a big influence, as expected. These differences were the rationale for using the NARR met data and COM
methodology [for Hg(0)]. Of the other variations, the WETR changes — affecting wet deposition — have
the most significant impact. A range of dispersion methodology variations is shown for the first time in
this synthesis, as they are only relevant for PUF and COM simulations. Other than the overall
methodology (PUF vs. COM) the other dispersion variations do not appear to influence the results
significantly. The chemical transformation variations do not appear to make a significant difference.

Figure 104 shows the results for emissions of Hg(lIl). Similar to Hg(0), large variations are seen with the
input meteorological data (the default NARR vs. EDAS). The PUF vs. COM variation did not make a large
difference, and this is why the COM methodology was not deemed necessary for Hg(ll). Like other
comparisons, the variations in WETR make a significant difference. The puff scheme (ps10 vs.ps 12)
appears to influence results. The reasons for this are discussed in Section 2.4.6 (page 39), and the
differences found informed the choice of “default” puff scheme parameters

Figure 105 shows the results for emissions of Hg(p). As stated above, there are fewer variations shown
for Hg(p) emissions as the chemical transformation variations are not relevant for emissions of pure
Hg(p). The “elem_dep_0”" simulation is shown as a QA/QC check — it should introduce no changes in the
Hg(p) results, and it can be seen that it doesn’t. As with Hg(ll) above, the largest variations are seen
with the input meteorological data (the default NARR vs. EDAS) and with WETR. In this case, the WETR
influence on results is different than for SSL-13 and SSL-48. In this case, an increase in WETR leads to an
increase in deposition to the Great Lakes. This is because the time scale for transport to the Great Lakes
region from the source is relatively short, and there is less chance for the emitted mercury to be rained
out along the way. Then, upon reaching the Great Lakes region, if there is precipitation, the increased
value of WETR leads to increased wet deposition.
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Figure 103. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(0) emissions from

SSL-11 (Texas) using different simulation methodologies and/or parameters
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Figure 104. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(ll) emissions from

SSL-11 (Texas) using different simulation methodologies and/or parameters
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Figure 105. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(p) emissions from
SSL-11 (Texas) using different simulation methodologies and/or parameters

3.5. Standard Source Location 6 (Ohio River Valley)

An overview of the influences on the atmospheric fate and transport of mercury emitted from SSL-6
(Ohio River Valley) is shown in the figures below.

Figure 106 shows the results for emissions of Hg(0). As with SSL-11, the input meteorological data — the
default NARR vs. EDAS — has a big influence, as expected. Further, similar to SSL-11, the simulation
methodology (COM vs. PUF) also has a big influence, as expected. As noted earlier, these differences
were the rationale for using the NARR met data and COM methodology [for Hg(0)]. As seen in earlier
comparisons, the WETR changes — affecting wet deposition — have a significant impact. The variation
affecting the dry deposition of Hg(0) — “elemdep_0" — has a significant impact. As with SSL-11, a range of
dispersion methodology variations are shown. Other than the overall methodology (PUF vs. COM) and
the puff-scheme variations, the other dispersion variations do not appear to influence the results
significantly. The chemical transformation variations do not appear to make a significant difference.
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Figure 107 shows the results for emissions of Hg(Il). Similar to Hg(0), large variations are seen with the
input meteorological data (the default NARR vs. EDAS). As with SSL-11, the PUF vs. COM variation did
not make a large difference, and this informed the decision that the COM methodology was not deemed
necessary for Hg(ll). Like other comparisons, the variations in WETR make a significant difference and
the puff scheme (ps10 vs.ps 12) appears to influence results. The reasons for this are discussed in
Section 2.4.6 (page 39), and the differences found informed the choice of “default” puff scheme
parameters. The release elevation did have a big influence on the results. With a lower elevation, more
of the Hg(ll) deposited early in the transport path, and less mercury was potentially available for
deposition if/when the air mass got to the Great Lakes.

Figure 108 shows the results for emissions of Hg(p). As stated above, there are fewer variations shown
for Hg(p) emissions as the chemical transformation variations are not relevant for emissions of pure
Hg(p). The “elem_dep_0" simulation is shown as a QA/QC check — it should introduce no changes in the
Hg(p) results, and it can be seen that it doesn’t. As with Hg(ll) above, the largest variations are seen
with the input meteorological data (the default NARR vs. EDAS) and with WETR. As with SSL-11, the
WETR influence on results is different than for SSL-13 and SSL-48. As with SSL-11, an increase in WETR
leads to an increase in deposition to the Great Lakes. The time scale for transport to the Great Lakes
region from the source is likely even shorter, and there is less chance for the emitted mercury to be
removed by wet deposition along the way. Then, upon reaching the Great Lakes region, if there is
precipitation, the increased value of WETR leads to increased wet deposition.
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Figure 106. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(0) emissions from
SSL-6 (Ohio River Valley) using different simulation methodologies and/or parameters
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3.6. Standard Source Location 8 (western shore of Lake Erie)

An overview of the influences on the atmospheric fate and transport of mercury emitted from SSL-8
(western shore of Lake Erie) is shown in the figures below.

Figure 109 shows the results for emissions of Hg(0). The largest influences for this simulation are dry
deposition (elemdep_0) and the release elevation (elev_50m). The biggest variation is for deposition flux
to Lake Erie. In this case, the input meteorological data (NARR vs. EDAS) and the overall simulation
methodology (PUF vs. COM) have a relatively small influence. The other dispersion variations do not
appear to influence the results significantly. The chemical transformation variations do not appear to
make a significant difference.

Figure 110 shows the results for emissions of Hg(ll). Similar to Hg(0), large differences are seen for the
variation in release elevation (50m vs. 250m). The input meteorological data (the default NARR vs.
EDAS) also had a moderately large impact. Like many of the other comparisons, the variations in WETR
made a difference. These were the largest influences observed for this case, and all other variations
were relatively small.

Figure 111 shows the results for emissions of Hg(p). As stated above, there are fewer variations shown
for Hg(p) emissions as the chemical transformation variations are not relevant for emissions of pure
Hg(p). The “v25rr_base” and “max_oxid” simulations are shown as a QA/QC checks — they should
introduce no changes in the Hg(p) results, and it can be seen that they don’t. The largest influence is
seen with the variation in WETR, a parameter affecting scavenging of particles in precipitation. Similar to
other species emissions at this site, the release height variation (50m vs. 250m) results in a relatively
significant difference, but the effect can clearly be seen to impact the modeled deposition flux to other
lakes in addition to Lake Erie.
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Figure 109. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(0) emissions from

SSL-8 (Western shore of Lake Erie) using different simulation methodologies and/or parameters
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Figure 110. Modeled atmospheric mercury deposition flux to the Great Lakes arising from Hg(ll) emissions from

SSL-8 (Western shore of Lake Erie) using different simulation methodologies and/or parameters
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3.7. Overall synthesis

A total of 474 different simulations were carried out for the five illustrative standard source locations
(SSL’s) examining the influence of variations on simulation results. About a third of these simulations
(154) were carried out to examine numerical issues, as summarized in the Appendix. The remainder (320
simulations) examined the influence of different inputs, parameters, and algorithms on the model
results. An overall summary of this investigation is provided here. Table 3 shows the fractional variations
— expressed as a percent of the default value — for the most important variations examined, for each of
the five SSL’s, for emissions of pure Hg(0), Hg(ll), and Hg(p). Graphical depictions of these same data are
shown in Figure 112, Figure 113, and Figure 114, for Hg(0), Hg(ll), and Hg(p), respectively. Based on an
examination of the summary table and figures, the following overall conclusions can be made:

e Except as noted in the following bullets, for all illustrative standard source locations and for all
mercury emission forms -- Hg(0), Hg(Il), and Hg(p) -- the largest impacts on modeled Great Lakes
deposition flux are generally seen for variations in the following :

0 the emissions release height [emit elev (50m vs. 250m)]
O the particle rainout factor [wetr (160,000 vs. 40,000)]
0 the meteorological input data [met data (edas vs. narr)]

e For all mercury emission forms, the emissions release height shows the greatest variations for
SSL-8, on the western shore of Lake Erie, and as discussed in the more detailed sections earlier,
this is primarily due to the modeled deposition to Lake Erie, which is immediately adjacent to
the emissions location. This makes intuitive sense as one would expect the emissions release
height to have the greatest impact on concentrations and deposition nearby the source.

