NOAA Technical Memorandum OAR ARL- 277

doi:10.7289/V5/TM-OAR-ARL-277

Small Unmanned Aircraft System (sUAS) measurements during the 2017 Land-Atmosphere Feedback Experiment (LAFE)

Authors

E. J. Dumas

T. R. Lee

M. Buban

B. Baker

NOAA/Air Resources Laboratory/Atmospheric Turbulence and Diffusion Division Oak Ridge, Tennessee

November 2017

NOAA Technical Memorandum OAR ARL- 277

doi:10.7289/V5/TM-OAR-ARL-277

Small Unmanned Aircraft System (sUAS) measurements during the 2017 Land-Atmosphere Feedback Experiment (LAFE)

Authors

E. J. Dumas

T. R. Lee

M. Buban

B. Baker

NOAA/Air Resources Laboratory/Atmospheric Turbulence and Diffusion Division Oak Ridge, Tennessee

November 2017

UNITED STATES DEPARTMENT OF COMMERCE

Wilbur Ross Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Benjamin Friedman Under Secretary for Oceans and Atmosphere/Acting Administrator Office of Oceanic and Atmospheric Research

Craig McLean Assistant Administrator Oceanic & Atmospheric Research

Table of Contents

List of Figures	. iii
List of Tables	. iv
List of Abbreviations and Acronyms	v
Abstract	. vi
Introduction	1
Instrument Description	5
Data Collection and Processing	6
Data Format	9
Data Remarks	12
Acknowledgements	14
References	14
Appendix A – Catalog of simultaneous DJI S-1000 and MD4-1000 flight tracks and marker files	15
Appendix B – Catalog of DJI S-1000 flight tracks and marker files	30
Appendix C – Catalog of MD4-1000 flight tracks and marker files	52

List of Figures

Figure 1: The DJI S-1000 flying at Knox County Radio Control (KCRC), Knoxville, TN	1
Figure 2: The Microdrone MD4-1000 flying at House Mountain Radio Control (HMRC), Corryton, TN	3
Figure 3: Map showing the LAFE domain with coordinates of various places in the LAFE research site	5
Figure 4: Comparison of DJI S-1000 and iMet-XQ GPS altitudes for file 20170817-DATA-flight04.csv	8
Figure 5: DJI S-1000 Flight 1 and MD4-1000 Flight 3, Monday, 14 August 2017	16
Figure 6: DJI S-1000 Flight 2 and MD4-1000 Flight 4, Monday, 14 August 2017	17
Figure 7: DJI S-1000 Flight 3 and MD4-1000 Flight 5, Monday, 14 August 2017	18
Figure 8: DJI S-1000 Flight 5 and MD4-1000 Flight 6, Monday, 14 August 2017	19
Figure 9: DJI S-1000 Flight 9 and MD4-1000 Flight 8, Monday, 14 August 2017	20
Figure 10: DJI S-1000 Flight 11 and MD4-1000 Flight 9, Monday, 14 August 2017	21
Figure 11: DJI S-1000 Flight 12 and MD4-1000 Flight 10, Monday, 14 August 2017	22
Figure 12: DJI S-1000 Flight 1 and MD4-1000 Flight 1, Tuesday, 15 August 2017	23
Figure 13: DJI S-1000 Flight 2 and MD4-1000 Flight 2, Tuesday, 15 August 2017	24
Figure 14: DJI S-1000 Flight 3 and MD4-1000 Flight 3, Tuesday, 15 August 2017	25
Figure 15: DJI S-1000 Flight 4 and MD4-1000 Flight 4, Tuesday, 15 August 2017	26
Figure 16: DJI S-1000 Flight 5 and MD4-1000 Flight 5, Tuesday, 15 August 2017	27
Figure 17: DJI S-1000 Flight 6 and MD4-1000 Flight 6, Tuesday, 15 August 2017	28
Figure 18: DJI S-1000 Flight 7 and MD4-1000 Flight 7, Tuesday, 15 August 2017	29
Figure 19: DJI S-1000 Flight 1, Friday, 11 August 2017.	31
Figure 20: DJI S-1000 Flight 4, Monday, 14 August 2017	32
Figure 21: DJI S-1000 Flight 6, Monday, 14 August 2017	33
Figure 22: DJI S-1000 Flight 7, Monday, 14 August 2017	34
Figure 23: DJI S-1000 Flight 8, Monday, 14 August 2017	35
Figure 24: DJI S-1000 Flight 10, Monday, 14 August 2017	36
Figure 25: DJI S-1000 Flight 8, Tuesday, 15 August 2017	37
Figure 26: DJI S-1000 Flight 1, Thursday, 17 August 2017.	38
Figure 27: DJI S-1000 Flight 2, Thursday, 17 August 2017.	39
Figure 28: DJI S-1000 Flight 3, Thursday, 17 August 2017.	40
Figure 29: DJI S-1000 Flight 4, Thursday, 17 August 2017.	41
Figure 30: DJI S-1000 Flight 5, Thursday, 17 August 2017.	42
Figure 31: DJI S-1000 Flight 6, Thursday, 17 August 2017.	43
Figure 32: DJI S-1000 Flight 7, Thursday, 17 August 2017.	44
Figure 33: DJI S-1000 Flight 8, Thursday, 17 August 2017.	45
Figure 34: DJI S-1000 Flight 9, Thursday, 17 August 2017.	46
Figure 35: DJI S-1000 Flight 10, Thursday, 17 August 2017.	47
Figure 36: DJI S-1000 Flight 11, Thursday, 17 August 2017.	48
Figure 37: DJI S-1000 Flight 12, Thursday, 17 August 2017	49
Figure 38: DJI S-1000 Flight 13, Thursday, 17 August 2017.	50
Figure 39: DJI S-1000 Flight 14, Thursday, 17 August 2017.	51
Figure 40: Microdrone MD4-1000 Flight 7, Monday, 14 August 2017.	53

List of Tables

Table 1: Summary of DJI S-1000 flights made during LAFE 2017	2
Table 2: Summary of MD4-1000 flights made during LAFE 2017	4
Table 3: iMet-XQ sensor specifications	6
Table 4: FLIR Tau 2 camera specifications	6
Table 5: iMet-XQ file format	9
Table 6: FLIR file format	9
Table 7: Marker file format	10
Table 8: Abbreviation codes for MKR files	11
Table 9: Example MD4-1000 MKR File	11
Table 10: Summary of data recovery for the DJI S-1000 for LAFE 2017	12
Table 11: Summary of data recovery for the MD4-1000 for LAFE 2017	13

List of Abbreviations and Acronyms

Abbreviation	Acronym
AGL	Above ground level
AOC	Aircraft Operations Center
ARL	Air Resources Laboratory
ARM	Atmospheric Radiation Measurement
ATDD	Atmospheric Turbulence and Diffusion Division
DOE	Department of Energy
GPS	Global positioning system
HMRC	House Mountain Radio Control
iMet	International Met Systems
IOP	Intensive Operating Period
iOSD	On-screen display
IR	Infrared
KCRC	Knox County Radio Control
LAFE	Land-Atmosphere Feedback Experiment
LDT	Local daylight time
MATLAB [©]	Matrix Laboratory
MSL	Mean sea level
NOAA	National Oceanic and Atmospheric Administration
OMAO	Office of Marine and Aviation Operations
PBL	Planetary Boundary layer
SGP	Southern Great Plains
sUAS	small Unmanned Aircraft System
UTC	Universal coordinated time

Abstract

This report describes the operation of small Unmanned Aircraft Systems (sUAS) by NOAA's Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division (NOAA/ARL/ATDD) in the Land-Atmosphere Feedback Experiment (LAFE) that was conducted in the summer of 2017 near Lamont, Oklahoma. Both the DJI S-1000 and the Microdrone MD4-1000 were used to measure temperature and humidity profiles in the lower 300 m of the atmosphere, and the S-1000 was used to map the Earth's skin temperature during three intensive observation periods (14 August, 15 August, and 17 August) in the LAFE experiment. NOAA/OMAO/AOC personnel also flew the Microdrone MD4-1000 sUAS during the 14 and 15 August intensives. During these intensives, fourteen MD4-1000 flights were flown simultaneously with the DJI S-1000. Datasets from both the DJI S-1000 and the Microdrone MD4-1000 aircraft were processed and are publicly available.

