Atmospheric Mercury Deposition Impacts of Future Electric Power Generation

Mark D. Cohen
Physical Scientist,
NOAA Air Resources Laboratory
Silver Spring, Maryland, USA

Paul J. Miller
Program Coordinator, Air Quality
Commission for Environmental Cooperation*
Montreal, Quebec, Canada

Presentation at

Mercury in the Great Lakes Region
Sponsored by the Commission for Environmental Cooperation’s Environment, Economy and Trade and Pollutants and Health Programs in cooperation with the Binational Toxic Strategy

Wednesday December 17th, 2003
Hyatt Regency Chicago

* This presentation was developed for discussion purposes. The opinions, views or other information contained herein do not necessarily reflect the views of the CEC, Canada, Mexico or the United States.
Outline

- Emissions Scenarios
- “Receptors” Studied
- Atmospheric Modeling
- Results
Outline

- **Emissions Scenarios**
- “Receptors” Studied
- Atmospheric Modeling
- Results
<table>
<thead>
<tr>
<th>U.S. Mercury Emissions Scenarios</th>
</tr>
</thead>
</table>
| **Area sources**
(residential fuel combustion, mobile sources…) | **Point sources**
(other than coal-fired electricity generation (smelters, incinerators…)) | **Coal-fired electricity generation** |
| 1996 data
(U.S. EPA) | 1996 data
(U.S. EPA) | **Current:**
1999 data
(U.S. EPA) |
<table>
<thead>
<tr>
<th>U.S. Mercury Emissions Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area sources (residential fuel combustion, mobile sources…)</td>
</tr>
</tbody>
</table>
U.S. 2020 *baseline inventory* for mercury emissions from coal-fired power plants:

- estimated emissions from U.S. facilities if no new regulatory limitations were imposed beyond existing programs to cap and trade emissions of *sulfur dioxide* and *nitrogen oxides*.

- generating capacity estimated based on economic and demographic factors
<table>
<thead>
<tr>
<th>U.S. Mercury Emissions Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area sources (residential fuel combustion, mobile sources…)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
U.S. 2020 *Clear Skies* inventory for mercury emissions from coal-fired power plants:

- Projected emissions in 2020 from U.S. facilities if the proposed *Clear Skies* legislation is adopted and implemented.

- Presumptive cap of 14 metric tons of mercury emissions in 2018 versus the base 1999 U.S. emissions of about 43 metric tons.

- In the 2020 Clear Skies scenario used here [supplied by the EPA], the total mercury emissions are actually 21 metric tons due to provisions in the proposed legislation allowing “banking” of early excess emission reductions that can be used later under a trading program.
<table>
<thead>
<tr>
<th>Area sources (residential fuel combustion…)</th>
<th>Point sources other than coal-fired electricity generation (smelters, incinerators…)</th>
<th>Coal-fired electricity generation</th>
</tr>
</thead>
</table>
Canadian Mercury Emissions Scenarios

<table>
<thead>
<tr>
<th>Area sources</th>
<th>Point sources</th>
<th>Coal-fired electricity generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(residential fuel combustion…)</td>
<td>other than coal-fired electricity generation (smelters, incinerators…)</td>
<td></td>
</tr>
<tr>
<td>1995 data from Environment Canada</td>
<td>2000 NPRI data used to update 1995 data from Environment Canada</td>
<td></td>
</tr>
</tbody>
</table>

Current:
- 2000 NPRI

Future:
- National Energy Board 2020 “Supply Push”
Canadian National Energy Board 2020 *Supply Push scenario* for coal combustion at coal-fired power plants:

- technology advances slowly
- limited action with respect to the environment.
<table>
<thead>
<tr>
<th></th>
<th>Area sources</th>
<th>Point sources</th>
<th>Coal-fired electricity generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(residential fuel</td>
<td>other than coal-fired</td>
<td></td>
</tr>
<tr>
<td></td>
<td>combustion…</td>
<td>electricity generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(smelters, incinerators…?)</td>
<td></td>
</tr>
<tr>
<td>Current: 2000 NPRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995 data from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Push”</td>
<td>used to update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995 data from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environment Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future: 2020 “Techno-Vert”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Canadian NEB 2020 *Techno-Vert scenario* for coal combustion at coal-fired power plants:

- technology advances rapidly

- broad action with respect to the environment, including preference for environmentally-friendly products and cleaner-burning fuels.
For both Canadian 2020 scenarios:

• the same *emissions factors* (amount of mercury emitted per ton of coal burned)

• and the same *speciation profile*
 [fraction of emissions as Hg(II), Hg(0), and Hg(p)]

...as the current emissions inventory
Canadian Mercury Emissions

Mercury Emissions (metric tons/year)

- other fuel combustion
- manufacturing and other
- incineration
- coal-fired electricity generation
- metals

1995-2000

2020 Supply Push

2020 Techno Vert
Current and Projected Power Plant Mercury Emissions
Canada and the United States

The emissions of the two countries are represented with different scales.