0 For Hg(0) and Hg(p), the release height is only important for SSL-8, i.e., the variations
seen for the other SSL’s for release height are relatively insignificant.

0 For Hg(ll), the release height also shows moderate variations for other SSL’s. This is
because the near-field deposition of Hg(ll) is relatively large. So, the increased near-field
deposition due to a lower release height (50m vs. 250m) has a relatively bigger impact
on the deposition further downwind.

e Increases in WETR, a parameter affecting wet deposition of particles, from the default value of
4.0E+04 m>-air/m>-water to 1.6E+05 ma—air/ma—water, for all emitted mercury forms results in:

0 lower deposition to the Great Lakes for distant sources (SSL-13, China, and SSL-48,
India), as the increased wet deposition as the mercury is being transported to the Great
Lakes has a bigger impact than the increased efficiency of wet deposition once the
mercury arrives at the Great Lakes region

0 increased deposition to the Great Lakes for national, regional, and local sources (SSL-11,
Texas, SSL-6, Ohio River Valley, and SSL-8, western shore of Lake Erie), as the increased
wet deposition as the mercury is being transported to the Great Lakes has a lower
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impact than the increased efficiency of wet deposition once the mercury arrives at the

Great Lakes region
The use of EDAS vs. the default NARR meteorological data to drive the HYSPLIT-Hg simulation
only affects the simulations of SSL-11 (Texas), SSL-6 (Ohio River Valley), and SSL-8 (western
shore of Lake Erie), as only the NCEP/NCAR 2.5 degree global reanalysis data is used to simulate
the fate and transport of mercury emitted from the distant sources SSL-13 (China) and SSL-48
(India). For this variation, the effects on simulated Great Lakes deposition are significant, with
relatively large positive and negative impacts.

Setting the dry deposition of Hg(0) to zero has a moderately significant impact on the fate and
transport of emitted Hg(0), but the impact appears to decrease as the distance to the Great
Lakes increases. The largest impact (-79%) was seen for SSL-8 (Lake Erie shore). The impacts for
SSL-6 (Ohio River Valley) and SSL-11 (Texas) were -26% and -10%, respectively, and the impacts
for the most distant illustrative SSL’s (China and India) were relatively small.

In general, changes in the chemical transformation parameters did not generate large changes
in simulated deposition to the Great Lakes. To examine these changes in a more detail, they
have been plotted “alone” in Figure 115 for emissions of Hg(0) and Figure 116 for emissions of
Hg(ll). As discussed earlier, simulations of Hg(p) emissions in the HYSPLIT-Hg model are not
influenced by changes in these chemical transformation parameters. Note that the scale in
these figures is much smaller, as the maximum changes are only on the order of ~10%.
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Table 3. Overall summary of influences of simulation variations on estimated deposition flux of
mercury to the Great Lakes arising from the five different illustrative standard source locations

Emissions Location

Met data and
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Chemistry and partitioning

Puff dispersion parameters

and Species release height Methodology
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g | % |o*8 X8 587 |2 |%
448 Hg(0) -2% -16% +5% 0% -4% 0% 0% 0%
! Hg(ll) 1% | -14% 0% +5% 0% 0% -3% 2%
India Hg(p) -6% -57%
#13 Hg(0) -1% -1% -1% 0% -2% 0% 0% 0%
Chi Hg(l1) -22% -54% -1% +12% 0% 0% -4% +6%
ina Hg(p) +1% -78%
#11 - Hg(0) +26% +3% +26% -10% -3% +6% +4% 1% +3% -4% 0% +4%
northeast Hg(l1) -45% -12% +33% +4% +3% +6% +7% 9% +6% +1% -10% +11%
Texas Hg(p) -21% -6% +43% -17% -11% +3%
#6 — Hg(0) +19% -4% +30% -26% +1% +9% +4% +1% -1% +4% +19% -1%
Ohio River Hg(l1) -6% -25% +40% -1% -1% -1% +2% +2% +3% -2% +17% +2%
Valley Hg(p) -28% -9% +76% -4% +20% +1%
#8 — western Hg(0) +18% | +195% +8% -79% 0% +1% 1% 0% +1% -1% +5% 0%
shore of Lake | Hg(ll) +47% | +146% +16% 0% 0% 0% 0% -1% -3% 0% +2% 0%
Erie Hg(p) 2% | +36% | +109% 1% | +11% 0%

Shading key for above table:

Cell color and
contents

Type of influence observed

Variations of this type would have no influence on this simulation

Variations of this type could have an influence, but no significant influence was observed (less than 10%)

Variations of this type showed a positive influence (greater deposition than default)

Variations of this type showed a negative influence (lesser deposition than default)
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Figure 112. Overall summary of variations in modeled Great Lakes mercury deposition flux arising from different
inputs, parameters and methodologies, from illustrative standard source locations, for emissions of Hg(0)

95



Percent
iff

dl‘ erence 150%
in total

Great Lakes 100%
Hg flux = ?

100 * )
[(default- 0%
variation)/ .

default] 0%
-50%
-100%

req
5 0xid (5 " ()
id (x2)
9lbrm (x;

| S(IV) reduction (x2)
W oh-gas oxid (x2)
® 03-gas oxid (x2)
W soot-Hgll eqlbrm (x2)
O soot-Hgll rate (x2)
m khmax-conage (672 vs 504)
W puff scheme 10
B max puffs = 40,000 vs. 20000
@ met data (edas vs. narr)
W elemdep_0 vs. simulated
B wetr (160,000 vs. 40,000)
@ emit elev (50m vs. 250m)

Figure 113. Overall summary of variations in modeled Great Lakes mercury deposition flux arising from different
inputs, parameters and methodologies, from illustrative standard source locations, for emissions of Hg(ll)
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Figure 115. Overall summary of variations in modeled Great Lakes mercury deposition flux arising from different
chemical transformation parameters, from illustrative standard source locations, for emissions of Hg(0)
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Figure 116. Overall summary of variations in modeled Great Lakes mercury deposition flux arising from different
chemical transformation parameters, from illustrative standard source locations, for emissions of Hg(ll)
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4. Sensitivity of full simulations

4.1. Full simulations selected for analysis

As discussed above, only a few different overall variations in the “full” analysis could be undertaken, due
to computational resource constraints. Accordingly, there were only 3 primary variations investigated. In
addition, numerous sub-variations based on these two primary variations were explored.

The first primary variation was the use of NARR meteorological data instead of EDAS meteorological
data to drive the simulation in the CONUS. As discussed above, the EDAS dataset (with 40km resolution)
was used in the FY10 analysis over the Continental US (incl. southern Canada and northern Mexico), and
the NCEP-NCAR Global Reanalysis dataset (with 2.5 degree) resolution was used outside of this region.
We will refer to this base simulation, which used 136 standard source locations (SSL’s), as “EDAS-
136”.To investigate the influence of input meteorological data, i.e., the data provided to the HYSPLIT-Hg
model during the simulation, the NCEP-NCAR North American Regional Reanalysis (“NARR”) dataset
(with 36km resolution) was used instead of the EDAS dataset. The global dataset used, i.e., the NCEP-
NCAR Global Reanalysis, was not changed. The NARR dataset is believed to have more accurate
precipitation data than the EDAS dataset during 2005, and this was borne out by examining the model-
predicted precipitation at mercury wet deposition measurement sites in the Great Lakes region (Figure
3, above). We will refer to this first primary simulation variation, which used the same 136 SSL’s, as
“NARR-136". This variation required 75 new Hg(0) COM-type simulations, and 75 new Hg(ll) and Hg(p)
PUF-type simulations (a total of 225 new simulations). The results for the 61 SSL’s in the FY10 baseline
analysis that were modeled using GEM-type simulations could be “re-used” as the only meteorological
dataset used for these runs was the NCEP/NCAR Global Reanalysis.

The second primary variation involved adding additional standard source locations to the analysis, in the
eastern Great Lakes region. One of the findings of the FY10 analysis was that the model predictions were
less consistent with Mercury Deposition Network wet deposition data at sites east of the Great Lakes. It
was hypothesized that this could have been because there were few standard source locations chosen in
that region. The reason that fewer standard source locations were used was that the region was
generally downwind of the Great Lakes, and impacts of sources in that region were likely less significant.
Thus, it was decided to devote less computational resources to sources in that region. For this second
primary variation, 15 additional locations were added to original 136 locations (for a total of 151
locations), to investigate what influence this might have on the consistency of model predictions with
ambient measurements, in the eastern Great Lakes region. This simulation variation will be referred to
as “NARR-151". This variation required an additional 45 simulations: 15 COM-type simulations for Hg(0)
and 15 PUF-type simulations, each, for Hg(ll) and Hg(p).