Introduction

The Land-Atmosphere Feedback Experiment (LAFE) was a research program to study the effect of land surface interactions on the planetary boundary layer (PBL) under quiescent fair weather meteorological conditions. The experiment took place from 1 August through 31 August 2017 in central Oklahoma near the town of Lamont at the Department of Energy's (DOE) Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) facility. The experiment consisted of coordinated meteorological measurements among multiple NOAA laboratories and universities during intensive operations periods (IOPs) during which weather conditions were relatively benign in the LAFE research domain. For more details on the experimental setup, see Wulfmeyer et al. (2017).

Data were collected using a DJI S-1000 small Unmanned Aircraft System (sUAS) owned by the NOAA Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division (NOAA/ARL/ATDD). The S-1000 is an eight-rotor vehicle capable of vertical takeoff and landing. It has a span of approximately 1 m and can carry a payload of 4.5 kg for approximately 15 minutes. It is operated by a single pilot with an observer who monitors real-time video imagery transmitted to a ground station while the aircraft is in flight. The sUAS was operated within visual line of sight of the pilot and was instrumented to make measurements of air temperature, relative humidity, atmospheric pressure, surface temperature, and visible imagery. The DJI S-1000 is shown in Figure 1 flying at the Knox County Radio Control (KCRC) model flying field in Knoxville, Tennessee during a test flight in preparation for the LAFE field experiment.

Figure 1: The DJI S-1000 flying at Knox County Radio Control (KCRC), Knoxville, TN.

Data were collected on August 14, 15, and 17, 2017 to support designated LAFE IOPs, as shown in Table 1 below:

Date (YYYY/MM/DD)	Flight	Takeoff time (LDT)	Landing time (LDT)	Takeoff time (GPS)	Landing time (GPS)	Flight Time (HH:MM:SS)	Scans
2017/08/11	01	12:47:27	12:56:37	17:47:45	17:56:55	00:09:10	550
2017/08/14	01	12:39:47	12:49:40	17:40:05	17:49:58	00:09:53	593
2017/08/14	02	12:59:44	13:09:31	18:00:02	18:09:49	00:09:47	587
2017/08/14	03	13:40:28	13:50:15	18:40:46	18:50:33	00:09:47	587
2017/08/14	04	13:59:35	14:10:07	18:59:53	19:10:25	00:10:32	632
2017/08/14	05	14:59:13	15:09:23	19:59:31	20:09:41	00:10:10	610
2017/08/14	06	15:18:36	15:28:41	20:18:54	20:28:59	00:10:05	605
2017/08/14	07	15:59:47	16:10:28	21:00:05	21:10:46	00:10:41	641
2017/08/14	08	16:20:23	16:31:06	21:20:41	21:31:24	00:10:43	643
2017/08/14	09	16:59:51	17:10:33	22:00:09	22:10:51	00:10:42	642
2017/08/14	10	17:20:11	17:30:35	22:20:29	22:30:53	00:10:24	624
2017/08/14	11	17:40:00	17:50:05	22:40:18	22:50:23	00:10:05	605
2017/08/14	12	18:09:55	18:20:29	23:10:13	23:20:47	00:10:34	634
2017/08/15	01	12:09:27	12:20:03	17:09:45	17:20:21	00:10:36	636
2017/08/15	02	15:09:32	15:19:57	20:09:50	20:20:15	00:10:25	625
2017/08/15	03	15:40:53	15:51:36	20:41:11	20:51:54	00:10:43	643
2017/08/15	04	16:09:34	16:20:53	21:09:52	21:21:11	00:11:19	679
2017/08/15	05	16:40:54	16:51:49	21:41:12	21:52:07	00:10:55	655
2017/08/15	06	17:09:46	17:20:52	22:10:04	22:21:10	00:11:06	666
2017/08/15	07	17:41:21	17:52:16	22:41:39	22:52:34	00:10:55	655
2017/08/15	08	18:09:40	18:20:43	23:09:58	23:21:01	00:11:03	663
2017/08/17	01	11:39:48	11:50:34	16:40:06	16:50:52	00:10:46	646
2017/08/17	02	12:09:34	12:20:44	17:09:52	17:21:02	00:11:10	670
2017/08/17	03	12:39:49	12:50:37	17:40:07	17:50:55	00:10:48	648
2017/08/17	04	13:09:57	13:20:33	18:10:15	18:20:51	00:10:36	636
2017/08/17	05	13:39:47	13:50:28	18:40:05	18:50:46	00:10:41	641
2017/08/17	06	14:09:43	14:20:17	19:10:01	19:20:35	00:10:34	634
2017/08/17	07	14:40:04	14:50:29	19:40:22	19:50:47	00:10:25	625
2017/08/17	08	15:10:03	15:21:12	20:10:21	20:21:30	00:11:09	669
2017/08/17	09	15:39:47	15:50:31	20:40:05	20:50:49	00:10:44	644
2017/08/17	10	16:09:39	16:20:32	21:09:57	21:20:50	00:10:53	653
2017/08/17	11	16:40:05	16:51:07	21:40:23	21:51:25	00:11:02	662
2017/08/17	12	17:09:56	17:20:29	22:10:14	22:20:47	00:10:33	633
2017/08/17	13	17:39:42	17:46:21	22:40:00	22:46:39	00:06:39	399
2017/08/17	14	18:09:40	18:20:26	23:09:58	23:20:44	00:10:46	646

Table 1: Summary of DJI S-1000 flights made during LAFE 2017

A total of 35 flights were made with the DJI S-1000 sUAS. Note that no meteorological data were collected during the test flight on 11 August, which was made for demonstration purposes. Note that times in this table are local daylight time (LDT), which lags Universal Coordinated Time (UTC) by 5 hours (LDT=UTC-5 h). Additionally, GPS time is ahead of UTC time by 18 s during this experiment (GPS=UTC+18 s).

The Microdrone MD4-1000 quadcopter was also used in the LAFE experiment. This aircraft is owned by the Cooperative Center for Unmanned Technologies (CCUT) in Santa Barbara, California and was on loan to ATDD for the LAFE experiment. The MD4-1000 is a four-rotor vehicle capable of vertical takeoff and landing. It has a wingspan of approximately 1 m and can carry a payload of 1.2 kg for approximately 20 minutes. It is operated by a single pilot with an observer. The sUAS was operated within visual line of sight of the pilot and was instrumented to make measurements of air temperature, relative humidity, and atmospheric pressure. The MD4-1000 is shown in Figure 2 flying at the House Mountain Radio Control (HMRC) model flying field in Corryton, Tennessee during a test flight in preparation for the LAFE field experiment.

Figure 2: The Microdrone MD4-1000 flying at House Mountain Radio Control (HMRC), Corryton, TN.

Seventeen flights were made with the Microdrone MD4-1000 sUAS as shown in Table 2 below. Note that flights 1 and 2 were performed for pilot checkout and orientation and no meteorological data was collected during those flights.

