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NOTICE

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for any third party’s use, or the results of such use, of any information, apparatus,
product, or process disclosed in this report, or represents that its use by such third party would
not infringe on privately owned rights. Mention of a commercial company or product does not
constitute an endorsement by NOAA/OAR. Use of information from this publication concerning
proprietary products or tests of such products for publicity or advertising is not authorized.
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ABSTRACT

The Field Research Division of the Air Resources Laboratory (ARLFRD) of the National
Oceanic Atmospheric Administration (NOAA), in collaboration with the University of
Tennessee Space Institute (UTSI) and the Laboratory for Atmospheric Research at Washington
State University (WSULAR), conducted a tracer field experiment at the Idaho National
Laboratory (INL) during October 2013. It is the first of a series of new tracer experiments to
study dispersion from continuous sources in flat terrain using technologies not available during
earlier dispersion studies of the 1950s and 1960s. These releases are collectively being called
Project Sagebrush. The October 2013 study is designated Project SageBrush phase 1 (PSB1).

Five tests were conducted during PSB1, all during the daytime with conditions ranging
from near neutral with higher wind speeds to unstable with low wind speeds. Each experimental
period consisted of a continuous 2.5 hour SF tracer release with consecutive 10-minute average
bag sampling over the last two hours of the tracer release period. Bag sampling was done on four
arcs of almost 90 degrees each ranging in distance from 200 to 3200 m from the source,
depending on the stability conditions and aircraft availability. The bag sampling measurements
were complemented by six fast response tracer analyzers, an airborne fast response analyzer, and
an extensive suite of meteorological measurements. This included a 60 m tower arrayed with
seven 3-d sonic anemometers and five sets of cup anemometers and wind vanes. Two additional
towers at 10 and 30 m height had cup and vane anemometers mounted at 2 and 3 levels,
respectively. Three additional sonic anemometers were arrayed on the 3200 m arc to examine the
issue of horizontal homogeneity. Additional meteorological measurements were made by two
sodars, a radar wind profiler, and radiosondes released just prior to and just after the two hour
sampling period.

Preliminary analyses have identified some key results. The PSB1 results for the
horizontal plume spread parameter o, tended to be larger than the daytime o, found in Project
Prairie Grass and those determined from stability class model dispersion schemes (e.g., Pasquill-
Gifford curves). The discrepancies increased with increasing downwind distance. However, the
o, and turbulence intensities measured during PSB1 were similar to those measured during the
daytime in Project Prairie Grass. The result is that the PSBI ratios of 6,/c, tended to fall near the
upper limit or somewhat above the historical range of values found in previous field studies.
Another key point is that the evidence suggests that o, becomes independent of 6, for 6, greater
than about 18 degrees. Finally, an investigation extending the comparison of 6, values into
stable nighttime conditions found that the values of 6, reported during Project Prairie Grass and
PSBI1 differed significantly.
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INTRODUCTION

The Field Research Division of the Air Resources Laboratory (ARLFRD) of the National
Oceanic Atmospheric Administration (NOAA), in collaboration with the University of
Tennessee Space Institute (UTSI) and the Laboratory for Atmospheric Research at Washington
State University (WSULAR), conducted a tracer field experiment at the Idaho National
Laboratory (INL) during October 2013 (Fig. 1). It is intended to be the first of a series of new
tracer experiments to study dispersion from continuous sources in flat terrain using technologies
not available during earlier dispersion studies of the 1950s and 1960s. These releases are
collectively being called Project Sagebrush. The October 2013 study is designated Project
SageBrush phase 1 (PSB1).