The third primary variation included an additional 28 standard source locations that were simulated for
a complementary project analyzing mercury deposition to the Gulf of Mexico. This variation required an
additional 84 simulations: 28 COM-type simulations for Hg(0) and 28 PUF-type simulations, each, for
Hg(ll) and Hg(p). These simulations were carried out with the identical methodology, and so they could
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be readily added to this Great Lakes analysis. With these 28 locations added to the NARR-151
simulation, the resulting analysis will be referred to as “NARR-179”. The NARR-179 analysis is not
expected to be significantly different than the NARR-151 analysis for the Great Lakes, but this
expectation will be examined below.

Maps of existing and newly added standard source locations, along with the locations of key model
evaluation wet deposition (MDN) sites are shown in Figure 117 and Figure 118.

’ d Q@H@

@ * MDN evaluation sites (not in Eastern GL region)
O * MDN evaluation sites (Eastern Great Lakes region)
O Standard Source Locations used in FY10 Analysis
o) 00 D0t amBISTS @ Standard Source Locations added in Eastern Great Lakes region

g 2 7

Figure 117. Standard source locations in the Great Lakes region,
including 15 added sites in the eastern Great Lakes region

Additional sub-variations based on the above three primary analyses will be discussed in more detail
when they arise, but will be briefly mentioned here. One sub-variation was the variation of total global
anthropogenic terrestrial re-emissions from the baseline value of 750 metric tons/year to a much higher
value (2000 metric tons/year), and the total global anthropogenic oceanic re-emissions from the
baseline value of 1250 metric tons/year to a much higher value (2000 metric tons/year). An additional
sub-variation was the method of adjusting precipitation data at the model evaluation sites. These sub-
variations included adjusting the EDAS or NARR dataset, adjusting the NCEP/NCAR global dataset,
adjusting both, and making no adjustments. A final set of sub-variations was considered involving the
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interpolation methodology, including the number of standard source locations used, and the method of
creating a weighted average result for a given source and receptor.
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Figure 118. Additional standard source locations added for a complementary Gulf of
Mexico analysis, along with the locations added in the eastern Great Lakes region

102




4.2. Model evaluation

The primary model evaluation approach used in the FY10 baseline analysis was to consider data from
wet deposition measurement sites in the Mercury Deposition Network (MDN) in the Great Lakes region.
A total of 32 sites with data for 2005 were used, including 20 in the western and central Great Lakes
region and 12 in the eastern Great Lakes region, generally downwind of the Great Lakes. The essential
evaluation results are shown below for the EDAS-136 analysis (Figure 119), the NARR-136 analysis
(Figure 120), the NARR-151 analysis (Figure 121) and the NARR-179 analysis (Figure 122). As in the FY10
baseline analysis, we have considered different methods in comparing the model predictions with the
ambient measurements. In one method, no adjustment was made to any of the model-predicted wet
deposition estimates. In another, the portion of the wet deposition estimates at the MDN sites that was
estimated using the EDAS-40km or NARR-36km dataset was adjusted proportionally to balance out the
precipitation “error” in the EDAS-40km or NARR-36km data. In a third method, a comparable
adjustment was made for the proportion of the wet mercury deposition at the MDN sites for which the
NCEP/NCAR Global Reanalysis was utilized. In a fourth method, both of the adjustments in the previous
two methods were made. In this FY11 analysis, we also considered variations introduced by basing the
adjustment on the precipitation measured at the MDN site by the rain-gauge, versus basing the
adjustment on maximum value of the precipitation measured by the rain gauge and the mercury
collector itself. The various datasets and precipitation comparisons are discussed in more detail above
(e.g., see page Error! Bookmark not defined.).

It is recognized that the impact of the precipitation “errors” in the meteorological datasets will
introduce complex, non-linear deviations in the simulations. For example, over- or under-estimates of
precipitation along the transport path of an air parcel making its way from the emissions source to the
MDN site will have an impact on the modeled wet deposition at the MDN site, even if the model-input
and measured precipitation matched perfectly at the site. So, the approaches described above involving
the measured/model-input precipitation ratio at any given site are clearly oversimplifications. This
simple methodology can be considered to provide an approximate estimate of the order of magnitude
of the uncertainty introduced by the inherent precipitation biases in the input meteorological data.

In the model evaluation figures below, the values and “error bars” shown are the average and range,
respectively, of the estimates made using the various adjustment methods discussed above. In the
figures (and in the summary, Table 4), best-fit linear regressions for the central/western Great Lakes
MDN sites and eastern Great Lakes region MDN sites are shown, along with the “slope”, “intercept”, and
“R* of the regression in each case. If the modeled data matched the measurements perfectly, the slope
would be “1”, the intercept “0”, and the R2 would be “1”.
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Figure 119. Comparison of model predictions with wet deposition
measurements in the Great Lakes region using the EDAS-136 analysis
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Figure 120. Comparison of model predictions with wet deposition
measurements in the Great Lakes region using the NARR-136 analysis
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Figure 121. Comparison of model predictions with wet deposition
measurements in the Great Lakes region using the NARR-151 analysis
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Figure 122. Comparison of model predictions with wet deposition
measurements in the Great Lakes region using the NARR-179 analysis
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The following overall findings can be observed from the model evaluation figures and Table 4 below:

The consistency of the model-predicted and ambient measurements for the 20 MDN sites in the
central and western Great Lakes region — already very reasonable in the EDAS-136 (baseline,
FY10) analysis — improved slightly in the new variations. The slope went from 0.80 in the EDAS-
136 baseline to 0.94-0.97 (very close to the ideal, “1”) in the new variations using the NARR
meteorological data. The “intercept” (the value of wet deposition where the best-fit straight
line crosses the axis) improved from 1.27 pg/m*yr in the EDAS-136 baseline down to 0.29-0.50
ug/m*yr, getting much closer to the ideal, “0”.

For the central and western GL region MDN sites, the primary improvement was seen by
changing from the EDAS to the NARR meteorological dataset, i.e., in comparing the EDAS-136
with the NARR-136 analysis. Adding additional standard source locations (i.e., the NARR-151 and
NARR-179 analyses) did not result in further improvements, and in fact, showed very slightly
worse performance than the NARR-136 analysis.

For the 12 sites in the eastern Great Lakes region, the results got slightly better with the various
NARR-based analyses as compared to the EDAS-136 analysis. The slope generally got closer to
“1” (e.g., 1.03 in the NARR-136 analysis), the intercept got smaller, and the correlation
coefficient R? got bigger.

However, the model performance for these 12 sites in the eastern Great Lakes region did not
improve significantly, and the tendency of the modeling analysis to over-predict the wet
deposition flux at these sites remained.

Table 4. Characteristics of linear regressions comparing modeled
and measured values at MIDN sites in the Great Lakes region

Central and Western GL Region MDN Eastern GL Region MDN sites
sites (n=20) (n=12)
Overall
5|mu!at!on Slope Intercept R? Slope intercept R?
variation
EDAS-136 0.80 1.27 0.61 0.81 4.87 0.40
NARR-136 0.97 0.29 0.59 1.03 3.92 0.46
NARR-151 0.96 0.38 0.60 1.16 3.48 0.42
NARR-179 0.94 0.50 0.60 1.15 3.50 0.42
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4.3. Overall deposition to the Great Lakes and source-attribution for the largest
contributors

The various calculation methodologies described above were used to estimate the atmospheric mercury
deposition to each of the Great Lakes and their watersheds. The overall results for Lake Erie and the
Lake Erie watershed are shown in Figure 123 and Figure 124, respectively. In these figures, the left panel
shows the atmospheric mercury deposition flux (ug/m?yr) for each calculation variation and the right
panel shows the percent-of-total modeled flux for the same variations. Source attribution for the
estimated deposition is estimated for anthropogenic emissions from the U.S., Canada, Mexico, China,
India, and all other countries (as a group), as well as ocean-re-emissions of previously deposited
anthropogenic mercury and natural emissions.