Canada Mercury Emissions
- 400 kg of Mercury
- Canada 2000 Emissions
- 2020 Emissions under Supply Push
- 2020 Emissions under Techno-Vert

US Mercury Emissions
- 6,500 kg of Mercury
- 1999 Emissions
- 2020 Projected Emissions
- 2020 Emissions - Clear Skies
- Regional Borders
The U.S. and Canadian Future Scenarios used in this analysis are not really comparable…

…the 2020 U.S. *Clear Skies* scenario envisions enhanced pollution control (e.g., scrubbers) at some coal-fired power plants,

…but additional pollution control is *not* considered in these particular 2020 Canadian scenarios.
Outline

- Emissions Scenarios
- "Receptors" Studied
- Atmospheric Modeling
- Results
Outline

- Emissions Scenarios
- “Receptors” Studied
- Atmospheric Modeling
- Results
Modeling methodology described in a forthcoming publication:

Modeling the Atmospheric Transport and Deposition of Mercury to the Great Lakes

Accepted for Publication by Environmental Research, for the special issue of the journal devoted to papers from the Workshop on An Ecosystem Approach to the Health Effects of Mercury in the Great Lakes Basin, Windsor, Ontario, Feb 2003.

Mark Coher*, Richard Artz, and Roland Draxler
NOAA Air Resources Laboratory, Silver Spring, Maryland

Paul Miller
Commission for Environmental Cooperation, Montreal, Quebec

David Niemi, Dominique Ratie, and Marc Deslauriers
Pollutant Data Branch, Environment Canada, Hull, Quebec

Roch Duval and Rachelle Laurin†
Environmental Monitoring and Reporting Branch,
Ontario Ministry of the Environment, Toronto, Ontario

Jennifer Slotnick
University of California, Berkeley

Todd Nettesheim

John McDonald
International Joint Commission, Windsor, Ontario

*corresponding author: NOAA Air Resources Laboratory, R/ARL, Room 3316, Silver Spring, MD. 20910, ph: 301-713-0295 x122, fax: 301-713-0119, mark.cohen@noaa.gov

†current: DPRA Canada/The Institute of Environmental Research, Concord, Ontario, Canada
Three “kinds” of atmospheric mercury:

- **Elemental mercury – Hg⁰**
 Minimal local and regional deposition

- **Reactive Gaseous Mercury (RGM) – Hg(II)**
 Enhanced local and regional deposition

- **Particulate Mercury – Hg(p)**
 Moderate local and regional deposition
Typical Speciation Profiles of Mercury Emissions From Coal-Fired Electricity Generation Facilities

Without Wet Scrubber

- Hg(0): 41%
- Hg(II): 55%
- Hg(p): 5%

With Wet Scrubber

- Hg(0): 81%
- Hg(II): 17%
- Hg(p): 2%

(and similar difference with dry scrubbers)
Outline

- Emissions Scenarios
- “Receptors” Studied
- Atmospheric Modeling

Results
Mercury Emissions from Coal-Fired Electricity Generation are not the only emissions impacting these receptors...

U.S. data shown with "blue" shading; Canadian data shown with "yellow" shading. The only category with emissions changes in 2020 is "coal-fired electricity generation"; all other source categories were held constant at their "current" baseline.
The receptors fell into two groups:
Anthropogenic Mercury Emissions from Sources in the U.S. and Canada (~1995-1996)

Two Receptor Groups
Even on a **per-capita** basis, U.S. emissions appear to be more important for the first group...
However, on a per-capita basis, Canadian emissions appear to be more important for the second group...
Some Limitations of this Study…

- **U.S. and Canadian anthropogenic emissions only**
 [ignoring natural emissions and global sources]

- Uncertainties in emissions inventories,
 and in fate and transport modeling

- Future U.S. & Canadian scenarios not really comparable;
 many other scenarios that could be considered, including
 some with **much deeper reductions** in mercury emissions
Summary and Conclusions

- Deposition impact of current and future U.S. and Canadian mercury emissions examined with an atmospheric fate and transport model.

- Receptors fell into two groups:
 1. Influenced primarily by the U.S.; larger total flux.
 2. Influenced by the U.S. and Canada; smaller total flux.

- Coal-fired power plants not the only contributors to atmospheric mercury deposition in the receptors studied.

- Emissions from coal-fired power plants contribute significantly to deposition to all the receptors, and changes in the amounts and/or speciation profile of these emissions will result in changes in deposition.
Extra Slides
Hg(II) fraction vs. air pollution control device for Hg(II) ("RGM") for mercury emissions from U.S. coal-fired electricity generation.

The chart shows the fraction of Hg(II) for various air pollution control devices, with and without the device. The numbers above the bars represent the number of records for each category. The categories include cold_esp, hot_esp, dry_scrubber, fabric_filter, SCR, SNCR, wet_scrubber, fuel_reburn, and PM_scrubber.
Hg(II) fraction vs. air pollution control device for Hg(II) ("RGM")
for mercury emissions from U.S. coal-fired electricity generation

numbers above bars are the number of records