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ABSTRACT: A recent report of the U.S. Climate Change Science Program (CCSP) identified a ‘potentially serious
inconsistency’ between modelled and observed trends in tropical lapse rates (Karl et al., 2006). Early versions of satellite
and radiosonde datasets suggested that the tropical surface had warmed more than the troposphere, while climate models
consistently showed tropospheric amplification of surface warming in response to human-caused increases in well-mixed
greenhouse gases (GHGs). We revisit such comparisons here using new observational estimates of surface and tropospheric
temperature changes. We find that there is no longer a serious discrepancy between modelled and observed trends in tropical
lapse rates.

This emerging reconciliation of models and observations has two primary explanations. First, because of changes in
the treatment of buoy and satellite information, new surface temperature datasets yield slightly reduced tropical warming
relative to earlier versions. Second, recently developed satellite and radiosonde datasets show larger warming of the tropical
lower troposphere. In the case of a new satellite dataset from Remote Sensing Systems (RSS), enhanced warming is due
to an improved procedure of adjusting for inter-satellite biases. When the RSS-derived tropospheric temperature trend is
compared with four different observed estimates of surface temperature change, the surface warming is invariably amplified
in the tropical troposphere, consistent with model results. Even if we use data from a second satellite dataset with smaller
tropospheric warming than in RSS, observed tropical lapse rate trends are not significantly different from those in all other
model simulations.

Our results contradict a recent claim that all simulated temperature trends in the tropical troposphere and in tropical
lapse rates are inconsistent with observations. This claim was based on use of older radiosonde and satellite datasets, and
on two methodological errors: the neglect of observational trend uncertainties introduced by interannual climate variability,
and application of an inappropriate statistical ‘consistency test’. Copyright  2008 Royal Meteorological Society
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1. Introduction

There is now compelling scientific evidence that human
activities have influenced global climate over the past
century (e.g. Intergovernmental Panel on Climate Change
(IPCC), 1996, 2001, 2007; Karl et al., 2006). A key
line of evidence involves ‘fingerprint’ studies, which
attempt to identify the causes of historical climate change

* Correspondence to: B. D. Santer, Program for Climate Model Diag-
nosis and Intercomparison (PCMDI), Lawrence Livermore National
Laboratory, Livermore, CA 94550, USA. E-mail: santer1@llnl.gov

through rigorous statistical comparison of models and
observations (e.g. Santer et al., 1996; Mitchell et al.,
2001; Hegerl et al., 2007). Fingerprint research consis-
tently finds that natural causes alone cannot explain the
recent changes in many different aspects of the climate
system – the simplest, most internally consistent explana-
tion of the observations invariably involves a pronounced
human effect.

One recurring criticism of such findings is that
the climate models employed in fingerprint studies
are in fundamental disagreement with observations of
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tropospheric temperature change (Douglass et al., 2004,
2007). In climate model simulations, increases in well-
mixed GHGs cause warming of the tropical troposphere
relative to the surface (Manabe and Stouffer, 1980). In
contrast, some satellite and radiosonde datasets show lit-
tle or no warming of the tropical troposphere since 1979,
and imply that temperature changes aloft are smaller than
at the surface.

The ‘differential warming’ of the surface and tropo-
sphere has been the subject of intense scrutiny (NRC,
2000; Santer et al., 2005; Karl et al., 2006; Trenberth
et al., 2007). It has raised questions about both model
performance and the reliability of observed estimates of
surface warming (Singer, 2001). In addressing the lat-
ter concern, the first report of the U.S. Climate Change
Science Program (CCSP) noted that progress had been
made in identifying and correcting for errors in satellite
and radiosonde data. At the global scale, newer upper-
air datasets showed ‘no significant discrepancy’ between
surface and tropospheric warming, consistent with model
results (Karl et al., 2006, p. 3). The Fourth Assessment
Report of the IPCC reached similar findings, conclud-
ing that ‘New analyses of balloon-borne and satellite
measurements of lower- and mid-tropospheric tempera-
ture show warming rates that are similar to those of the
surface temperature record ’ (IPCC, 2007, p. 5).