It can be seen from these figures that the patterns for Lake Erie and the Lake Erie watershed are similar.
Examination of the left panel in each figure shows that the NARR-136 results show less deposition than
the EDAS-136 results. The largest difference is seen to be in the contribution from the U.S. As might be
expected, the addition of extra standard source locations (SSL’s) in the Gulf of Mexico (GOM) region
(NARR-GOM) did not introduce significant changes into the estimated deposition. The addition of
additional standard source locations in the eastern Great Lakes region (NARR-151) caused a slight
decrease in deposition to Lake Erie but little is changed for deposition to its watershed. The inclusion of
the additional GOM SSL’s did not introduce any changes from this NARR-151 simulation (i.e., comparison
of NARR-179 vs. NARR-151). The use of significantly larger terrestrial and ocean-based re-emissions of
previously deposited anthropogenic mercury (2000 Mg/yr vs. 1250 Mg/yr for ocean re-emissions; 2000
Mg/year vs. 750 Mg/yr for terrestrial re-emissions) caused an increased deposition in all variations of
roughly 20%.

Examination of the right panel in each of the figures show that there is an decrease in the U.S.-caused
fraction of the deposition in the NARR-136 vs. EDAS-136 results, with the decrease being much greater
for the watershed than for direct deposition to Lake Erie. While there are bigger variations seen for the
watershed allocation fractions than for the lake allocation fractions, the overall pattern of the
deposition allocations is not changed dramatically. For Lake Erie, the U.S.-caused fraction of deposition
is the largest contributor, on the order of 35-45%. China contributes on the order of 10-15% in all of the
calculation variations. Contribution ranges for other countries and for ocean re-emissions and for
natural emissions are similarly consistent among the different variations. This finding suggests that the
overall source-attribution results are reasonable robust. Even relatively significant changes in calculation
methodology, the relative contributions from key contributors are not dramatically changed. This is an
important finding for policy considerations.
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Figure 123. Modeled mercury deposition to Lake Erie
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Figure 124. Modeled mercury deposition to the Lake Erie watershed
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Comparable data for atmospheric mercury deposition to Lake Michigan are shown in Figure 125 and
Figure 126 below. The responses of the simulated deposition to changes in methodology are similar to
that observed for Lake Erie, described above. First, there is a decrease in deposition — primarily due to
decreased U.S.-attributed deposition —in the change from EDAS to NARR meteorological data.
Additional standard source locations cause even less change in simulated deposition than the minor
changes seen for Lake Erie. The use of higher re-emissions estimates causes higher fluxes, as would be
expected. Similar to Lake Erie, examination of the right-hand panels in the figures shows that the overall
source-attribution fractions are not dramatically affected over the range of methodological variations
examined. The largest difference is seen between the earlier EDAS-driven baseline (EDAS-136) and the
NARR-driven analysis with increased re-emissions, with U.S. contributions falling from ~42% to about
~23%.
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Figure 125. Modeled mercury deposition to Lake Michigan
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Analogous data for atmospheric mercury deposition to Lake Superior are shown in Figure 127 and Figure
128 below. For Lake Superior and its watershed, the simulated deposition is not significantly changed
when NARR rather than EDAS meteorological data are used to drive the HYSPLIT-Hg model. Like Erie and
Michigan, additional SSL’s do not significantly change the results, but increased re-emissions does lead
to higher deposition fluxes. Examination of the right-hand panels in the figures shows that the overall
source-attribution fractions are not dramatically affected over the range of methodological variations
examined. The U.S. contribution is ~10% for all of the variations.
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Figure 127. Modeled mercury deposition to Lake Superior
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Figure 128. Modeled mercury deposition to the Lake Superior watershed
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Data for atmospheric mercury deposition to Lake Huron are shown in Figure 129 and Figure 130 below.
For Lake Huron’s watershed, the simulated deposition to the watershed is decreased in changing from
EDAS to NARR meteorological data, but the deposition to the lake itself is slightly increased. Similar to
the other lakes discussed above, additional SSL’s do not significantly change the results, but increased
re-emissions does lead to higher deposition fluxes. Examination of the right-hand panels in the figures
shows that the overall source-attribution fractions are not dramatically affected over the range of
methodological variations examined. The U.S. contribution is on the order of ~20% for most of the
variations. The largest difference in U.S. contribution fraction is between the EDAS-136 and the NARR-
179-LW2000 (increased re-emissions), falling from ~27% down to ~16%.

30 100%

90%
25

80%

70%

20

Onatural 60% Onatural

W ocean re-emit W ocean re-emit

15

50%

@ other countries @ other countries

@india 40% @lindia

W Mexico 30% W Mexico
@ Canada
5 A ®China

@us

W Canada
B China
@us

20%

10%

modeled mercury deposition flux (ug/m2-year)
precent of total modeled mercury deposition

0 - 0%

EDAS 136

NARR 136

NARR GOM

NARR 151

NARR 179

EDAS 136 LW2000
NARR 136 LW2000
NARR 179 LW2000
EDAS 136

NARR 136

NARR GOM

NARR 151

NARR 179

EDAS 136 LW2000
NARR 136 LW2000
NARR 179 LW2000

Figure 129. Modeled mercury deposition to Lake Huron
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Figure 130. Modeled mercury deposition to the Lake Huron watershed
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Model results for atmospheric mercury deposition to Lake Ontario are shown in Figure 131 and Figure

132 below. The results are similar to Lake Huron's, in that the watershed deposition shows a decrease

moving from EDAS to NARR meteorological data, but deposition to the lake itself does not show a

significant change. For Lake Ontario, the additional SSL’s in the eastern Great Lakes region (e.g., NARR-
151 vs. NARR-136) causes a small reduction in modeled deposition. As would be expected, increased re-
emissions lead to higher deposition fluxes. As with the other lakes, the right-hand panels in the figures
show that the overall source-attribution fractions are not dramatically affected over the range of

methodological variations examined. The U.S. contribution is on the order of ~20%-25% for most of the
variations. The largest difference in U.S. contribution fraction is for the watershed, between the EDAS-
136 and the NARR-179-LW2000 (increased re-emissions), falling from ~34% down to ~18%.
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Figure 131. Modeled mercury deposition to Lake Ontario
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Figure 132. Modeled mercury deposition to the Lake Ontario watershed
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Overall model results for atmospheric mercury deposition to the Great Lakes Basin — defined as the sum
of the deposition to all five lakes and their watersheds — is shown in Figure 133 below. These overall
results follow a similar pattern, in general, to the individual-lake results presented above. There is
decreased deposition moving from EDAS to NARR meteorological data, largely due to decreased U.S.-
attributed deposition. Additional SSL’s do not cause significant variations. As with all the individual-lake
results, increased re-emissions lead to higher deposition fluxes, but the right-hand panel shows that the
overall source-attribution fractions are not dramatically affected over the range of methodological
variations examined. The U.S. contribution is on the order of ~20%-25% for most of the variations. The
largest difference in U.S. contribution fraction is between the EDAS-136 and the NARR-179-LW2000
(increased re-emissions), falling from ~32% down to ~19%.

It can be seen from examination of the figure below and from preceding figures in this section that For
the Great Lakes Basin as a whole, and in for the individual Great Lakes and their watersheds, the
doubling of mercury re-emissions from 2000 Mg/year to 4000 Mg/year causes an increase in deposition
flux on the order of ~25%
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Figure 133. Modeled mercury deposition to the Great Lakes Basin
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4.4. Deposition arising from emissions at different distances from the lakes

Modeling results showing the deposition flux — amount and fraction — arising from different distance
ranges from the centroid of each lake and watershed are shown in Figure 134 through Figure 143 below.
The results are very similar to those presented in the previous section, and it is seen that in the cases in
which switching from EDAS to NARR makes a difference, the largest contributor to this difference is the
change in contribution from emissions sources less than 500km from the centroid of the lake or
watershed. As with the overall results presented above, additional standard source locations do not in
general introduce significant changes in the results. The exception is the Lake Ontario watershed, which,
as discussed earlier, would be expected to be influenced by additional SSL’s in the eastern Great Lakes
region. Increased re-emissions leads to increased fluxes, but does not lead to large differences in the
fractions attributed to each distance range (right-hand panels of each figure). The largest impact of
nearby sources (<500 km) is seen for Lake Erie and its watershed, for which ~30-35% of the modeled
deposition arises from emissions less than 500 km from the center of the lake or the watershed. The
smallest model-estimated contribution from nearby sources is seen for Lake Superior and its watershed,
for which only about ~2-3% of the modeled deposition comes from such sources.
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Figure 134. Mercury deposition arising from emissions at different distances from the center of Lake Erie
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Figure 135. Mercury deposition arising from emissions at different distances from the center of the Lake Erie watershed
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Figure 136. Mercury deposition arising from emissions at different distances from the center of Lake Michigan
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Figure 137. Mercury deposition arising from emissions at different distances from the center of the Lake Michigan watershed
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Figure 138. Mercury deposition arising from emissions at different distances from the center of Lake Superior