Date (YYYY/MM/DD)	Flight	Takeoff time Landing (LDT) time (LDT)		Takeoff time (GMT)	Landing time (GMT)	Flight Time (HH:MM:SS)	Scans
2017/08/14	01	12:01:37	12:07:21	17:01:55	17:07:39	00:05:44	344
2017/08/14	02	12:07:46	12:09:15	17:08:04	17:09:33	00:01:29	89
2017/08/14	03	12:39:27	12:53:22	17:39:45	17:53:40	00:13:55	835
2017/08/14	04	13:00:05	13:12:57	18:00:23	18:13:15	00:12:52	772
2017/08/14	05	13:40:06	13:52:20	18:40:24	18:52:38	00:12:14	734
2017/08/14	06	15:00:01	15:10:37	20:00:19	20:10:55	00:10:36	636
2017/08/14	07	15:40:18	15:53:14	20:40:36	20:53:32	00:12:56	776
2017/08/14	08	16:59:41	17:12:06	21:59:59	22:12:24	00:12:25	745
2017/08/14	09	17:38:31	17:53:02	22:38:49	22:53:20	00:14:31	871
2017/08/14	10	18:07:43	18:23:20	23:08:01	23:23:38	00:15:37	937
2017/08/15	01	12:13:19	12:23:56	17:13:37	17:24:14	00:10:37	637
2017/08/15	02	15:08:09	15:22:31	20:08:27	20:22:49	00:14:22	862
2017/08/15	03	15:38:12	15:53:39	20:38:30	20:53:57	00:15:27	927
2017/08/15	04	16:08:14	16:21:47	21:08:32	21:22:05	00:13:33	813
2017/08/15	05	16:39:29	16:52:30	21:39:47	21:52:48	00:13:01	781
2017/08/15	06	17:07:52	17:21:35	22:08:10	22:21:53	00:13:43	823
2017/08/15	07	17:37:48	17:53:08	22:38:06	22:53:26	00:15:20	920

Table 2: Summary of MD4-1000 flights made during LAFE 2017

Note that the MD4-1000 only measured air temperature, relative humidity, and air pressure. It did not measure surface temperature or visible imagery.

The LAFE experiment consisted of a synergy between ground-based LIDAR systems making measurements of wind speed, temperature, and relative humidity along a line originating at the DOE SGP ARM site extending along a heading of approximately 51° true north. Adjacent to this line, three eddy-covariance flux towers were installed and operated by NOAA/ATDD. These were stationed approximately 500, 1500, and 2000 meters northeast of DOE SGP ARM central facility. For more information on the LAFE experiment, please see:

https://www.eol.ucar.edu/field projects/lafe

The sUAS were used to extend the temperature and relative humidity measurements made by the towers to a larger spatial extent. Figure 3 shows the locations of various entities in the LAFE experiment. Included are the DOE SGP ARM facility, the locations of ATDD's flux towers (Tower 1, Tower 2, and Tower 3), and the starting locations and approximate flight paths for the DJI S-1000 and the MD4-1000 sUAS's, as well as line along which LIDAR measurements were made, shown in blue.

Figure 3: Map showing the LAFE domain with coordinates of various places in the LAFE research site.

Instrument Description

Two International Met Systems (iMet) model XQ devices were used to measure air temperature, relative humidity, and pressure onboard the DJI-S-1000 & the Microdrone MD4-1000 aircraft. The DJI S-1000 carried two iMet devices, on the left and right sides of the aircraft, respectively. Device 4 (iMet-dev4) was located on the left side, and device 5 (iMet-dev5) was located on the right side. The Microdrone MD4-1000 carried device 3 (iMet-dev3) on the left side and device 6 (iMet-dev6) on the right side of the aircraft except for one flight where it carried device 7 on the left side. Each instrument is self-contained and has temperature, relative humidity, and pressure sensors with onboard GPS and data logging capability. The specifications for each sensor are shown in Table 3.

Table 3: iMet-XQ sensor specifications

	Humidity Sensor	Temperature Sensor	Pressure Sensor
Туре	Capacitive	Bead Thermistor	Piezo resistive
Range	0-100% RH	-95°C to +50°C	10-1200 hPa
Response time	5 sec @ 1 m/s velocity	2 seconds	10 ms
Accuracy	±5% RH	±0.3°C	±1.5 hPa
Resolution	0.7% RH	0.01°C	0.02 hPa
Storage frequency	1 Hz	1 Hz	1 Hz
	n n n n n n		

For more information please visit <u>www.intermetsystems.com</u>

A FLIR infrared camera was used to measure the skin temperature of the Earth's surface below the DJI S-1000 aircraft. The FLIR camera is a FLIR Tau 2 core with 336x256 pixel resolution, a 7.5 mm lens, and a TeAx Thermal Capture data acquisition system. This device stored data at 1 Hz continuously while the aircraft was being flown. This camera was mounted to the aircraft and oriented to look straight down while the aircraft was in level flight. It was not mounted on a gimbal. The specifications for the FLIR camera are shown in Table 4.

Table 4: FLIR Tau 2 camera specifications

FLIR Tau 2 Camera Specifications	
Resolution	336 x 256 VOx Micro bolometer
Spectral band	7.5-13.5 μm
Pixel Size	17 μm
Performance	< 50 mK @ f/1.0
Scene temperature range	-40°C to +160°C
Lens field of view	45° x 35°
Storage frequency	1.0 Hz

For more information please visit www.flir.com

Data from the DJI A2 autopilot were collected and stored during flight to measure the aircraft's position, velocity, and attitude. Data from the autopilot were processed using online software from <u>www.mapsmadeeasy.com</u> which converted the proprietary DJI binary files into comma separated value (CSV) files for easier post-processing. Data from the A2 autopilot were stored at 192 Hz during flight.

A GoPro Hero 3 camera was used to transmit video in the visible wavelength band from the aircraft during flight. Data from the camera were downlinked using a DJI iOSD Mk II system to a portable display screen that was monitored during flight. This camera, like the FLIR camera, was mounted to the aircraft and oriented to look straight down when the aircraft is in level flight. It was not mounted on a gimbal. For more details on the experimental setup, see Dumas et al (2016, 2017).

Data Collection and Processing

Data from the DJI A2 autopilot was stored on-board the S-1000 during flight, along with data from the iMet-XQ sensors, and the FLIR IR camera. Each device was started prior to takeoff and then stopped after landing. Following each flight day, data from each device (the DJI A2 autopilot, iMet-XQ, and FLIR IR camera) were downloaded onto a laptop computer for post-processing.

Post-processing began by converting the DJI A2 autopilot data from binary format to CSV format using online software from <u>www.mapsmadeasy.com</u>. Hereafter this file will be referred to as the DJI file. Following this, custom MATLAB[®] software was used to plot and visually inspect data from each device to provide an initial level of quality control. The iMet-XQ's GPS altitude and time were used to determine the exact time of liftoff and touchdown and the iMet-XQ files trimmed to match those times exactly. Since the iMet-XQ data were collected at 1 Hz, the exact duration of the flight could be measured both by subtracting the file's end and start time tags, as well as counting the number of lines in the file. This provided a level of redundancy to ensure the iMet-XQ data were properly collected.

Next, time series data from the DJI barometric altitude were plotted, and the data files trimmed to match the exact moment of liftoff and touchdown of the vehicle. The number of data points in the DJI file was also checked against the expected number of points based on the duration of the flight. The frequency of the DJI data was found experimentally to be 192±1 Hz, and this value was constant throughout the experiment period.