Flgure 1, Locatlbn of Grld 3 (starj on the INL in SE Idaho

Tracer studies are a relatively expensive but effective method for collecting field data on
atmospheric dispersion. Rudimentary studies of this type extend all the way back to the 1920s
(Pasquill, 1974) but became more common in the 1950s and 1960s as interest in air pollution
increased and better tracer measurement technology appeared. Many of the “classical” tracer
experiments involving short-range dispersion from continuous near-surface sources were
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conducted during these two decades. Perhaps the best known is the 1956 Project Prairie Grass in
Nebraska (Barad, 1958). Other early near-surface experiments include Project Green Glow
(Fuquay et al., 1964), Projects Ocean Breeze and Dry Gulch (Haugen and Fuquay, 1963), and a
series of Uranine dye releases at the INL (formerly National Reactor Testing Station) in Idaho
(Islitzer and Dumbauld, 1963). Slade (1968) provides a comprehensive listing of these early
tracer experiments.

Because of the expense of tracer studies, funding agencies have been reluctant to support
new studies that appear to replicate the terrain, meteorology, and source configurations found in
previous studies. There has been a tendency to assume a single tracer study “solves” a specific
dispersion problem, so later studies should move on to something different. While there is
certainly a need to understand dispersion in varying conditions, the inherent variability of
dispersion due to its turbulent nature leads to basic questions regarding the repeatability of
results from individual studies.

In science there is a basic requirement that experimental results be repeatable. Much of
our experimental knowledge of atmospheric dispersion at short ranges is based on a small
number of studies conducted over 40 years ago. Project Prairie Grass (Barad, 1958) remains one
of the most used tracer studies for flat terrain, but many users are unaware of its limitations. The
entire study took place during a dry period in Nebraska during July and August 1956.
Information on vertical dispersion came from a single set of towers 100 m downwind of the
source, with a maximum tracer measurement height of 17.5 m above ground level. Estimates of
boundary-layer stability and surface fluxes were derived from mean wind and temperature
profiles, since the state of instrument development available at that time severely limited the
ability to measure fluxes directly. The SO, tracer used in Prairie Grass is both reactive and
depositing, which may affect the interpretation of the results. Did Prairie Grass and other
classical short-range tracer studies produce results that are repeatable and generally applicable to
other regions? Would tracer studies using modern meteorological instrumentation and
nonreactive tracers produce similar results to the classical studies?

Further inspiration for new studies comes from a 2008 tracer experiment ARLFRD
conducted at the INL (Finn et al., 2010). The focus of this 2008 experiment was the effects of
roadside sound barriers on vehicle pollution, but a subset of the data was compared to the Prairie
Grass results and shows interesting deviations (Venkatram, 2011, personal communication). One
justification for a new study is therefore to help determine the repeatability and replicability of
the dispersion results from the classical studies. Are the observed deviations due to different
surface roughnesses at the two sites, different methods of measuring boundary-layer stability,
random variability, seasonal differences, or perhaps something else? Will further tracer releases
continue to show deviations from the Prairie Grass results?



As a result of the issues identified above, the science objectives of Project Sagebrush are
to:

1. Improve the understanding of short-range dispersion from continuous near-surface releases
in nearly flat terrain using modern meteorological sensors and tracer technology.

2. Improve the understanding of concentration fluctuations within continuous plumes.

3. Assess the overall repeatability and applicability of individual tracer studies by comparing
the new tracer results to classical tracer experiments.

4. Develop improved parameterizations linking plume widths to observed boundary-layer
structure.

5. Develop improved dispersion models for both mean concentrations and concentration
fluctuations.

6. Provide a new high-quality data set for testing and validating existing dispersion models.

ARLFRD will use newer technologies to go beyond the older studies. The current
ARLFRD tracer bag samplers each contain 12 bags controlled by a programmable computer
processor. This allows mean concentrations to be collected over a range of averaging times.
ARLFRD also has fast response tracer gas analyzers capable of sampling concentration
fluctuations at about 1 Hz. These analyzers can measure the concentration frequency distribution
at specific points within the tracer plume. With these measurements it is possible to investigate
such issues as peak-to-mean ratios (with the peak value being defined, for example, as the 95th
percentile concentration). During PSB1 a nearby 62 m mesonet tower was additionally
instrumented with seven 3-d sonic anemometers and other equipment by ARLFRD and
WSULAR for fully characterizing the state of the boundary layer. This was augmented by two
sodars, a 915 MHz radar profiler, an energy balance flux station, radiosondes, and the remaining
33 towers of the NOAA/INL Mesonet (Clawson et al. 2007).