20 100%
c el 0,
2~ 15 O > 10,000km Q< 80% 0> 10,000km
2% g
é & [@3000 - 10,000km g 5 60% 3000 - 10,000km
o £ 10 =
S Eﬂ 1,000 - 3,000km s § 40% 1,000 - 3,000km
2 = 500 - 1,000km € 2 W 500 - 1,000km
I3 3 20%
o+ WO - 500km 5 WO - 500km
= & 0%

©O o
o0 om
D
v o
<
a <
Wz

NARR-GOM
NARR-151
NARR-179
EDAS-136
NARR-136
NARR-GOM
NARR-151
NARR-179

EDAS-136 LW2000
NARR-136 LW2000
NARR-179 LW2000
EDAS-136 LW2000
NARR-136 LW2000
NARR-179 LW2000

Figure 139. Mercury deposition arising from emissions at different distances from the center of the Lake Superior watershed
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Figure 140. Mercury deposition arising from emissions at different distances from the center of Lake Huron
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Figure 141. Mercury deposition arising from emissions at different distances from the center of the Lake Huron watershed
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Figure 142. Mercury deposition arising from emissions at different distances from the center of Lake Ontario
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Figure 143. Mercury deposition arising from emissions at different distances from the center of the Lake Ontario watershed
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4.5. Influence of different interpolation methodologies

As described in the FY10 report (Cohen et al., 2011), an interpolation procedure is used to estimate
detailed source-receptor relationships. The impact of any given source — at other locations — on the
Great Lakes was estimated based on a weighted average of the impacts of the nearest explicitly
modeled standard source locations nearest to that given source. This procedure is illustrated
conceptually in Figure 144.
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Figure 144. Spatial interpolation schematic

As further described in Cohen et al (2011), the impact of a source emitting a mixture of Hg’, Hg(l1), and
Hg(p) was estimated based on a linear combination of these pure-component unit emissions
simulations. An example of this procedure is illustrated in Figure 145.
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Figure 145. Chemical Interpolation
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In this section, the influence of the spatial interpolation methodology on the modeling results is
examined, for the NARR-179 analysis. The spatial interpolation approach in this work is characterized by
three parameters: (a) the number of closest standard source locations (SSL’s) used in the weighted
average; (b) the exponent on the angular orientation weighting factor; and (c) the exponent on the
distance-related weighting factor. In essence, if the exponent on a given factor is increased, its
importance to the weighting procedure is increased. The default spatial interpolation methodology used
the 3 closest SSL’s, with exponents of “2.0” for both the angular orientation and distance weighting

factors.
The interpolation parameters were varied in the following ways:

e Number of SSL’s used for interpolation: 2, 3, 4
e Exponent on angular orientation weighting factor: 1.5, 2.0, 2.5
e Exponent on distance weighting factor: 1.5, 2.0, 2.5

The influence of these variations on the model-estimated atmospheric mercury deposition flux to each
of the Great Lakes — from emissions in different distance ranges -- is presented in Figure 146 through
Figure 150. In each case, the results of 27 different calculation procedures are given, representing each
possible combination of the above parameters. Summary statistics for the overall total deposition flux
for each lake are also provided in these figures. It can be seen from the figures that the variations in
spatial interpolation parameters did not influence the modeling results in any significant way. For each
lake, the standard deviation of the 27 variations was generally on the order of 1% of the mean
deposition flux. It can be concluded from this analysis that the choice of spatial interpolation parameters
— which is somewhat arbitrary -- does not influence the model-estimated deposition to the Great Lakes.
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Figure 148. Influence of spatial interpolation variations on model-estimated deposition to Lake Superior
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5. Conclusions

The influence of variations in inputs, parameters, and algorithms on the model-estimated atmospheric
mercury deposition — including source-attribution — to the Great Lakes has been examined. Due to
computational resource constraints, only a few different overall variations in the “full” analysis could be
undertaken. However, numerous variations — requiring 320 different 15-month simulations™ -- were
examined for a subset of five “illustrative” standard source locations (SSL’s):

e SSL-8, on the western shore of Lake Erie, representing “local” impacts

e SSL-6, in the Ohio River Valley, representing “regional” impacts

e SSL-11, in northeast Texas, representing “national/continental” impacts
e SSL-13, in China, representing global impacts

e SSL-48, in India, also representing global impacts

Several different types of variations were investigated for these five illustrative SSL’s, including input
meteorological data, and dispersion, deposition, and chemical transformation methodologies. There
were three variations that generally were found to cause the greatest changes in the modeling results:

e The choice of input meteorological data [NARR (North American Regional Reanalysis) vs. EDAS
(Eta Data Assimilation System)]. While the EDAS data were used in the FY10 baseline analysis
(Cohen et al, 2011), the NARR data appeared to be more accurate in its estimates of
precipitation.

e Variations in the “WETR” parameter — affecting the wet deposition of atmospheric particles. This
had contrasting influences for local-national vs. global sources. Increasing this particle wet
deposition factor by a factor of 4 caused:

0 lower deposition to the Great Lakes for distant sources (SSL-13, China, and SSL-48,
India), as the increased wet deposition as the mercury is being transported to the Great
Lakes has a bigger impact than the increased efficiency of wet deposition once the
mercury arrives at the Great Lakes region

0 increased deposition to the Great Lakes for national, regional, and local sources (SSL-11,
Texas, SSL-6, Ohio River Valley, and SSL-8, western shore of Lake Erie), as the increased
wet deposition as the mercury is being transported to the Great Lakes has a lower
impact than the increased efficiency of wet deposition once the mercury arrives at the
Great Lakes region

! An additional 154 simulations were carried out for these five illustrative standard source locations to examine a
number of different numerical issues. A summary of the findings for these simulations is presented in the
Appendix. In general, it was found that the numerical issues investigated did not significantly impact the results,
with most variations on the order of a few percent of less.
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e Variations in the emissions release height, primarily for the “local” impacts examined, i.e., the
deposition to Lake Erie arising from emissions on its western shore (SSL-8). This finding was
expected, as it is well known that local deposition can be significantly affected by release height.
The default release height used in the modeling was 250 meters, characteristic of typical stack
heights for coal-fired power plants, the largest mercury-emissions source category in the Great
Lakes and surrounding region. It was found that changing the release height from 250m to 50m
had a significant impact on the modeled Lake Erie deposition from the shoreline SSL-8. This
result suggests that the impact of nearby sources to the Great Lakes may have been
underestimated to a certain extent. However, the estimates for the sources with the largest
mercury emissions and impacts (which typically have higher stack heights) were not strongly
affected.

e Variations in dispersion and chemical transformation parameters were found to have relatively
small influences

As discussed in the report, the NARR meteorological dataset is believed to be more accurate than then
comparable EDAS dataset for 2005, and so the changes resulting from the use of the NARR rather than
EDAS dataset to drive the HYSPLIT-Hg model can be viewed more as an “improvement” in the results
rather than strictly a representation of the uncertainty associated with the choice of meteorological
data.

Similarly, the impacts associated with variations in release height, while significant for near-field
deposition impacts, should not be thought of strictly as an uncertainty. This is because the emissions
release height used as the default was chosen to be representative of the mercury sources with the
largest impacts. Thus, while a different (e.g., lower) release height was found to influence the results
immediately downwind of the source, this would generally affect sources with relatively small impacts.
Moreover, most of the emissions impacting the Great Lakes are not immediately upwind of a given lake.
Therefore, this issue is not expected to have an overly significant impact on the overall results.

The variation if the particle-wet-deposition parameter (WETR), found to exert significant influence over
the modeling results in some cases, does represent more of an uncertainty in the simulation. The “true”
value of this parameter is not known accurately. However, variations in this parameter primarily
affected emissions of Hg(p), which accounted for only 2% of the total emissions used as input for the
analysis. Therefore, the impact on the overall results of this uncertainty is not expected to be significant.