The next step was to ensure the data from the iMet-XQ were properly time-aligned with the DJI data. This was done by examining the difference between the GPS altitudes measured by each device. Because of the changes in altitude during the flight, time lag differences could easily be seen and corrected manually. An example of the plots generated during this procedure is shown in Figure 4. Note that the times shown in Figure 4 are in UTC.

Figure 4: Comparison of DJI S-1000 and iMet-XQ GPS altitudes for file 20170817-DATA-flight04.csv.

The FLIR data files were processed using TeAx ThermoViewer software. The original files from the TeAx device were stored in a compressed binary format in blocks of 1000 frames. The FLIR data were taken continuously from the moment the aircraft lifted off until it touched down. As with the DJI and iMet-XQ data, the first and last files were trimmed to the exact time of liftoff and touchdown. After initial trimming, each file was concatenated into a single compressed binary file that contained all FLIR frames from the exact time of liftoff until the exact time of touchdown. As with the DJI data, the number of FLIR frames in the entire flight was checked to ensure no data were missing. The frequency of the FLIR data was found experimentally to be 0.93±0.01 Hz and remained consistent throughout the experiment period.

After the single FLIR binary flight file was created, each frame was exported to a CSV file. The CSV file names have the following convention: YYYYMMDD-FLIR-flightXX_ZZZZ.csv where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file, XX=2-digit flight number and ZZZZ=4-digit frame number. Each CSV file contains 336 columns and 256 rows of temperature values in degrees Celsius. Each number in the CSV file corresponds to a temperature value for each pixel.

Finally, a new DJI file was created that included the iMet-XQ temperature, relative humidity, pressure, latitude, longitude, altitude, and number of satellites for each iMet-XQ device. Additionally, the index of the appropriate

FLIR .csv frame number was added. This file was named using following convention: YYYYMMDD-DATA-flightXX.csv where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file and XX=2-digit flight number.

A similar process was used to process data from the Microdrone MD4-1000. Once data from the MD4-1000 autopilot was downloaded and converted, the iMet-XQ data was then trimmed to match the takeoff and landing times found in the MD4-1000 autopilot file. The data files were then merged in a similar manner to the DJI files to create a DATA file.

Data Format

The iMet-XQ filename has the following format: YYYYMMDD-iMet-devX-flightYY.csv where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file, X=1-digit device number and YY=2-digit flight number. The iMet-XQ file has the following format:

Table 5: iMet-XQ file format

S/N	Device	Pressure (mb)	Temp (C)	RH (%)	GPS Date	GPS Time	Latitude (Degrees)	Longitude (Degrees)	Altitude (m)	No. Sat
00037272	XQ	+097557	+3473	+0588	2017/08/14	17:40:05	+0366186403	-0974803354	+00300576	16
00037272	XQ	+097553	+3276	+0606	2017/08/14	17:40:06	+0366186402	-0974803353	+00300605	16
00037272	XQ	+097555	+3179	+0600	2017/08/14	17:40:07	+0366186403	-0974803353	+00300661	16
00037272	XQ	+097550	+3168	+0612	2017/08/14	17:40:08	+0366186401	-0974803352	+00300720	16
00037272	XQ	+097547	+3177	+0611	2017/08/14	17:40:09	+0366186399	-0974803360	+00300878	16

Scale factors: Pressure=100, Temp=100, RH=10, Latitude= 10000000, Longitude= 10000000, Altitude= 1000

The sample shown above is from file 20170814-iMet-dev4-flight01.csv from the DJI S-1000. Note scale factors for the various channels shown above are applied to the raw data. Data can be converted from raw to scaled values by dividing by the appropriate scale factor, shown below Table 5.

The FLIR filename has the following format: YYYYMMDD-FLIR-flightXX_ZZZZ.csv where YYYY=4-digit year, MM=2digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file, XX=2-digit flight number and ZZZZ=4-digit frame number. The FLIR file has the following format:

Table 6: FLIR file format

	Column 1	Column 2	Column 335	Column 336
Row 1	38.73;	37.81;	39.37;	38.81;
Row 2	40.29;	38.61;	39.05;	38.01;
Row 255	38.53;	40.29;	43.65;	43.97;
Row 256	37.89;	39.53;	39.65;	39.65;

Note: All values are scaled to degrees C.

The sample shown above is from file 20170814-FLIR-flight01_0001.csv.

The DATA filename has the following format: YYYYMMDD-DATA-flightXX.csv where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file and XX=2-digit flight number. The DJI S-1000 DATA file has the following columns:

Index, Year, Month, Day, Hour, Min, Sec, Millisecond, Latitude, Longitude, GPS Altitude, N Velocity, E Velocity, D Velocity, Velocity, Ground Speed, AccelerometerX, AccelerometerY, AccelerometerZ, GyroX, GyroY, GyroZ, Barometric Alt, QuaternionX, QuaternionY, QuaternionZ, QuaternionW, Roll, Pitch, Yaw, MagneticX, MagneticY, MagneticZ, Satellites, Main Voltage, CAN Voltage, Elec Voltage, Pres4, Temp4, RH4, Lat4, Lon4, Alt4, Sat4, Pres5, Temp5, RH5, Lat5, Lon5, Alt5, Sat5, FLIR_Index

Note that Pres4, Temp4, RH4, Lat4, Lon4, Alt4, and Sat4 are from iMet-XQ device 4 and Pres5, Temp5, RH5, Lat5, Lon5, Alt5, and Sat5 are from iMet-XQ device 5. GPS altitude is measured with respect to the GPS referenced sea level while barometric altitude is measured with respect to ground level.

To delineate which parts of a data file are useful, a marker (MKR) file is used. This is a text file that defines sections of the DATA file that are intended to be processed in a contiguous fashion. For example, the first leg of most flights started with a vertical profile followed by a horizontal transect once the aircraft reached its maximum altitude. The MKR files for each flight are listed along with the latitude and longitude plots of the flight tracks in Appendix A.

The MKR filename has the following format: YYYYMMDD-DATA-flightXX.mkr where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file and XX=2-digit flight number. The MKR file has the following format:

		Open /					
	Tag	Close	Scan	Time	Latitude	Longitude	Notes
Open line	File 2	0170814-D	ATA-flight0	1.csv OPENE	D at 17:40:05 GPS		
Payload line	iMet-X	KQ order (4	left, 5 right	:)			
Comment Line	This f	light flown	simultaneo	usly with MD4	4-1000 flight 3!		
Open 1	PRO	-1	00007	17:40:12	36.618659	-97.480344	Profile 1m-100m
Close 1		0	00076	17:41:21	36.618657	-97.480341	
Open 2	TRS	-1	00078	17:41:23	36.618657	-97.480342	Transect
Close 2		0	00157	17:42:42	36.622158	-97.476390	
Open 3	PRO	-1	00160	17:42:45	36.622161	-97.476392	Profile 100m-300m
Close 3		0	00289	17:44:54	36.622159	-97.476382	
Close line	File 2	File 20170814-DATA-flight01.csv CLOSED at 17:49:58 GPS					
Total scans	Total	scans 0059	4				

Table 7: Marker file format

In the example above, the file 20170814-DATA-flight01.csv was opened at 17:40:05 GPS time. The payload configuration was iMet-XQ device 4 on the left, and iMet-XQ device 5 on the right side of the aircraft. There may be additional lines following the payload line to note weather conditions or other significant flight conditions, if necessary.