The CCSP report used several of these newer observa-
tional datasets in extensive comparisons of simulated and
observed temperature changes. For global-mean changes,
model estimates of differential warming were consistent
with observations. In the tropics, however, it was noted
that ‘most observational datasets show more warming at
the surface than in the troposphere, while most model runs
have larger warming aloft than at the surface’ (Karl et al.,
2006, p. 90). Although the CCSP report did not make a
definitive determination of the cause or causes of these
tropical discrepancies, it found that ‘structural uncertain-
ties’ in observations were large enough to encompass the
model estimates of temperature change. Residual errors
in the satellite and radiosonde data were therefore judged
to be the most likely explanation for the remaining dis-
crepancies (Karl et al., 2006, p. 3).

Structural uncertainties arise because different groups
make different processing choices in the complex proce-
dure of adjusting raw measurements for inhomogeneities
(Thorne et al., 2005a). In radiosonde temperature records,
inhomogeneous behaviour can be caused by changes in
site location, measurement time, instrumentation, and the
effectiveness of thermal shielding of the temperature sen-
sor (Lanzante et al., 2003; Seidel et al., 2004; Sherwood
et al., 2005; Randel and Wu, 2006; Mears et al., 2006).
Non-physical temperature changes in satellite records
can occur through orbital drift or decay, inter-satellite
instrumental biases, and drifts in instrumental calibra-
tion (Wentz and Schabel, 1998; Christy et al., 2000,
2003; Mears et al., 2003, 2006; Mears and Wentz, 2005;
Trenberth et al., 2007). Because of these large uncertain-
ties, neither satellite- nor radiosonde-based atmospheric
temperature measurements constitute an unimpeachable

gold standard for evaluating model performance (Thorne
et al., 2007).

A recent study by Douglass, Christy, Pearson, and
Singer (Douglass et al., 2007; hereinafter DCPS07) revis-
its earlier comparisons of simulated and observed tropo-
spheric temperature changes performed by Santer et al.
(2005, 2006), and concludes that ‘models and observa-
tions disagree to a statistically significant extent.’ This
contradicts the findings of both Santer et al. (2005) and
the previously mentioned CCSP and IPCC reports (Karl
et al., 2006; IPCC, 2007). As DCPS07 note, their conclu-
sions were reached ‘based on essentially the same data’
used in earlier work.

DCPS07 interpret their results as evidence that models
are seriously flawed, and that model-based projections
of future climate change are unreliable. Singer (2008)
makes an additional and even stronger assertion: that the
information presented in DCPS07 ‘clearly falsifies the
hypothesis of anthropogenic greenhouse warming’.

If such claims were correct, they would have signifi-
cant scientific implications. It is therefore of interest to
examine (as we do here) the ‘robust statistical test’ that
DCPS07 rely on in order to reach the conclusion that
models are inconsistent with observations. We also eval-
uate other formal statistical tests of the significance of
modelled and observed temperature trend differences. We
use a variety of different observational datasets, which
enables us to explore the sensitivity of our results to
current ‘structural uncertainties’ in observed estimates of
surface and tropospheric temperature change.

The structure of our article is as follows. In Sec-
tion 2, we introduce the observational and model tro-
pospheric temperature datasets analysed here. Section 3
covers basic statistical issues that arise in comparisons
of modelled and observed trends. Section 4 describes
various tests (among them the DCPS07 test) of the for-
mal statistical significance of trend differences. Results
obtained after applying these tests to model and obser-
vational data are discussed in Section 5. Test behaviour
with synthetic data is considered in Section 6. This is fol-
lowed by a comparison of vertical profiles of temperature
change in climate models and radiosonde data in Section
7. A summary and the conclusions are given in Section
8. Appendix 1 summarizes the statistical notation used
in the article, and Appendix 2 provides detailed techni-
cal notes on various aspects of the data used, analysis
methods, and results.