As noted above, only a few variations in the “full-analysis” could be examined, due to computational
constraints. The primary variations examined — requiring a total of 354 additional 15-month HYSPLIT-Hg
simulations -- were the following:
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o the use of NARR vs. EDAS meteorological data to drive the HYSPLIT-Hg model

e the use of additional standard source locations (SSL’s) to reduce errors in spatial interpolation
e the use of significantly increased re-emissions

e variations in spatial interpolation methodology

The use of significantly increased mercury re-emissions (global total of 4000 Mg/year vs. 2000 Mg/year)
resulted in overall total modeled mercury deposition fluxes to the Great Lakes that were increased by
~25%. The use of different spatial interpolation methodologies did not influence the results significantly.

The NARR-based analysis had results that were more consistent with mercury wet deposition
measurement in the Great Lakes region. Additional SSL’s resulted in only minor additional
improvements in the model performance, as judged by consistency with wet deposition measurements.
However, while improved, the model performance for 12 sites in the eastern Great Lakes region did not
improve significantly, and the tendency of the modeling analysis to over-predict the wet deposition flux
at these sites remained. The overall Great Lakes deposition results from the NARR-based analysis were
somewhat different than those from the EDAS-based analysis. The most common difference was a
decrease in model-estimated deposition from local and regional sources in the NARR-based simulations
relative to the EDAS-based simulations.

An overall summary of the modeling results is provided below in Figure 151, which shows the overall
source-attribution results for the largest variations in modeling methodology, i.e., NARR vs. EDAS, and
doubling the mercury re-emissions rate. While the overall fractions of the deposition contributed by key
source types and regions were impacted somewhat by the simulation variations, the source-attribution
results were not dramatically affected. This suggests that the results are reasonably robust, at least from
the perspective of the relative importance of different source types and source regions to the deposition
of mercury to the Great Lakes basin.
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Figure 151. Overall source attribution results for Lake Erie (top row) and the Great Lakes Basin (bottom row) for largest
variations in modeling methodology; 2005 baseline (left); key variations showing the largest differences (center & right)

124



6. References

Bullock, O.R., and Brehme, K. (2002). Atmospheric mercury simulation using the CMAQ model:
formulation description and analysis of wet deposition results. Atmos. Environ. 36, 2135-2146.

Calhoun, J., and Prestbo, E. (2001). Kinetic study of the gas phase oxidation of elemental mercury by
molecular chlorine. Frontier Geosciences, Inc., Seattle, WA (as cited by Bullock and Brehme,
2002).

Cohen, M., R. Draxler, R. Artz (2011). Modeling Atmospheric Mercury Deposition to the Great Lakes.
Final Report for work conducted with FY2010 funding from the Great Lakes Restoration Initiative.

NOAA Air Resources Laboratory, Silver Spring, MD. Dec 16, 2011. 160 pages. Available at:
http://www.arl.noaa.gov/documents/reports/GLRI FY2010 Atmospheric Mercury Final Report 2011 Dec 16.pdf

Draxler, R. R., Hess, G.D. (1998). An overview of the HYSPLIT_4 Modelling System for Trajectories,
Dispersion and Deposition. Australian Met. Mag. 47: 295-308.

Draxler, R.R., Hess, G.D. (2010) . NOAA Technical Memorandum ERL ARL-224. DESCRIPTION OF THE
HYSPLIT_4 MODELING SYSTEM. NOAA Air Resources Laboratory. Available at:
http://www.arl.noaa.gov/documents/reports/arl-224.pdf

Evers, D., J. Wiener, et al. (2011a). Mercury in the Great Lakes region: bioaccumulation, spatiotemporal
patterns, ecological risks, and policy. Ecotoxicology 20(7): 1487-1499.

Evers, D.C., Wiener, J.G., Driscoll, C.T., Gay, D.A., Basu, N., Monson, B.A., Lambert, K.F., Morrison, H.A.,
Morgan, J.T., Williams, K.A., Soehl, A.G. (2011b). Great Lakes Mercury Connections: The Extent and
Effects of Mercury Pollution in the Great Lakes Region. Biodiversity Research Institute. Gorham,
Maine. Report BRI 2011-18. 44 pages. http://www.briloon.org/mercuryconnections/greatlakes

Gardfeldt, K. and Jonnson, M. (2003). Is bimolecular reduction of Hg(ll)-complexes possible in aqueous
systems of environmental importance? J. Phys. Chem. A 107, 4478-4482.

Hall, B., and Bloom, N.S. (1993). Report to the Electric Power Research Institute, Palo Alto, CA. As cited
in Seigneur et al., 1994.

Hall, B. (1995). The gas phase oxidation of elemental mercury by ozone. Water, Air, and Soil Pollution 80,
301-315.

Lin, C. and Pehkonen, S. (1997). The chemistry of atmospheric mercury: a review. Atmos. Environ. 33,
2067-2079.

Lin, C., and Pehkonen, S. (1998). Oxidation of elemental mercury by aqueous chlorine (HOCI/OCI-):
implications for tropospheric mercury chemistry. J. Geophys. Res. 103 (D21) 28093-28102.

125


http://www.arl.noaa.gov/documents/reports/GLRI_FY2010_Atmospheric_Mercury_Final_Report_2011_Dec_16.pdf
http://www.arl.noaa.gov/documents/reports/arl-224.pdf
http://www.briloon.org/mercuryconnections/greatlakes

Munthe, J. (1992). The aqueous oxidation of elemental mercury by ozone. Atmos. Environ. 26A, 1461-
1468.

Seigneur, C., Wrobel, J., and Constantinou, E. (1994). A chemical kinetic mechanism for atmospheric
inorganic mercury. Environ Sci Technol 28, 1589-1597.

Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N., Prestbo, E., and Saxena, P. (1998). Mercury
adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmos.
Environ. 32, 2649-2657.

Sommar, J., Gardfeldt, K., Stromberg, D., and Feng, X. (2001). A kinetic study of the gas-phase reaction
between the hydroxyl radical and atomic mercury. Atmos. Environ. 35, 3049-3054.

Tokos, J., Hall, B., Calhoun, J., and Prestbo, E. (1998). Homogeneous gas-phase reaction of Hg0 with
H202, 03, CH3lI, and (CH3)3 S: implications for atmospheric Hg cycling. Atmos. Environ. 32, 823-
827.

Van Loon, L., Mader, E., and Scott, S. (2000). Reduction of the aqueous mercuric ion by sulfite: UV
spectrum of HgSO3 and its intramolecular redox reaction. J. Phys. Chem. A 104, 1621-1626.

Xiao, Z.F., Munthe, J., Stromberg, D., and Lindqvist, O. (1994). Photochemical Behavior of Inorganic

Mercury Compounds in Aqueous Solution. Chapter VI-6, pages 581-592, in Mercury Pollution
Integration and Synthesis, edited by Watras, C.J., CRC Press, Boca Raton, FL.

126



7. Appendix: Sensitivity to Computational Environment and Numerical
Methodologies

7.1. Introduction

During the course of this work, there were changes to the computational environment, and small
differences in results could be observed. The types of changes included the following:

e |nstallation of a new, upgraded operating system on the Linux-based 16-processor workstation
being used to carry out the simulations;

e Upgrading the Intel Fortran compiler being used to create executables;

e Use of different optimization schemes during compilation

o Different procedures for handling arrays with the HYSPLIT-Hg program

As the objective of this phase of the work was to examine the sensitivity of the simulations to inputs and
physicochemical parameters, it was important to examine the variations introduced by these numerical
and computational environment changes. If the influence of these changes was too large, it would
significantly complicate the interpretation of results of the numerous sensitivity investigations described
in the main body of this report. As will be shown in some detail in this Appendix, the computational
environment and numerical methodologies did have an observable effect, but the variations in results
were generally very small, on the order of a few percent or less. Thus, it was concluded that the analyses
in the main body of the report were valid and could be interpreted in a straightforward way. In other
words, the differences observed in the sensitivity analyses presented above were essentially all due to
changes in inputs and parameters, and not due to changes in the computational environment and
numerical methodologies.