The INL is located across a broad, relatively flat plain on the western edge of the Snake
River Plain in southeast Idaho. Elevations across the INL are approximately 1500 m above mean
sea level (MSL). Several parallel mountain chains with peaks exceeding 3000 m MSL dominate
the western side of the plain. These chains are separated by a series of tributary valleys that feed
into the Snake River Plain. The mountains and benches forming the eastern side of the plain are
somewhat lower in elevation, with mountain peaks at roughly 2200 m MSL. Several tributary
valleys also feed into the plain from the east, but they are not as regularly spaced as those to the
west.

The Grid 3 area on the INL was selected for Project Sagebrush for several reasons (Figs.
2 and 3). The Grid 3 area was originally designed to conduct transport and dispersion tracer
studies in the 1950s. Numerous tracer and other atmospheric studies have been conducted at
Grid 3 since that time (Start, et al. 1984; Sagendorf and Dickson, 1974; Garodz and Clawson
1991, 1993). Conducting Project Sagebrush at Grid 3 allows ARLFRD to include valuable
knowledge from previous work gained over the years. Deployment of the experiment to the INL
has the added benefits of simplifying logistics (thereby minimizing some of the costs) and the
availability of meteorological measurements already in place utilizing the NOAA/INL Mesonet.



Notable among these is
the proximity of the Grid 3 tall
tower that provided vertical
profiles of wind, turbulence,
fluxes, and temperature during
PSB1 (Fig. 4). Analyses of data
from this tower showed that the
near-surface wind often blows
parallel to the axis of the Snake
River Plain, with southwest
winds common during the day
and northeast winds at night.
Hence, although the INL
lies about 13 km southeast from
the nearest mountains, the
NOAA Grid 3 tracer test
facility usually has a relatively
flat, uniform fetch extending
many tens of kilometers
upwind. The boundary layer
under such conditions is
expected to be close to
equilibrium. Two INL building
complexes are located about
1.6 km from the tracer facility
and are the closest potential
flow obstructions. One is
nearly south at a true azimuth
of 165° and the other almost
west at 255°. Wind rose
analysis prior to PSB1
indicated these complexes are
usually not a factor except
perhaps for winds out of the
WSW.

The Big Lost River is a
visible feature of the aerial
photo seen meandering across
the right portion of Fig. 2. This
is usually a dry river bed that
only contains water during
spring runoff in wet years. Old
river channels also are visible

Figure 2. Google Earth image of the Grid 3 area.

Figure 3. Photo from Grid 3 tower looking northeast toward the
tracer sampling array along the radial road through the tracer
sampling array. The command center (COC) tower and wind
profiler installation (PRO) are visible in the right center of the
photo.



to the northwest of the current
bed. These channels create only
minor topographic variations.
They could have a minor
influence on the air flow over
the tracer facility when winds
have more of a westerly
component. The streaks of
lighter vegetation with a
southwest-northeast orientation |
g '3
in Fig. 2 are burn scars from
wildfires. Fires typically kill
the darker sagebrush and leave
lighter- colored grasses as the
dominant vegetation until the
sagebrush can recover.