The first task flown was a profile that started (indicated by -1 in the open/close column) at scan 7, 17:40:12 GPS time. Note that -1 indicates the maneuver's start time and 0 indicates the maneuver's stop time. From the notes it can be seen that this profile began 10 meters above ground level (AGL) and ended at 100 meters AGL. Note the latitude and longitude of the starting and ending points. These are nearly identical and indicate that the profile was performed vertically over the same location. The profile began 7 seconds into the flight and ended 76 seconds

into the flight, giving an elapsed time of 69 seconds. With the altitude gain of 99 meters, the average rate of climb was 1.43 m s⁻¹.

The remaining segments show the rest of the maneuvers during the flight. For these flights, a vertical box was performed that started with a profile to 100 meters, a transect to 500 meters range at 100 meters, a vertical profile to 300 m, followed by a transect back to the starting point at 300 m altitude. Finally, a vertical profile was performed to descend near the starting point followed by landing.

The abbreviation codes for all MKR files used in this experiment are as follows:

Table 8: Abbreviation codes for MKR files

Tag	Name	Description
HOV	Hover	Hovering flight at a constant altitude
PRO	Profile	Vertical flight at a constant rate of climb or descent.
TRS	Transect	Forward flight at a constant altitude.

A catalog of all MKR files for each flight in the LAFE study can be found in Appendix A.

The DATA filename for the MD4-1000 has the following format: YYYYMMDD-DATA-flightXX.csv where YYYY=4-digit year, MM=2-digit month, DD=2-digit day as recorded at the time of the first data point in the iMet-XQ file and XX=2-digit flight number. The DATA file has the following columns for the MD4-1000:

Index, Year, Month, Day, Hour, Min, Sec, Millisecond, Latitude, Longitude, Altitude, GroundSpeed, BarometricAlt, Roll, Pitch, Yaw, Temperature, MainVoltage, Pres3, Temp3, RH3, Lat3, Lon3, Alt3, Sat3, Pres6, Temp6, RH6, Lat6, Lon6, Alt6, Sat6

Note that Pres3, Temp3, RH3, Lat3, Lon3, Alt3, and Sat3 are from iMet-XQ device 3 and Pres6, Temp6, RH6, Lat6, Lon6, Alt6, and Sat6 are from iMet-XQ device 6. GPS altitude is measured with respect to the GPS referenced sea level while barometric altitude is measured with respect to ground level.

Marker files for the MD4-1000 flights were created in a manner similar to the MKR files for the DJI S-1000. An example MD4-1000 MKR file is shown below:

		Open /							
	Tag	Close	Scan	Time	Latitude	Longitude	Notes		
Open line	File 20170814-DATA-flight03.csv OPENED at 17:39:45 GPS								
Payload line	iMet-X	XQ order (3	left, 6 right	.)					
Comment Line	This f	light flown	simultaneo	usly with DJI S	-1000 flight 1!				
Open 1	PRO	-1	00039	17:40:25	36.622651	-97.476686	Profile 10m-100m		
Close 1		0	00073	17:40:59	36.622653	-97.476688			
Open 2	TRS	-1	00097	17:41:23	36.622651	-97.476687	Transect		
Close 2		0	00333	17:45:19	36.625889	-97.472761			
Open 3	PRO	-1	00334	17:45:20	36.625889	-97.472761	Profile 100m-300m		
Close 3		0	00382	17:46:08	36.625890	-97.472762			
Close line	File 2	0170814-D	ATA-flight0	3.csv CLOSED	at 17:53:40 GPS				
Total scans	Total	scans 0083	4						

Table 9: Example MD4-1000 MKR File

Data Remarks

For the most part, the data were recovered completely and correctly, as shown in Table 10.

 Table 10: Summary of data recovery for the DJI S-1000 for LAFE 2017

	Daily flight	Ы	iMet-XQ	iMet-XQ		GoPro	Notor
2017/08/11	01	Yes	Yes	Yes	No	No	Demonstration flight
2017/08/14	01	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 3
2017/08/14	02	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 4
2017/08/14	03	Yes	Yes	Yes	No	Yes	Simultaneous with MD4-1000 flight 5
2017/08/14	04	Yes	Yes	Yes	Yes	Yes	
2017/08/14	05	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 6
2017/08/14	06	Yes	Yes	Yes	Yes	Yes	
2017/08/14	07	Yes	Yes	Yes	Yes	Yes	
2017/08/14	08	Yes	Yes	Yes	Yes	Yes	
2017/08/14	09	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 8
2017/08/14	10	Yes	Yes	Yes	Yes	Yes	
2017/08/14	11	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 9
2017/08/14	12	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 10
2017/08/15	01	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 1
2017/08/15	02	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 2
2017/08/15	03	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 3
2017/08/15	04	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 4
2017/08/15	05	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 5
2017/08/15	06	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 6
2017/08/15	07	Yes	Yes	Yes	Yes	Yes	Simultaneous with MD4-1000 flight 7
2017/08/15	08	Yes	Yes	Yes	Yes	Yes	
2017/08/17	01	Yes	Yes	Yes	Yes	Yes	
2017/08/17	02	Yes	Yes	Yes	Yes	Yes	
2017/08/17	03	Yes	Yes	Yes	Yes	Yes	
2017/08/17	04	Yes	Yes	Yes	Yes	Yes	
2017/08/17	05	Yes	Yes	Yes	Yes	Yes	
2017/08/17	06	Yes	Yes	Yes	Yes	Yes	
2017/08/17	07	Yes	Yes	Yes	Yes	Yes	
2017/08/17	08	Yes	Yes	Yes	Yes	Yes	
2017/08/17	09	Yes	Yes	Yes	Yes	Yes	
2017/08/17	10	Yes	Yes	Yes	Yes	Yes	
2017/08/17	11	Yes	Yes	Yes	Yes	Yes	
2017/08/17	12	Yes	Yes	Yes	Yes	Yes	
2017/08/17	13	Yes	Yes	Yes	Yes	Yes	
2017/08/17	14	Yes	Yes	Yes	Yes	Yes	

Table 11: Summary of data recovery for the MD4-1000 for LAFE 2017

Date	Daily flight	1154	iMet-XQ	iMet-XQ	iMet-XQ	
2017/08/14	number 01	Yes	Dev 3 No	No	Dev 7 No	Notes Pilot familiarization flight
2017/08/14	02	Yes	No	No	No	Pilot familiarization flight
2017/00/14	02	105	N 1			
2017/08/14	03	Yes	Yes	Yes	NO	Simultaneous with S-1000 flight 1
2017/08/14	04	Yes	No	Yes	No	Simultaneous with S-1000 flight 2
2017/08/14	05	Yes	No	No	Yes	Simultaneous with S-1000 flight 3
2017/08/14	06	Yes	Yes	Yes	No	Simultaneous with S-1000 flight 5
2017/08/14	07	Yes	Yes	Yes	No	
2017/08/14	08	Yes	Yes	Yes	No	Simultaneous with S-1000 flight 9
2017/08/14	09	Yes	Yes	Yes	No	Simultaneous with S-1000 flight 11
2017/08/14	10	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 12
2017/08/15	01	Yes	Yes	Yes	No	Simultaneous with S-1000 flight 1
2017/08/15	02	Yes	Yes	Yes	No	Simultaneous with S-1000 flight 2
2017/08/15	03	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 3
2017/08/15	04	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 4
2017/08/15	05	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 5
2017/08/15	06	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 6
2017/08/15	07	Yes	Yes ¹	Yes	No	Simultaneous with S-1000 flight 7

¹Device quit prior to end of flight.

A total of 15 flights were made with the Microdrone MD-1000 sUAS as shown in Table 11. Note that flights 1 and 2 with the MD4-1000 were performed for pilot checkout and orientation. No meteorological data were collected during those flights.