2. Observational and model temperature data

2.1. Observational data

2.1.1. Satellite data

Since late 1978, atmospheric temperatures have been
monitored routinely from space by the Microwave Sound-
ing Units (MSU) and Advanced Microwave Sounding
Units (AMSU) flown on NOAA polar-orbiting satellites.
Both instruments measure the microwave emissions of
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oxygen molecules, which are roughly proportional to
atmospheric temperature (Spencer and Christy, 1990). By
measuring emissions at different frequencies, it is possi-
ble to retrieve the temperatures of different atmospheric
layers. Most scientific attention has focused on MSU-
derived temperatures for the lower stratosphere (T4), the
mid-troposphere to lower stratosphere (T2), and the lower
to mid-troposphere (T2LT ). The bulk (90%) of the emis-
sions contributing to these temperatures occurs between
roughly 14–29 km for T4, the surface to 18 km for T2,
and the surface to 8 km for T2LT (Karl et al., 2006).

To date, four different groups have been actively
involved in the development of multi-decadal tempera-
ture records from MSU data. These groups are based at
the University of Alabama at Huntsville (UAH; Spencer
and Christy, 1990; Christy et al., 2007), Remote Sensing
Systems in Santa Rosa, California (RSS; Mears et al.,
2003; Mears and Wentz, 2005), the University of Mary-
land (UMd; Vinnikov and Grody, 2003; Vinnikov et al.,
2006), and the NOAA National Environmental Satel-
lite, Data, and Information Service (NOAA/NESDIS;
Zou et al., 2006). All four groups have made different
choices in the complex process of adjusting raw MSU and
AMSU data for inhomogeneities. This leads to structural
uncertainties in tropical tropospheric temperature trends
that are at least as large as 0.14 °C/decade for T2 and
0.10 °C/decade for T2LT (Lanzante et al., 2006).1

Our interest here is primarily in the T2 and T2LT data
produced by UAH and RSS.2 Data from both groups
are employed in the DCPS07 consistency test between
modelled and observed trends. We use results from
version 3.0 of the RSS data and versions 5.1 and 5.2
(respectively) of the UAH T2 and T2LT data.3 Data were
available in the form of gridded, monthly mean products
for the period January 1979 through December 2007.

2.1.2. Radiosonde data

DCPS07 compared model-simulated profiles of atmo-
spheric temperature change with vertical profiles esti-
mated from radiosondes. We perform a similar compar-
ison in Section 7. Like DCSP07, we rely on radiosonde
datasets produced by the U.K. Meteorological Office
Hadley Centre (HadAT2; Thorne et al., 2005b; McCarthy
et al., 2008), NOAA (RATPAC-A; ‘Radiosonde Atmo-
spheric Temperature Products for Assessing Climate’;
Free et al., 2005), and the University of Vienna (RAOB-
CORE version 1.2; ‘Radiosonde Observation Correc-
tion using Reanalysis’; Haimberger, 2007). For the latter
dataset, information from the ERA-40 reanalysis (Uppala
et al., 2005) was used to identify and adjust for inho-
mogeneities in the radiosonde data assimilated by the
reanalysis model. HadAT2 and RATPAC-A do not utilize
reanalysis information in adjusting for inhomogeneities.

We also analyse four newly-developed radiosonde
datasets that were not considered by DCPS07. The first
two (RAOBCORE v1.3 and v1.4; Haimberger et al.,
2008) are more recent versions of the RAOBCORE
dataset used by DCPS07. The third (RICH; ‘Radiosonde

Innovation Composite Homogenization’) uses a new
automatic data homogenization method involving infor-
mation from both reanalysis and composites of neigh-
bouring radiosonde stations (Haimberger et al., 2008).
The fourth (IUK; ‘Iterative Universal Kriging’) employs
an iterative approach to fit the raw radiosonde data to a
statistical model of natural climate variability plus step
changes associated with instrumental biases (Sherwood,
2007; Sherwood et al., 2008). As will be shown later, all
four newer radiosonde datasets exhibit larger warming of
the tropical lower troposphere than the datasets selected
by DCPS07.

2.1.3. Surface data

Comparisons of surface and tropospheric warming trends
provide a simple measure of the changes in temperature
lapse rates (Gaffen et al., 2000). Here, we use four dif-
ferent surface temperature datasets to estimate changes
in lower tropospheric lapse rates in the deep tropics. The
first three datasets contain information on sea surface
temperatures (SST) only (TSST ), while the fourth dataset
is a blend of 2-m temperatures over Land plus Ocean
SSTs (TL+O). The three SST datasets are more appro-
priate to analyse in order to determine whether observed
lower tropospheric temperature changes follow a moist
adiabatic lapse rate (Wentz and Schabel, 2000).