'
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The site also offers
relatively uniform aerodynamic
characteristics across the Grid 3
area (Fig. 3). The canopy is
mostly sagebrush and grass. -
The Grid 3 tower has routine b
wind measurements at 2, 10, .
15, 45, and 60 m above the
ground. Wind profiles from this
tower in near-neutral
conditions have been used in a
statistical algorithm to estimate
the roughness length z, at the
tracer facility. For SW winds
common during the day the
median z, is 3 cm, with a 90% _ R
probability interval of 2.5-3.5 | i I

cm. For NE winds common at - Figyre 4. Photo of the Grid 3 tower.
night the median z, is 3.8 cm

with a 90% probability interval of 3.3—4.4 cm. The slightly higher roughness length for NE
winds may be due to the old river channels and low terrain undulations to the north of the
facility. Estimates of the displacement height d were also computed from the Grid 3 profiles, but
the values are not significantly different from zero. A small displacement height of a few
centimeters probably exists but is not detectable with the current observations on the tower.

A Piper Navajo aircraft from UTSI was used to assist in measuring the vertical dispersion
of the SF, tracer during PSBI1. For this reason, it was desirable to conduct tracer releases and



sampling during unstable atmospheric conditions. Unstable conditions were necessary to provide
sufficient vertical dispersion of the tracer such that measurable concentrations could be readily
detected at aircraft flight levels. Pasquill-Gifford stability classes A and B were considered ideal
but classes C and D were deemed acceptable for Intensive Observational Periods (IOPs) during
which the aircraft was available. Due to some unavoidable logistical and planning issues, it was
not possible to begin PSB1 until early October. Unfortunately, this time of the year was not
optimum for obtaining frequent unstable conditions. Stability classes C and D were much more
common during the experiments than classes A or B.

The release rate was adjusted for the anticipated stability condition of each IOP in an
attempt to ensure it was high enough such that concentrations aloft could be readily measured by
the aircraft but low enough such that the concentrations at the surface did not overwhelm the
dynamic range of the fast response sensors there. There were five SF, tracer releases and IOPs
conducted during PSB1. The aircraft was available only during IOPs 1-3. As a consequence,
release rates during IOPS 1-3 were much higher than for IOPs 4 and 5.

This report covers PSB1, the first phase of Project Sagebrush. It includes the entire tracer
release and measurement data sets collected by ARLFRD and UTSI and the complete
meteorological data sets collected by ARLFRD and WSULAR. It also includes information
about the experimental design, SF tracer release system, time integrated bag samplers, fast
response real-time tracer gas analyzers, meteorological instrumentation, and summaries of each
IOP as well as some preliminary data analyses. In addition, this report details the data formats
found on the accompanying data CD.



EXPERIMENTAL PLAN

Five tracer release tests or Intensive Observational Periods (IOPs) were conducted from 2
October to 18 October, 2013 as part of PSB1. Since unstable conditions were desired and the
prevailing winds during unstable conditions were from the SW, the study domain was located
primarily on the northeast quadrant of the Grid 3 dispersion array. Figure 2 shows a Google
Earth image of the study area. Figure 5 is a more detailed image showing the configuration of

PSBI.

Grid 3 Dispersion Array and Release

Tracer sampling arcs are visible in Fig. 2 both to the NE and SW of the center point of
the Grid 3 dispersion array. The arcs at 400, 800, 1600, and 3200 m from the source are labeled,
but arcs are also present at 50, 100, and 200 m. These arcs contain surveyed markers at 1°
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Figure 5. Configuration of PSBI field tracer experiments. The 3-character labels are defined at
the beginning of Meteorological Measurements section and Table 17.



intervals to facilitate the placement of tracer samplers. Bag sampling was conducted at 3°
intervals from 4° azimuth to 85° azimuth on the 400, 800, and 1600 m arcs during all IOPs.

Depending upon the release rate, bag sampling was also conducted along either the 200
m arc (low release rate) or 3200 m arc (high release rate). The inner arcs are a full circle, but the
800, 1600, and 3200 m northeast arcs were truncated at 85° on the south end of the arcs. The
original 1600 and 3200 m arcs were truncated on their north ends by a highway. The arcs
truncated on the north were extended at 3° increments to 4° azimuth by a survey prior to the start
of PSBI for consistency with the inner arcs.