During the simultaneous flights, each aircraft was stationed 500 meters apart prior to flight. Each pilot flew his aircraft independently of the other, although takeoff times were synchronized between aircraft to the extent possible.

Several MATLAB[®] scripts were built to visualize and manipulate data from the DJI S-1000 instruments. The MATLAB[®] script *uasDisplay.m* displays time series data from the DJI files (e.g. 20170814-DATA-flight01.csv), as well as the latitude and longitude plot of the flight track. It is a GUI application that can also display marker data and calculate statistics for various segments defined by the MKR files. Additionally, data from both the iMet-XQ and FLIR can be brought in and displayed in the time series. Controls to execute the *process_iMet.m* and *process_FLIR.m* scripts are included as well.

The MATLAB[®] script *process_iMet.m* displays data from the iMet-XQ files (e.g. 20170814-iMet-dev4-flight01.csv). The user can select various series of iMet-XQ data to plot from up to 5 different data files on the same set of axes. Statistics can be calculated for various combinations of data using this script.

The MATLAB[©] script *process_FLIR.m* is designed to display data from the FLIR files (e.g. 20170814-FLIR-flight01_0001.csv) for quick-looks of the FLIR data. These scripts and all data for each of the LAFE flights are available at the following ftp site: <u>ftp://ftp.atdd.noaa.gov/Cl/djis1000/</u>

Acknowledgements

ATDD wishes to thank Mark Rogers of NOAA/AOML/AOC for flying the Microdrone MD4-1000 aircraft during the LAFE 2017 field campaign.

References

- Dumas, E. J., T. R. Lee, M. Buban, and B. Baker, 2016: Small Unmanned Aircraft System (sUAS) measurements during the 2016 Verifications of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE). NOAA Technical Memorandum OAR ARL-273.
- Dumas, E. J., T. R. Lee, M. Buban, and B. Baker, 2017: Small Unmanned Aircraft System (sUAS) measurements during the 2017 Verifications of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE). NOAA Technical Memorandum OAR ARL-274.
- Wulfmeyer V., D. D. Turner, B. Baker, R. Banta, A. Behrendt, T. Bonin, W. A. Brewer, M. Buban, A. Choukulkar, E. Dumas, R.M. Hardesty, T. Heus, D. Lange, T. R. Lee, S. Metzendorf, T. Meyers, R. Newsom, M. Osman, S. Raasch, J. Santanello, C. Senff, F. Späth, T. Wagner, and T. Weckwerth, 2017: A new research approach for observing and characterizing land-atmosphere feedback. Submitted to the Bulletin of the American Meteorological Society.

Appendix A – Catalog of simultaneous DJI S-1000 and MD4-1000 flight tracks and marker files

This	f:	light 1	flown simu	ltaneously	with MD4-	1000 flic	tht 3!
PRO	-1	00007	17:40:12	36.618659	-97.480344	Profile	10m-100m
	0	00076	17:41:21	36.618657	-97.480341		
TRS	-1	00078	17:41:23	36.618657	-97.480342	Transect	-
	0	00157	17:42:42	36.622158	-97.476390		
PRO	-1	00160	17:42:45	36.622161	-97.476392	Profile	100m-300r
	0	00289	17:44:54	36.622159	-97.476382		
TRS	-1	00291	17:44:56	36.622159	-97.476382	Transect	5
	0	00377	17:46:22	36.618281	-97.480395		
PRO	-1	00379	17:46:24	36.618280	-97.480399	Profile	300m-10m
	0	00572	17:49:37	36.618694	-97.480271		
File	20	0170814	-DATA-fli	ight01.csv	CLOSED at :	17:49:58	GPS

File 20170814-DATA-flight03.csv OPENED at 17:39:45 GPS	
iMet-XQ order (3 left, 6 right)	
This flight flown simultaneously with DJI S-1000 flight 1!	
PRO -1 00039 17:40:25 36.622651 -97.476686 Profile 10m-100m	
0 00073 17:40:59 36.622653 -97.476688	
TRS -1 00097 17:41:23 36.622651 -97.476687 Transect	
0 00333 17:45:19 36.625889 -97.472761	
PRO -1 00334 17:45:20 36.625889 -97.472761 Profile 100m-300m	
0 00382 17:46:08 36.625890 -97.472762	
TRS -1 00385 17:46:11 36.625890 -97.472762 Transect	
EVT 00499 17:48:05 36.622933 -97.476507 iMet-XQ dev3 stoppe	ed
0 00633 17:50:19 36.623193 -97.476176	
PRO -1 00635 17:50:21 36.623192 -97.476175 Profile 300m-10m	
0 00790 17:52:57 36.622699 -97.476583	
File 20170814-DATA-flight03.csv CLOSED at 17:53:40 GPS	

Figure 5: DJI S-1000 Flight 1 and MD4-1000 Flight 3, Monday, 14 August 2017.

This	s f	light	flown sim	ltaneously	with MD4-	1000 flic	tht 41
PRO	-1	00007	18:00:09	36.618653	-97.480357	Profile	10m-100m
	0	00073	18:01:15	36.618650	-97.480357		
TRS	-1	00075	18:01:17	36.618649	-97.480356	Transect	
	0	00143	18:02:25	36.621833	-97.476204		
PRO	-1	00145	18:02:27	36.621838	-97.476210	Profile	100m-300m
	0	00273	18:04:35	36.621840	-97.476201		
TRS	-1	00275	18:04:37	36.621840	-97.476201	Transect	5
	0	00368	18:06:10	36.618858	-97.480466		
PRO	-1	00370	18:06:12	36.618915	-97.480397	Profile	300m-10m
	0	00563	18.09.25	36 618717	-97 480234		

- File 20170814-DATA-flight04.csv OPENED at 18:00:23 GPS 1Met-XQ order (6 right) This flight flown simultaneously with DJI S-1000 flight 2! PRO -1 00023 18:00:47 36.622653 -97.476673 Profile 10m-100m 0 00050 18:01:24 36.622653 -97.476678 TRS -1 00059 18:01:23 36.622653 -97.473677 Transect 0 00294 18:05:18 36.62268 -97.473011 PRO -1 00294 18:05:18 36.622687 -97.473011 PRO -1 00294 18:06:06 36.625898 -97.473402 TRS -1 00344 18:06:08 36.62589 -97.473402 TRS -1 00344 18:06:08 36.62439 -97.473463 Transect 0 00342 18:06:46 36.624353 -97.474789 PRO -1 00384 18:06:48 36.624460 -97.474856 Profile 250m-300m 0 00400 18:07:04 36.62473 -97.475695 1Met-XQ dev 6 stopped TRS -1 00432 18:07:36 36.623122 -97.476595 1Met-XQ dev 6 stopped TRS -1 00432 18:107:36 36.62329 -97.476513 PRO -1 00581 18:107:36 36.622799 -97.476513 PRO -1 00582 18:107:36 36.622799 -97.476513 PRO -1 00582 18:107:32 36.623793 -97.476513 PRO -1 00582 18:107:32 36.623793 -97.476513 PRO -1 00582 18:107:32 36.62379 -97.476513 PRO -1 00582 18:107:32 36.623793 -97.476513 PRO -1 00582 18:107:32 36.62379 -97.476513 PRO -1 00582 18:107:63 36.62279 -97.476513 PRO -1 00582 18:107:63 36.62379 -97.476513 PRO -1 00582 18:107:63 -97.476514 PILE 20170814-DATA-FLIGHT04.csv CLOSED at 18:13:15 GPS Total scans 00771
- 36.628 36.626 36.624 36.622 Latitude (deg) 36.62 36.618 36.616 DJI S-1000 Flight Track MD4-1000 Flight Track Tower 2 Tower 3 * 36.614 -97.482 -97.476 -97.474 -97.48 -97.478 -97.472 -97.47 -97.468
 - Longitude (deg)

Figure 6: DJI S-1000 Flight 2 and MD4-1000 Flight 4, Monday, 14 August 2017.