In the following sections, results are presented for each of the five illustrative standard source locations
(SSL’s) examined in the main body of this report: SSL-48 (India), SSL-13 (China), SSL-11 (northeast Texas),
SSL-6 (Ohio River Valley), and SSL-8 (western shore of Lake Erie). As in the main body of the report,
results will be presented for model-estimated deposition to the Great Lakes as well as model-estimated
wet-deposition flux at MDN sites in the Great Lakes region. A total of 154 different simulations were
performed examining potential numerical influences. However, before these results are presented, a
description of the various computational / numerical variations that were investigated will be presented,
to serve as a basis for interpreting the results for each SSL.

Compilation Variations

The INTEL Fortran compiler was used to compile the Fortran source code to create executables on the
Linux workstation used for model simulations. There are numerous options that the user can specify
that will impact the way the code is compiled and the resulting executable. There were four primary
variations investigated, involving the “optimization” employed during compilation, described in the
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following table. An additional compilation variations analyzed included the option to improve floating
point consistency “-fltconsistency”. This was used in some of the compilations, as described below.

Optimization Description
Scheme
0 Disables all optimization in the code generation; array bounds checks included unless disabled
1 Disables some optimizations which increase code size for a small speed benefit
2 Optimizes for maximum speed; this is the default optimization for the INTEL Fortran Compiler
3 Enables more aggressive optimizations that may not improve performance on some programs

Treatment of Meteorological Arrays

One of the key issues investigated in this numerical methodology involved the way the HYSPLIT model
used meteorological data arrays in simulating advection of 3-dimensional puffs. The investigation was
motivated by the discovery of a small, rarely encountered “bug” in the code. In practice, the “bug”
would not be likely to create any significant problems for the simulation, but since computational
differences were being examined, an investigation of this issue was undertaken.

The “bug” was in the way the HYSPLIT program determined what meteorological data to use for a given
3-D puff. During a simulation, one of the basic operations performed for each puff at each time step was
“advection”, i.e., the puff was moved downwind, based on the wind speed and wind direction in the
meteorological data in its path. During execution, the HYSPLIT model does not normally load a full
meteorological grid domain, but loads only a subset of the domain necessary to carry out the advection
of puffs currently in the simulation. When the puffs get close to the edge of the sub-domain, the sub-
domain is expanded. In the original version of HYSPLIT, the subgrid is expanded by a factor of 1.5 in each
horizontal dimension. For example, if the subgrid were 10 x 10, the expanded subgrid would be 15 x 15.

In the original version of HYSPLIT-Hg used in this study, the maximum subgrid array dimensions — before
expansion -- were limited by the dimensions of the smallest full grid dimensions. In this study, the NARR
meteorological data has horizontal dimensions of 225 x 156, and the NCEP/NCAR global reanalysis
dataset had dimensions of 144 x 73. Thus, the largest initial NARR subgrid that the HYSPLIT model would
consider — before any necessary expansion -- at any given time was one with dimensions 144 x 73. If
expansion was required, the initial version expanded by 1.5x, and so the resulting subgrid maximum
would be 216 x 109, a subgrid that was actually smaller than the actual full size of the NARR grid (225 x
156). In a few rare cases, puffs were advected to a place where the program identified that they were
somewhere on the NARR grid, but, were not within this 216 x 109 maximum subgrid. In that situation,
an array bounds violation would occur.

The “bug” was rarely encountered, and in many simulations, was never encountered. Nevertheless, the
issue could result in an array bounds violation during execution. Unless instructed to do so, a Fortran
program does not check the indices of an array being referenced. So, it is possible that indices are
specified that are actually outside the dimensions of the array. When that happens, the program simply
goes to that spot in memory — where the array element would be if the array was actually that big — and
pulls the data from that spot. This is obviously a situation to be avoided at all costs. The tradeoff is that if
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the program is required to check all array bounds for validity, the execution time is increased
dramatically. In practice, a common approach, and one used in the this study, is to do debugging and
checking using array-bounds checks during execution, but for “production” runs where lots of results are
being generated, to turn array-bounds checking off. So, one of the label-components you will see in the
following sections is “no_check” indicating that array bounds checking was turned off.

The grid expansion factor — 1.5x in the original HYSPLIT algorithm — was varied to examine its influence
on the computations. The 1.5x expansion was labeled “orig”, a 1.7x expansion was labeled “1p7x”, a 10x
expansion was labeled “10x”, and an immediate expansion to the full NARR grid was labeled “full”. In all
cases, the resulting grid was limited to the maximum size of the NARR grid (225 x 156). In some of the
run labels in the data presented below, you will see these label-components specified, i.e., “orig”,
“1p7x”, “10x”, and “full”. The impact of these changes would be expected to alter the frequency and
consequences of occasional array bounds violations, should they occur.

In a related variation, the code logic that stipulated that the maximum initial subgrid size was the
minimum full grid size was lifted, and the maximum initial subgrid was only limited by the size of the
actual grid. This change is indicated in the descriptions of the model versions below.

Model Versions

In the results presented below, results for a number of different model versions are shown. A brief
description of these versions is described in the table below.

Model | Description
version

base | Used to indicate a base simulation to which others are compared

V3 | Refers to model version 24a; simulation conducted in Feb 2012 immediately after reconstruction
of workstation, which had suffered a complete collapse

v25i | New version of HYSPLIT-Hg in which chemical rate parameters were converted to input
parameters, as opposed to be hard-wired into the code; this was done for convenience in carrying
out the sensitivity studies

v25q | With max subgrid equal to min full grid, and compiled with “~fltconsistency”, potentially vulnerable
to array bounds violations

v25r | With maximum initial subgrid not limited to minimum full grid; compiled with “-fltconsistency”;
believed to be less vulnerable to array bounds violations

v25v | Additional changes to meteorological data array handling; improved bounds checks; less
vulnerable to array bounds violations; “-fltconsistency”

v25w | Additional diagnostic outputs — should have no impact on results; “~fltconsistency”

v25x | New version of array bounds checking and correction, max subgrid = min full grid; “-fltconsistency”

v25y | Additional diagnostic outputs — should have no impact on results; “~fltconsistency”

v25z | Another array handling methodology, believed to be somewhat vulnerable to array bounds
violations; “-fltconsistency”

v25aa | Max subgrid = min full grid; same array bounds checking and correction as v25x; “-fltconsistency”;

v25ab | A different version of array bounds checking and correction; different algorithms for setting grid
sizes; “~fltconsistency”
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Additional Run Label Components

In a few cases, additional run label components are included. For example, “mp10000” means the
MAXPUFF parameter is set to 10,000. This might be seen in an examination of a GEM (global Eulerian
model) simulation, in which the MAXPUFF parameter should be irrelevant. So, a GEM simulation with
“mp10000” should be identical to any other GEM simulation. “WETR_040000" can also be seen in a few
runs. This was the default version of the WETR parameter — described in the main body of the report —
and so a run with this specified should not differ from the default or base simulation. “Max_Oxid” is also
seen, referring to the maximum oxidation chemical mechanism scheme, which should have no impact
on simulations of pure Hg(p) emissions, as described in the main body of this report.

How to parse a simulation label

In all of the results presented in the following sections, a given simulation is described by a label.
As an example, consider a simulation labeled “Hgll_006_PUF_v25aa2_ TEST 43 full no_check”

This simulation involved emissions of pure Hg(ll), from standard source location #6 (Ohio River Valley),
employing the PUF dispersion methodology, using model version v25aa, with optimization scheme set
to “2”, with grid expansion set to “full”, and with no array bounds checking.

In the main body of the report, run labels generally were abbreviated to include only the emissions
species, the standard source location, and the dispersion methodology, e.g., in the above example, the
label would just have been “Hgll_006_PUF”
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7.2. Standard Source Location #48 (India)

The graphs below show comparisons for a number of different simulations for emissions from standard
source location #48, in India. In almost all cases, it is seen that the computational variations have very
little influence on the overall results for deposition to the Great Lakes or to wet deposition to MDN sites
in the Great Lakes region. The largest differences in the results appear to occur for differences in the

compiler optimization schemes.
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Wet dep to Great Lakes MDN sites estimated with
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7.3. Standard Source Location #13 (China)

The graphs below show comparisons for a number of different simulations for emissions from standard
source location #13, in China. In almost all cases, it is seen that the computational variations have very
little influence on the overall results for deposition to the Great Lakes or to wet deposition to MDN sites
in the Great Lakes region. The largest differences in the results appear to occur for differences in the
compiler optimization schemes.
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Wet dep to Great Lakes MDN sites estimated with
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7.4. Standard Source Location #11 (northeast Texas)

The graphs below show comparisons for a number of different simulations for emissions from standard
source location #11, in northeast Texas. In almost all cases, it is seen that the computational variations
have very little influence on the overall results for deposition to the Great Lakes or to wet deposition to
MDN sites in the Great Lakes region. The largest differences in the results appear to occur for
differences in the compiler optimization schemes.
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7.5. Standard Source Location #6 (Ohio River Valley)

The graphs below show comparisons for a number of different simulations for emissions from standard
source location #6, in the Ohio River Valley. In almost all cases, it is seen that the computational
variations have very little influence on the overall results for deposition to the Great Lakes or to wet
deposition to MDN sites in the Great Lakes region. The largest differences in the results appear to occur
for differences in the compiler optimization schemes.