Continuous releases of SF, tracer gas were made at a constant rate from a point source at
the center of the Grid 3 dispersion array for each IOP during PSB1. The releases began one-half
hour prior to the start of sampling on the dispersion array to establish a quasi-steady state SF,
concentration field out to the most distant sampling arc. The release then continued at a constant
rate for the two-hour duration of the sampling in the IOP. Release rates were set based upon
preliminary calculated estimates of concentrations at different heights and distances, the
anticipated atmospheric stability conditions, and whether the aircraft would be making tracer
measurements during an [OP.

Bag Sampling

The bag sampling measurements were the most essential feature of the experiment. Nominally,
150 samplers were deployed for each IOP. Twenty-eight samplers were placed along each of the
4 arcs designated for an IOP. These were either the 200, 400, 800, and 1600 m arcs or the 400,
800, 1600, and 3200
m arcs, depending
upon the release rate
as previously
described. They
were mounted atop
plastic boxes at 1 m
AGL and stabilized
from toppling in the
wind by hooking the
carrying handle over
the metal post
marking the
sampling location
(Fig. 6). They were
placed at 3°
intervals from 4°
azimuth to 85°
azimuth (i.e., 4, 7,
10, ...., 82, 85°).

Figure 6. Photo of bag samplr mouting.



Three towers were available for vertical sampling to the northeast of the source. The first
of these was 15 m (50 feet) tall and located at the intersection between the 55° azimuth radial
road (visible in Figs. 2 and 3) and the 200 m arc. Samplers were mounted at 1, 5, 10, and 15 m
on this tower. The second tower was 21 m tall and located at the intersection of the radial road
and the 400 m arc. Samplers were mounted at 1, 5, 10, 15, and 20 m on this tower. The third
tower was 30 m tall (100 feet) and located 499 m from the source at about 60° azimuth. This
tower served the dual purpose as the meteorological tower for the nearby command center
(COC). Samplers were mounted at 1, 5, 10, 15, 20, 25, and 30 m on this tower.

The locations were designated with a 4-digit code. The first digit represents the arc or
tower location (2 =200 m, 4 =400 m, 8 =800 m, 6 = 1600 m, 3 =3200 m, 1 =30 m COC
sampling tower, 5 = 15 m sampling tower, 7 =21 m sampling tower). Quality control (QC) was
integral to the experimental plan and called for the use of blank, control and duplicate samplers.
Field blank and field control samples were designated with ‘9’ in the first digit. The second digit
specified whether the sample was designated as a primary (0) or duplicate (1) sampler. For field
blank and control samples the second digit specified the arc location. There were 4 duplicate
samplers per arc, a total of 16 per IOP. The last two digits designated the position along either
the arc (degrees azimuth) or height on the tower (m agl). There were 16 duplicate, 3 field blanks,
and 3 control samplers designated for QC purposes per IOP.

The SF, samplers operated by pumping air into Tedlar bags with each bag being filled
sequentially for 10 min. Thus the analysis of the bags provided 10-min average concentrations.
Tracer concentrations from 2 parts per trillion volume (pptv) to 1 part per million volume (ppmv)
could be analyzed. A complete discussion of bag sampler operation, timing, analysis, and QC
can be found in the Bag Sampling chapter.

Fast Response Tracer Gas Analyzers

Six fast response SF, analyzers were deployed during PSB1. Five of these were mounted
in vehicles and driven to a bag sampling location on the sampling arcs. One analyzer was
mounted in an airplane during IOPs 1, 2, and 3. The analyzer measured SF; as the airplane flew
across wind and downwind routes above the experiment area. During IOPs 4 and 5, the airplane
was not available so this analyzer was relocated to an equipment building on the 800 meter arc at
approximately 57 degrees.

The primary purpose of the fast response analyzers was to measure concentration
fluctuations at about 1 Hz. These stationary analyzers were used to determine the concentration
frequency distribution at specific points within the tracer plume and made it possible to
investigate such issues as peak-to-mean ratios.