Figure 7: DJI S-1000 Flight 3 and MD4-1000 Flight 5, Monday, 14 August 2017.

Figure 8: DJI S-1000 Flight 5 and MD4-1000 Flight 6, Monday, 14 August 2017.

Figure 9: DJI S-1000 Flight 9 and MD4-1000 Flight 8, Monday, 14 August 2017.

Figure 10: DJI S-1000 Flight 11 and MD4-1000 Flight 9, Monday, 14 August 2017.

PRO -1 00015 23:10:28 36 0 00080 23:11:33 36 TRS -1 00082 23:11:35 36 0 00169 23:13:02 36	.618680 -97.480342 Profile 10m-100m .618683 -97.480336 .618683 -97.480336 Transect
0 00080 23:11:33 36 TRS -1 00082 23:11:35 36 0 00169 23:13:02 36	.618683 -97.480336 .618683 -97.480336 Transect
TRS -1 00082 23:11:35 36 0 00169 23:13:02 36	.618683 -97.480336 Transect
0 00169 23:13:02 36	CO1 CD1 00 10000C
	.6216/1 -9/.4/5//6
PRO -1 00171 23:13:04 36	.621677 -97.475779 Profile 100m-300m
0 00303 23:15:16 36	.621682 -97.475773
TRS -1 00305 23:15:18 36	.621681 -97.475774 Transect
0 00421 23:17:14 36	.618055 -97.480001
PRO -1 00423 23:17:16 36	.618055 -97.480004 Profile 300m-10m
0 00609 23:20:22 36	.618702 -97.480277

Figure 11: DJI S-1000 Flight 12 and MD4-1000 Flight 10, Monday, 14 August 2017.

Figure 12: DJI S-1000 Flight 1 and MD4-1000 Flight 1, Tuesday, 15 August 2017.

Figure 13: DJI S-1000 Flight 2 and MD4-1000 Flight 2, Tuesday, 15 August 2017.

This	s f.	light :	flown simu	ltaneousl	y with MD4-	1000 flig	ght 3!
PRO	-1	00011	20:41:22	36.618668	-97.480349	Profile	10m-100m
	0	00073	20:42:24	36.618664	-97.480351		
TRS	-1	00075	20:42:26	36.618664	-97.480350	Transect	2
	0	00171	20:44:02	36.621759	-97.476052		
PRO	-1	00173	20:44:04	36.621765	-97.476057	Profile	100m-300m
	0	00304	20:46:15	36.621764	-97.476051		
TRS	-1	00306	20:46:17	36.621763	-97.476052	Transect	
	0	00402	20:47:53	36.618738	-97.480129		
PRO	-1	00404	20:47:55	36.618739	-97.480125	Profile	300m-10m
	0	00605	20:51:16	36.618737	-97.480256		

File	e 20	17081	5-DATA-fli	ght03.csv	OPENED at	20:38:30	GPS
Met	t-XQ	orde	r (3 left,	6 right)			
Chis	5 f]	ight	flown simu	ltaneously	with DJI	S-1000 fl	light 3!
PRO	-1	00025	20:38:55	36.622672	-97.476694	Profile	10m-100m
	0	00051	20:39:21	36.622675	-97.476693		
TRS	-1	00065	20:39:35	36.622633	-97.476661	Transect	
TV3		00309	20:43:40	36.627163	-97.471291	iMet-XQ	dev3 stoppe
	0	00354	20:44:25	36.627164	-97.471291		
RO	-1	00356	20:44:27	36.627164	-97.471292	Profile	100m-300m
	0	00402	20:45:13	36.627165	-97.471293		
TRS	-1	00415	20:45:26	36.627163	-97.471291	Transect	
	0	00739	20:50:50	36.622632	-97.476668		
PRO.	-1	00742	20:50:53	36.622634	-97.476666	Profile	300m-10m
	0	00891	20:53:22	36.622637	-97.476663		
File	20	17081	5-DATA-fli	ght03.csv	CLOSED at	20:53:57	GPS

Figure 14: DJI S-1000 Flight 3 and MD4-1000 Flight 3, Tuesday, 15 August 2017.

This	s f.	light :	flown simu	ltaneousl	y with MD4-:	1000 flight 4!
PRO	-1	00013	21:10:05	36.618666	-97.480339	Profile 10m-100m
	0	00078	21:11:10	36.618664	-97.480342	
TRS	-1	00080	21:11:12	36.618665	-97.480343	Transect
	0	00180	21:12:52	36.621525	-97.475845	
PRO	-1	00182	21:12:54	36.621529	-97.475845	Profile 100m-300m
	0	00314	21:15:06	36.621527	-97.475840	
TRS	-1	00316	21:15:08	36.621529	-97.475839	Transect
	0	00441	21:17:13	36.618999	-97.480193	
PRO	-1	00443	21:17:15	36.618999	-97.480192	Profile 300m-10m
	0	00639	21:20:31	36.618720	-97.480228	

File	20	17081	5-DATA-fli	ght04.csv	OPENED at 1	21:08:32	GPS
iMet	-X0	orde:	r (3 left,	6 right)			
This	s fl	light :	flown simu	ltaneously	y with DJI S	5-1000 fl	light 4!
PRO	-1	00062	21:09:34	36.622655	-97.476710	Profile	10m-100m
	0	00088	21:10:00	36.622657	-97.476709		
FRS	-1	00112	21:10:24	36.622660	-97.476701	Transect	
	0	00277	21:13:09	36.627288	-97.471475		
PRO	-1	00281	21:13:13	36.627287	-97.471476	Profile	100m-300m
	0	00329	21:14:01	36.627286	-97.471478		
rrs	-1	00341	21:14:13	36.627285	-97.471478	Transect	-
EVT		00474	21:16:27	36.624755	-97.474301	iMet-XQ	dev3 stopped
	0	00615	21:18:48	36.622628	-97.476673		
PRO	-1	00617	21:18:50	36.622629	-97.476673	Profile	300m-10m
	0	00771	21:21:24	36.622627	-97.476672		
File	20	017081	5-DATA-fli	ght04.csv	CLOSED at 2	21:22:05	GPS
Pota	1 4	cane (10813				

Figure 15: DJI S-1000 Flight 4 and MD4-1000 Flight 4, Tuesday, 15 August 2017.

