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Can we run HYSPLIT globally?

When puffs grow to sizes
large relative to the
meteorological data grid, they
split, horizontally and/or
vertically

In the new version of
HYSPLIT (4.9), puffs
are “dumped” into an
Eulerian grid after a

specified time (e.g.,
96 hrs), and the
mercury is simulated
on that grid from
then on...




What year to model? /

/\\ _—
© Mercury Emissions Inventory Dataset
= U.S. anthropogenic emissions inventory Available
= Canadian anthropogenic emissions inventory for 2005 '
= Mexican anthropogenic emissions inventory e SEEEEE |
= Global anthropogenic emissions inventory
= Natural emissions inventory Need all
= Re-emissions inventory = | of these
. . datasets
© Ambient Data for Model Evaluation
oot - ’ for the
}I/Vet .epos:’tlo.n (Mercury D.eposmon Network) same year
= “Speciated” Air Concentrations
O Meteorological Data to drive model 2005 chosen
= NCEP/NCAR Global Reanalysis (2.5 deg) — .
= NCEP EDAS 40km North American Domain fOl’ baseline
= North American Regional Reanalysis (NARR) analys:s
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Standard Source Locations for lllustrative ModW

Standard Source Locations for which lllustrative Modeling Results will be Shown
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Standard Source Location Number

The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.

With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdep osition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.
With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdep osition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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Overall Results
for the
Great Lakes
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Here’s where the mercury is emitted from... But what is the relative importance of different source :
regions to atmospheric deposition of mercury to the Great,Lakes? Does most of it come fro a?
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Geographical Distribution of 2005 Atmospheric Mercury Emissions (Natural + Re-emit + Direct Anthropogenic)

NOAA Air Resources Laboratory 18 Presentation to IJC-IAQAB, Apr 25, 2012



2,500 5,000 km
| ] |

Atmospheric mercury deposition contribution
(g/yr) to Lake Erie from all emissions sources
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A tiny fraction of 2005
global mercury emissions

AW

within 500 km of Lake Erie

4,000 |
3,500 -
|
3,000 n
|
2,500 -
2,000 -
| |
1,500 -
| |
1,000
500 V

Mercury Emissions (Mg/yr)

<500 km

500- 1,000 km
1,000- 3,000 km
3,000- 10,000 km
10,000- 20,000 km

Distance of Emissions Source from
the Center of Lake Erie

Emissions from
Natural Sources

M Emissions from Re-

Emissions

M Emissions from
Anthropogenic

Modeling results show that
these “regional” emissions
are responsible for a large
fraction of the modeled 2005

atmospheric deposition

Important policy
implications!
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atures of this Analysis

© Deposition explicitly modeled to actual lake/watershed areas

= As opposed to the usual practice of ascribing portions of gridded
deposition to these areas in a post-processing step

0 125 250 500 Kilometers
L | | [==3
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/
~__Some Key Features of this Analysis //

© Combination of Lagrangian & Eulerian modeling

= allows accurate and computationally efficient estimates of the fate and transport of
atmospheric mercury over all relevant length scales — from “local” to global.

© Detailed source-attribution information is created

= deposition contribution to each Great Lakes and watersheds from each source in the
emissions inventories used is estimated individually

= The level of source discrimination is only limited by the detail in the emissions inventories

= Source-type breakdowns not possible in this 1t phase for global sources, because the global
emissions inventory available did not have source-type breakdowns for each grid square
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/

- __SomeKey Findings ofithis Analysis /

O “Single Source” results illustrate source-receptor relationships

= For example, a “typical” coal-fired power plant near Lake Erie may
contribute on the order of 100x the mercury — for the same emissions
— as a comparable facility in China.

© Regional, national, & global mercury emissions are all important
contributors to mercury deposition in the Great Lakes Basin

= For Lakes Erie and Ontario, the U.S. contribution is at its most significant
= For Lakes Huron and Superior, the U.S. contribution is less significant.

= Local & regional sources have a much greater atmospheric deposition
contributions than their emissions, as a fraction of total global mercury

emissions, would suggest.
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ngs of this Analysis (...comiM

© Reasonable agreement with measurements

= Despite numerous uncertainties in model input data and other
modeling aspects

= Comparison at sites where significant computational resources were
expended — corresponding to regions that were the most important
for estimating deposition to the Great Lakes and their watersheds —
showed good consistency between model predictions and measured
quantities.

= For a smaller subset of sites generally downwind of the Great Lakes
(in regions not expected to contribute most significantly to Great
Lakes atmospheric deposition), less computational resources were
expended, and the comparison showed moderate, but
understandable, discrepancies.
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Modeling Atmospheric Mercury Deposition to the Great Lakes.
Final Report for work conducted with FY2010 funding from the

Great Lakes Restoration Initiative. December 16, 2011.

Mark Cohen, Roland Draxler, Richard Artz. NOAA Air Resources

Laboratory, Silver Spring, MD, USA. 160 pages.

http://www.arl.noaa.gov/documents/reports/GLRI_FY2010 _
Atmospheric_Mercury_Final_Report 2011 Dec 16.pdf

http://www.arl.noaa.gov/documents/reports/Figures_Tables
_GLRI_NOAA _Atmos_Mercury_Report Dec_16 _2011.pptx
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Phase 2:
Sensitivity Analysis
And Extended Model
Evaluation
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Sites That May Have Ambient Mercury Concentration
easureme for Model Evaluati

] Positive response from PI

B No positive response yet*

* In a few cases, no request yet

0 250 500 1,000 Kilometers
| | |
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Sensitivity Analysis (in progress) /
/’//—\\' —

© Meteorological Data

= NARR instead of EDAS40km for North America

© Standard Source Locations and Interpolation Methodologies

= Adding pts in Eastern Great Lakes region to see if results improve
= Numerical experiments with different interpolation methods
= Numerical experiments with subsets of std pts — do we need them all?