The sites for the ground-based analyzers were selected to: 1) be near the centerline or
margins of the plume and 2) avoid instrument “railing” artifacts where the concentration levels
were higher than the analyzer could quantify. For IOPs during which the aircraft was available, it
was necessary to try to set release rates low enough to avoid railing but high enough to provide
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for measurable concentrations at aircraft flight levels. Nominally, the fast response analyzers had
a dynamic range from a few tens pptv to about 10,000 pptv, depending on the characteristics of
the individual analyzer. Some of the analyzers were equipped with a dilution system that made it
possible to measure concentrations up to about 20,000 pptv. Over ranging was not a problem for
the bag samplers. In consultation with the command center, it was sometimes necessary to move
one or more analyzers during an IOP. This could have been due to a sustained shift in forecast
wind directions leaving the analyzer persistently outside of the plume. A move could also be
made further away from the plume centerline to minimize the possibility of railing.

To ensure data quality, a complete QC program was followed during operation of the fast
response real-time analyzers. A more complete description of the fast response analyzer
operations can be found in the Fast Response Analyzer chapter.

Aircraft Operations

Airborne fast response SF, sampling was done using a twin-engine Piper Navajo
airplane (Fig. 7). The crew consisted of a pilot, co-pilot, observer from UTSI, and an analyzer
operator from ARLFRD.

b

Figure 7. Photo of Piper Navajo airplane used for airborne sampling of tracer.
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The flight path of the aircraft was determined ahead of time based upon preliminary
calculated estimates of concentrations at different heights and distances using existing dispersion
curves (Fig. 8). The flight pattern consisted of crosswind traverses across the dispersion array
moving successively toward the source after each crosswind pass. Each crosswind pass was
approximately the same downwind distance as the arcs designated for sampling during the IOP
(400, 800, 1600, and 3200 m). After completing the innermost arc the plane banked and returned
downwind along the estimated centerline of the plume. This flight pattern was then repeated at
the next highest level. The sampling heights were nominally 100, 200, and 300 m above ground,
although the analyzer operator had the discretion to direct the pilot to cancel passes at the upper
heights if concentrations were low or undetectable. The outward to inward pattern was intended
to minimize any effects of turbulence artificially generated by the aircraft on tracer dispersion.

The aircraft was utilized in IOPs 1-3 but was unavailable for IOPs 4 and 5. For IOPs 1-3 the
plume patterns observed by the aircraft were consistent with plume patterns observed in the bag
sampling data. For IOPs 1 and 2 the aircraft vertical profiles showed lift off from the surface of
the vertical plume centerline. For IOP 3 the aircraft data showed that this plume rise was
significantly suppressed with no evidence of liftoff. Without the aircraft, the results of IOPs 4
and 5 showed conflicting and inconclusive evidence for liftoff of the plume centerline. During
most of [OP1 and some of IOP2, the plume was often truncated by the ground sampling arcs.
The flight paths of the aircraft were modified in real time to extend aircraft sampling lines to the
NW and SE, respectively, to avoid this truncation. During IOP4 the plume was also sometimes
truncated by the ground arrays, but the aircraft was not available.
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INTEC -.Google

hriagery Daie. 5212010

Figure 8. Flight pattern used during Phase 1. The aircraft started at the 3200 m downwind
distance (black circle) and then made successive passes closer to the source. After the closest
pass at 200 m downwind, the aircraft flew downwind along the plume centerline before exiting
the pattern (black arrow). The full pattern was repeated at several levels above the ground. The
hatched areas labeled ATRC and INTEC are building complexes that the aircraft was required to
avoid.
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Meteorological Equipment

ARLFRD made every effort to fully characterize the conditions and structure of the

boundary layer during PSB1 for the purpose of identifying all possible meteorological factors
controlling tracer dispersion. This included:

Wind speed and direction in the horizontal and wind speed the vertical

Vertical profiles of turbulence and turbulent fluxes (including sensible and latent heat
fluxes)