This	f	light :	flown simu	ltaneousl	y with MD4-	1000 flid	ght 5!
PRO	-1	00019	21:41:31	36.618669	-97.480336	Profile	10m-100m
	0	00081	21:42:33	36.618671	-97.480336		
TRS	-1	00083	21:42:35	36.618672	-97.480335	Transect	t
	0	00185	21:44:17	36.621829	-97.476210		
PRO	-1	00188	21:44:20	36.621831	-97.476209	Profile	100m-300m
	0	00316	21:46:28	36.621830	-97.476201		
TRS	-1	00318	21:46:30	36.621830	-97.476204	Transect	t.
	0	00418	21:48:10	36.618611	-97.479978		
PRO	-1	00420	21:48:12	36.618613	-97.479983	Profile	300m-10m
	0	00619	21:51:31	36.618697	-97.480293		
File	20	017081	5-DATA-fli	.ght05.csv	CLOSED at 2	21:52:07	GPS
Pota	1 4	scans	10656				

File	e 20	17081	5-DATA-fl:	ight05.csv	OPENED at 1	21:39:47	GPS	
iMet	-XQ	orde:	r (3 left,	6 right)				
This	s fl	light :	flown simu	ltaneously	with DJI S	S-1000 fl	light 5!	
PRO	-1	00028	21:40:15	36.622659	-97.476685	Profile	10m-100m	
	0	00049	21:40:36	36.622659	-97.476687			
TRS	-1	00072	21:40:59	36.622660	-97.476686	Transect	t.	
	0	00240	21:43:48	36.627046	-97.471177			
PRO	-1	00242	21:43:50	36.627046	-97.471177	Profile	100m-300m	
	0	00284	21:44:32	36.627044	-97.471181			
TRS	-1	00310	21:44:58	36.627044	-97.471180	Transect	t.	
	0	00578	21:49:26	36.622624	-97.476654			
PRO	-1	00582	21:49:30	36.622625	-97.476656	Profile	300m-10m	
	0	00736	21:52:04	36.622624	-97.476655			
EVT		00758	21:52:26	36.622625	-97.476655	iMet-XQ	dev3 stopped	ł

Figure 16: DJI S-1000 Flight 5 and MD4-1000 Flight 5, Tuesday, 15 August 2017.

This	f	light :	flown simu	ltaneously	with MD4-	1000 flig	ht 6!
PRO	-1	00017	22:10:21	36.618669	-97.480342	Profile	10m-100m
	0	00080	22:11:24	36.618671	-97.480343		
TRS	-1	00083	22:11:27	36.618672	-97.480343	Transect	
	0	00187	22:13:11	36.621853	-97.476087		
PRO	-1	00189	22:13:13	36.621856	-97.476089	Profile	100m-300m
	0	00318	22:15:22	36.621854	-97.476086		
TRS	-1	00320	22:15:24	36.621854	-97.476084	Transect	
	0	00425	22:17:09	36.619152	-97.480199		
PRO	-1	00427	22:17:11	36.619148	-97.480203	Profile	300m-10m
	0	00628	22:20:32	36.618704	-97.480294		

File	20	17081	5-DATA-fli	ght06.csv	OPENED at :	22:08:10	GPS
iMet	-XC	orde:	r (3 left,	6 right)			
This	fl	ight	flown simu	ltaneously	y with DJI :	S-1000 fl	light 6!
PRO	-1	00121	22:10:11	36.622663	-97.476694	Profile	10m-100m
	0	00151	22:10:41	36.622661	-97.476693		
TRS	-1	00180	22:11:10	36.622659	-97.476693	Transect	
	0	00348	22:13:59	36.627292	-97.471475		
PRO	-1	00350	22:14:01	36.627290	-97.471479	Profile	100m-300m
	0	00393	22:14:44	36.627290	-97.471477		
rrs	-1	00399	22:14:50	36.627274	-97.471494	Transect	
EVT		00612	22:18:23	36.623008	-97.476231	iMet-XQ	dev3 stopped
	0	00634	22:18:45	36.622622	-97.476663		
PRO	-1	00636	22:18:47	36.622625	-97.476659	Profile	300m-10m
	0	00782	22:21:13	36.622628	-97.476653		
File	20	17081	5-DATA-fli	ght06.csv	CLOSED at 1	22:21:53	GPS

Figure 17: DJI S-1000 Flight 6 and MD4-1000 Flight 6, Tuesday, 15 August 2017.

This	s fl	light :	flown simu	ltaneousl	y with MD4-	1000 flic	ht 7!
PRO	-1	00013	22:41:52	36.618680	-97.480345	Profile	10m-100m
	0	00079	22:42:58	36.618678	-97.480346		
TRS	-1	00082	22:43:01	36.618726	-97.480285	Transect	2
	0	00174	22:44:33	36.621568	-97.475879		
PRO	-1	00176	22:44:35	36.621573	-97.475880	Profile	100m-300m
	0	00306	22:46:45	36.621572	-97.475872		
TRS	-1	00308	22:46:47	36.621571	-97.475873	Transect	
	0	00410	22:48:29	36.618715	-97.480477		
PRO	-1	00412	22:48:31	36.618711	-97.480472	Profile	300m-10m
	0	00609	22:51:48	36.618713	-97.480268		

File	e 20	017081	5-DATA-fl:	ight07.csv	OPENED at	22:38:06	GPS	
Met	t-XQ	orde	r (3 left,	6 right)				
Chis	s fl	Light	flown simu	ltaneously	y with DJI	S-1000 f.	light	7!
RO	-1	00067	22:39:13	36.622659	-97.47669	5 Profile	10m-1	LOOm
	0	00094	22:39:40	36.622661	-97.47669	5		
TRS	-1	00113	22:39:59	36.622664	-97.476691) Transec	t	
	0	00400	22:44:47	36.626966	-97.47104	9		
PRO	-1	00405	22:44:52	36.626967	-97.47104	9 Profile	100m-	-300m
	0	00453	22:45:40	36.626967	-97.471041	8		
rrs	-1	00466	22:45:53	36.626966	-97.47105) Transec	t	
	0	00700	22:49:47	36.622632	-97.47667	1		
PRO	-1	00703	22:49:50	36.622631	-97.476672	2 Profile	300m-	-10m
TV3		00818	22:51:45	36.622639	-97.47666	3 iMet-XQ	dev3	stoppe
	0	00862	22:52:29	36.622639	-97.47666	5		
File	e 20	017081	5-DATA-fl:	ight07.csv	CLOSED at	22:53:26	GPS	

Figure 18: DJI S-1000 Flight 7 and MD4-1000 Flight 7, Tuesday, 15 August 2017.

Appendix B – Catalog of DJI S-1000 flight tracks and marker files

Figure 19: DJI S-1000 Flight 1, Friday, 11 August 2017.

Figure 20: DJI S-1000 Flight 4, Monday, 14 August 2017.

Figure 21: DJI S-1000 Flight 6, Monday, 14 August 2017.

Figure 24: DJI S-1000 Flight 10, Monday, 14 August 2017.

Figure 26: DJI S-1000 Flight 1, Thursday, 17 August 2017.

Figure 27: DJI S-1000 Flight 2, Thursday, 17 August 2017.

Figure 28: DJI S-1000 Flight 3, Thursday, 17 August 2017.

Figure 29: DJI S-1000 Flight 4, Thursday, 17 August 2017.

Figure 30: DJI S-1000 Flight 5, Thursday, 17 August 2017.

Figure 31: DJI S-1000 Flight 6, Thursday, 17 August 2017.

Figure 32: DJI S-1000 Flight 7, Thursday, 17 August 2017.

Figure 33: DJI S-1000 Flight 8, Thursday, 17 August 2017.

Figure 34: DJI S-1000 Flight 9, Thursday, 17 August 2017.

Figure 35: DJI S-1000 Flight 10, Thursday, 17 August 2017.

Figure 36: DJI S-1000 Flight 11, Thursday, 17 August 2017.

Figure 37: DJI S-1000 Flight 12, Thursday, 17 August 2017.

Figure 38: DJI S-1000 Flight 13, Thursday, 17 August 2017.

Figure 39: DJI S-1000 Flight 14, Thursday, 17 August 2017.

Appendix C – Catalog of MD4-1000 flight tracks and marker files

Figure 40: Microdrone MD4-1000 Flight 7, Monday, 14 August 2017.

This page intentionally left blank