© Model Parameters

= Simulation (time step, release elevation ...)

Dispersion (number of puffs, freq. of splitting, “conage”, ...)
Deposition (wet and dry deposition algorithms, ...)

» Phase partitioning (gas-droplet, gas-particle, ...)

Chemistry (reaction rates, reactant concentrations, ...)

NOAA Air Resources Laboratory 30 Presentation to 1JC-IAQAB, Apr 25, 2012



Sensitivity Analysis (in progress) /
ﬂ -

© Investigating Impact of Variations on:

" model evaluation results?
=" model-estimated deposition to the GL?

= Model-estimated source attribution

© Tactical Considerations

= Cannot do “Full” Phase-1 analysis for more than a few cases
= Screening on a small subset of source locations

= “Full Analysis” may be possible on reduced subset of std pts
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What Scenarios Should be Used?

O How to generate / solicit scenarios?

O Significant role for IAQAB?
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Thanks!

Questions? Suggestions?

gt +
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2,500 5,000 km
| ] |

Atmospheric mercury emissions (kg/yr)
from natural sources in each 2x2 degree grid cell

1,000 km
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Spatial Interpolation

Impacts from
Impact of source 4 estimated from Sources 1-3
weighted average of are Explicitly
impacts of nearby Modeled
fie 1
explicitly modeled sources g
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Chemical Interpolation
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30% Hg(0) —_— 0.5x Impact of Source Emitting Pure Hg(II)
50% Hg(II) +
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0.2x Impact of Source Emitting Pure Hg(p)
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Atmospheric mercury emissions (kg/yr)
from all sources in each 2x2 degree grid cell
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* Mercury monitoring site
. Standard source location

‘ Receptor of interest
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44

One Standard
Source Location
(green dot)
would do a
decent job of
estimating
deposition to the
receptor, for all
of the
hypothetical,
“actual” source
locations shown
(numbered
boxes)

But the same
Standard Source
Location would
be completely
inadequate to
estimate
deposition and
concentrations at
the monitoring
site (red star)
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lllustrative
Results for
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compare different model results
a “transfer flux coefficient” X wi ed,
defined as the following:

grams Hg deposited per vear
deposition flux rate km? of receptor area 1

emissions rate - grams Hg emitted per year from the source km?

rams Hg deposited per vear
deposition flux rate = g a4 Per. ( g )

km? of receptor area km?yr

. g
) * SOUrce mercury emissions ( —)
Vr

=y

= tr [ux cient (
ansfer flux coef ficien P
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deposition flux rate =

grams Hg deposited per year ( g )

km? of receptor area km?yr

. g
) * SOUrce mercury emissions ( —)

= transfer flux coef ficient ( o

lem?
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The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.

With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdep osition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.

NOAA Air Resources Laboratory 50 Presentation to IJC-IAQAB, Apr 25, 2012



o ATMOS R,
o gy

£

cients For Hg(0), Hg(ll
and Hg(p) to Lake Erie (linear scale)

WATIONA,
5% g,

3.0E-06 -
] W Transfer Flux Coefficient to Lake Erie for Pure Hg(ll) Emissions
2.5E-06 - W Transfer Flux Coefficient to Lake Erie for Pure Hg(p) Emissions —
- -
5 ~ . Transfer Flux Coefficient to Lake Erie for Pure Hg(0) Emissions
S ] ]
& E 2.0E-06 -
8= 1
o - 4
x .2 1.5E-06
>3 S 4
E wl 4
- $ ]
% 8 1.0E-06 -
E f
- ]
5.0E-07 -
0.0E+00 Illllhﬁl-l.-l.-.--. __________________________________
: w/nlololal~ m‘ﬁ‘o‘o l\‘ﬂ-‘m‘m‘l\‘w‘v‘m‘m‘w‘w‘LD‘N‘O‘N‘O\‘H‘l\‘l\‘m‘l\‘m‘m‘o‘v‘#‘O‘N‘v‘o‘m‘l\‘m‘m‘m‘w‘ﬂ"m‘
Great Lakes Regional Inset Map ‘ North American Regional Inset Map ‘ Global Map ‘
Standard Source Location Number
The "Transfer Flux Coefficient" is calculated as the atmosphericdeposition flux to a given receptor (in this case, Lake Erie)
in units of g/km2-yr, divided by the total emissions from the source, in units of g/yr.
With this transfer flux coefficient, if one knows the emissions of the source in the given location, then the atmosphericdep osition flux
impact of the source on the receptor can be estimated, by simply multiplying the emissions by the transfer flux coefficient.
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Time Trends of Mercury
Concentrations in GL Fish

Satyendra P. Bhavsar; Sarah B. Gewurtz; Daryl J.
McGoldrick; Michael J. Keir; Sean M. Backus;
Environ. Sci. Technol. 2010, 44, 3273-3279.
DOI: 10.1021/es903874x
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Areas of Concern in the Great Lakes -
St. Lawrence River Basin
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> Great Lakes Areas of Concern




> Great Lakes Areas of Concern
» U.S. urban areas (pink shading)
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