Temperature profiles

Horizontal homogeneity of the turbulence field

Soil temperatures, moisture, and heat fluxes

Solar radiation, net radiation, and energy balance

Barometric pressure

To this end, ARLFRD, in collaboration with WSULAR, used a broad array of

meteorological instrumentation and measurements on the Grid 3 tower during PSB1:

62 m Grid 3 tower — cup anemometer and wind vanes at 6 levels; 3-d sonic anemometers
at 7 levels, 2-d sonic anemometers at 6 levels, air temperature/RH at 14 levels, infrared
gas analyzers at 4 levels, solar radiation, barometric pressure at 3 levels, net radiometer at
2 levels, infrared radiometer, soil heat flux at 2 levels, soil moisture and temperature at 5
levels

Other meteorological measurements included:

Three 3-d sonic anemometers arrayed along the 3200 m arc

30 m Command Center (COC) meteorological tower — cup anemometers and wind vanes
at 3 levels

10 m meteorological tower at 3200 m arc — cup anemometer and wind vanes at 2 levels
SoDARs at 800 and 3200 m (winds at 30-200 m AGL)

Boundary Layer Radar Wind Profiler and RASS at about 800 m arc (winds up to 2.9 km
height, temperatures up to about 1 km height; both usually much less)

Radiosondes before and after each IOP

Flux station at about 900 m on the dispersion array — 3-d sonic anemometer, infrared gas
analyzer, solar radiation, net radiometer, air temperature/RH, barometric pressure, soil
temperature at 2 locations, soil moisture, soil heat flux at 4 locations

33 other (in addition to Grid 3 tower) meteorological stations of the NOAA/INL Mesonet

A complete description of the meteorological instrumentation, measurements, QC

procedures, and data file formats can be found in the Meteorological Measurements chapter.
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IOP Summaries
A brief summary of IOP test dates and times, release rates, meteorological conditions,

and atmospheric stability is listed in Table 1. A more comprehensive discussion of each IOP and
sampling period is included in the Summary of Individual IOPs chapter.

Table 1. IOP Summary.

Start  Release
Time Rate
I0P Date (MST) (gs') Stability Aircraft Meteorological Summary

Mostly sunny with cirrostratus
1 02-Oct-13 1430  10.177 Unstable® Yes haze. Very light and variable
winds.

Mostly sunny. Light-moderate

2 05-Oct-13 1300 9.986  Unstable Yes SW winds.

Mostly sunny. Moderate-

3 07-Oct-13 1300 9.930 Neutral Yes strong SW winds.

4 11-Oct-13 1400 1.043 Weakly No Mostly sunny. Moderate SW
Unstable winds.

5 18:0ct-13 1300 1.030 Weakly No Mostly sunny. Moderate SW
Unstable winds.

a. Estimates of stability vary.
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THE SF, TRACER RELEASE SYSTEM

The SF; tracer release
system was custom built for
PSB1 by ARLFRD engineers
and technicians. The system was
placed in a cargo trailer to
simplify deployment, provide a
reasonably controlled
environment for operation, and
to simplify removal of the
release system when the field
deployment was complete. The
complete release system (Fig. 9)
was entirely self-contained in
the cargo trailer (Fig. 10) and
only required a 115 VAC 20
ampere power source. This was

D

provided from an adjacent BT : T
power pole. Figure 9. The SF; release system inside the cargo trailer
including the SF bottles, mass flow controller, computer data
The ARLFRD tracer acquisition and control system, and electronic scales under the

release system was engineered ~ bottles.
to release a constant amount of
SF, from a single point source at
the center of the Grid 3 tracer
facility (43.59066 N, -112.938
W). Each SF; point source
release during PSB1 lasted a
total of 2.5 hours. The first
half-hour of each release period
was dedicated to obtaining
steady-state dispersion
conditions over the entire
sampling area before sampling
began. Each release then
continued at the initial release
rate for the next tw<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>