3.0E-04 -+

2.5E-04

Bmgkm2_Hg T Lk_Ontario
2.0E-04 - Ogkm2_Hg T Lk _Huron

@ gkm2_Hg_T_Lk_Superior
1.5E-04 - W gkm2_Hg T Lk_Michigan
1.0E-04 - mgkm2_Hg T Lk _Erie
5.0E-05 -
0.0E+00 -

Deposition flux to Great Lakes from
1g/hr source of Hg(0) from Std
Pt 6 (~Ohio River Valley) (g/km2-yr)

146



Wet dep to Great Lakes MDN sites estimated with

Wet Deposition to Selected MDN
Sites from 1 g/hrsource of Hg(0) from

Std Pt 6 (Ohio River Valley) (g/m2-yr)

adifferent numerical configuration (g/m2-year)

6.0E-10

wig9
5.0E-10 +—— B — Wi36
B B E =
__— WI32
| _—
4.0E-10 ,<. . . mWi31
= mwi22
3.0E-10 wI09
=Wio0s
2.0E-10 mOHO02
MN27
1.0E-10 - mMN23
mMN22
0.0E+00 - s o o o . ) mMN18
] g 2 H o H mMN16
< v o o o o
8 b 2 2 2 e mMI48
EI >| =I llnl =I gol
o s E S E 5 mIN34
@) 8 o o o o
| <, 2 < g mIN28
g = e & !
\ = 2 =] @ mIN26
£ o | o |
o = ? P & mIN2L
& 3 9 3
> ‘;‘I > ‘;‘I WIN20
2 2 2 2 11
S, 8I S, 8I
o (]
1.0E-10
9.0E-11
8.0E-11 E
7.0E-11
X
6.0E-11
5.0E-11
< elem_006_COM_v25rr_base
4.0E-11 [ elem_006_COM_v25aa0_TEST_43_full_no_check
3.0E-11 = ﬁ A\ elem_006_COM_v25aa0_TEST_43_orig_no_check
2.0E-11 X elem_006_COM_v25aa2_TEST_43_full_no_check
O elem_006_COM_v25aa2_TEST_43_orig_no_check
1.0E-11
——1:1line
0.0E+00 } } } } !
o i - i i — i — - — o
¢ T 5% 9 9 o= 9 o o o9 o
I.-I'-.I w w w w w w w w w w
& 9 9 & 9 9 9 9 S 9 9
S = & o < N © N 0 o o«

Wet dep to Great Lakes MDN sites estimated with
"base" numerical configuration (g/m2-year)

147




Deposition flux to Great Lakes from

Wet Deposition to Selected MDN
Sites from 1 g/hr source of Hg(p) from

1g/hrsource of Hg(pt) from Std
Pt6 (~Ohio Rlver Valley) (g/km2-yr)

Std Pt 6 (Ohio River Valley) (g/m2-yr)

2.5E-03

2.0E-03

1.5E-03

1.0E-03

5.0E-04

0.0E+00

1.2E-08

1.0E-08 -

8.0E-09 -

6.0E-09 -

4.0E-09

2.0E-09 -

0.0E+00 -

- I

T
s

Hgpt_006_PUF_v25aa2_TEST_43_orig_no_check Jm II

t_006_PUF_v25rr_base

Hgp

006_PUF_v25aa0_TEST_43_full

t_006_PUF_v25aa0_TEST_4:
006_PUF_v25aa2_TEST_43

Hgpt_t
Hgpt_{
Hgpt_t

148

Bmgkm2_Hg T _Lk_Ontario
Ogkm2_Hg T _Lk_Huron
@Egkm2_Hg_T_Lk_Superior
Bgkm2_Hg_T_Lk_Michigan
Bgkm2_Hg T Lk_Erie

WI99
WI36
Wi32
mwi3l
mWI22
WI09
mWwIo8
W OH02
mMN27
mMN23
HMN22
mMN18
EMN16
EMI48
WIN34
mIN28
mIN26
mIN21
mIN20
miL11




Deposition to Great Lakes from
1 g/hrsource of Hg(ll) from Std
Pt 6 (~Ohio River Valley) (g/km2-yr)

Wet dep to Great Lakes MDN sites estimated with

a different numerical configuration (g/m2-year)

3.5E-09
3.0E-09
2.5E-09
2.0E-09
< Hgpt_006_PUF_v25rr_base
1.5E-09 ) [J Hgpt_006_PUF_v25rr_max_oxid
A\ Hgpt_006_PUF_v25aa0_TEST_43_full_no_check
1.0E-09 X Hgpt_006_PUF_v25aa0_TEST_43_orig_no_check
O Hgpt_006_PUF_v25aa2_TEST_43_full_no_check
5.0E-10 + Hgpt_006_PUF_v25aa2_TEST_43_orig_no_check
—1:1line
0.0E+00 | | |
o o o)) D o)) o)) D o))
e % 9 & 5 3 5 9
|I, w w w w w w w
[S) Q Q L Q n Q n
S n — — ~ ~ ™ 9]
Wet dep to Great Lakes MDN sites estimated with
"base" numerical configuration (g/m2-year)
1.8E-03 -
1.6E-03 -
1.4E-03 - Bgkm2_Hg_T_Lk_Ontario
Ogkm2_Hg_T_Lk_Huron
1.2E-03
mgkm2_Hg T_Lk_Superior
1.0E-03 - mgkm2_Hg_T_Lk_Michigan
8.0E-04 - mgkm2_Hg T_Lk_Erie
6.0E-04 -
4.0E-04 -~
2.0E-04 -
0.0E+00 -
NS X & M o
. N \o,bsz 6@9 (\5\95' é\e" 6@0
7 ONid O o’ ©7 o7
°}\/ 3 &\/ {\%/ &\/ (\Q,/
N Q\> ,))\ fe) q)‘\ fo)
o7 Y NN
Q s s,
‘%\/0 Q'\(‘{? »\<<(7 '\@ ((f’
&7 7 e 27
< 4"1«6’ rf) < ¥ Q’f)
e 7
o ® QS( . Q,QO Q\§< ’
A N N
\e&} 4 \2&}\/ ‘?‘Q} \e\(%\/

149



Wet Deposition to Selected MDN
Sites from 1 g/hr source of Hg(ll) from

Std Pt 6 (Ohio River Valley) (g/m2-yr)
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Wet dep to Great Lakes MDN sites estimated with

a different numerical configuration (g/m2-year)
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7.6. Standard Source Location #8 (western shore of Lake Erie)

The graphs below show comparisons for a number of different simulations for emissions from standard
source location #8, on the western shore of Lake Erie. In almost all cases, it is seen that the
computational variations have very little influence on the overall results for deposition to the Great
Lakes or to wet deposition to MDN sites in the Great Lakes region. The largest differences in the results
appear to occur for differences in the compiler optimization schemes.
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Wet dep to Great Lakes MDN sites estimated with

Wet Deposition to Selected MDN
Sites from 1 g/hr source of Hg(0) from

Std Pt 6 (Toledo, Ohio) (g/m2-yr)

a different numerical configuration (g/m2-year)
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Deposition flux to Great Lakes
from 1 g/hrsource of Hg(p) from
Std Pt 8 (~Toledo, OH) (g/km2-yr)

Wet Deposition to Selected MDN
Sites from 1 g/hrsource of Hg(p) from

Std Pt 6 (Toledo, Ohio) (g/m2-yr)
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Wet dep to Great Lakes MDN sites estimated with

Wet dep to Great Lakes MDN sites estimated with

adifferent numerical configuration (g/m2-year)
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Wet Deposition to Selected MDN
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