The three SST datasets are spatially complete, and
rely on statistical procedures to ‘infill’ SST information
in data-sparse regions. The first dataset, HadISST1, was
developed at the U.K. Meteorological Office Hadley Cen-
tre (Rayner et al., 2003). SSTs were reconstructed from
in situ observations using an optimal interpolation proce-
dure, with subsequent ‘superposition of quality-improved
gridded observations onto the reconstructions to restore
local detail ’ (see http://www.hadobs.org/). The other two
SST products are versions 2 and 3 of the NOAA ERSST
(‘Extended Reconstructed SST’) dataset developed at
the National Climatic Data Center (NCDC; Smith and
Reynolds, 2005; Smith et al., 2008). Differences between
ERSST-v2 and ERSST-v3 are primarily related to dif-
ferences in treatment of low-frequency variability and
to the inclusion of bias-adjusted satellite infrared data
in ERSST-v3. The newer dataset is regarded as ‘an
improved extended reconstruction over version 2 ’ (see
http://www.ncdc.noaa.gov/oa/climate/research/sst/
ersstv3.php).

The fourth dataset, HadCRUT3v, consists of a blend
of land 2-m temperatures from the Climatic Research
Unit’s CRUTEM3 dataset (Brohan et al., 2006) and SSTs
from the Hadley Centre HadSST2 product (Rayner et al.,
2006). Unlike the SST datasets described above, Had-
CRUT3v is not spatially complete. Calculation of lapse-
rate changes with HadCRUT3v facilitates comparison
with previous work by Santer et al. (2005, 2006) and
DCPS07, which also relied on surface datasets comprised
of combined SSTs and land 2-m temperatures.
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2.2. Model data

A number of different climate model experiments were
performed in support of the IPCC Fourth Assessment
Report (IPCC, 2007). In the experiment of most interest
here, nearly two dozen different climate models were
forced with estimates of historical changes in both
anthropogenic and natural external factors.4

These so-called twentieth-century (20CEN) simula-
tions are the most appropriate runs for direct comparison
with satellite and radiosonde data, and provide valuable
information on current structural and statistical uncer-
tainties in model-based estimates of historical climate
change. Inter-model differences in 20CEN results reflect
differences in model physics, dynamics, parameteriza-
tions of sub-grid scale processes, horizontal and vertical
resolution, and the applied forcings (Santer et al., 2005,
2006).

Santer et al. (2005) examined a set of 49 simulations
of twentieth century climate performed with 19 different
models. The same suite of runs is analysed here.5 Santer
et al. (2005) were primarily concerned with comparisons
of modelled and observed amplification of surface warm-
ing in the tropical troposphere,6 while the focus of the
present work is on testing the significance of trend dif-
ferences.

To facilitate the comparison of simulated and observed
tropospheric temperature trends, we calculate synthetic
MSU T2 and T2LT temperatures from gridded, monthly-
mean model data using a static global-mean weighting
function. For temperature changes averaged over large
areas, this procedure yields results similar to those
estimated with a full radiative transfer code (Santer et al.,
1999). Since most of the 20CEN experiments end in
1999, our trend comparisons primarily cover the 252-
month period from January 1979 to December 1999,
which is the period of maximum overlap between the
observed MSU data and the model simulations.

3. Basic statistical issues

We assume a simulated tropospheric temperature time
series ym(t) of the form:

ym(t) = φm(t) + ηm(t) (1)

where φm(t) is the underlying signal in response to
external forcing, ηm(t) is a specific realization of natural
internal climate variability superimposed on φm(t), t is
a nominal index of time in months, and the subscript
m denotes model data. The corresponding observed time
series yo(t) is given by:

yo(t) = φo(t) + ηo(t) (2)

The slopes of the least-squares linear trends in these time
series (bm and bo) provide one measure of overall change
in temperature. Estimates of bm and bo are sensitive to

the behaviour of both signal and noise components in the
time series.

In the tropics, the El Niño/Southern Oscillation
(ENSO) phenomenon explains most of the year-to-year
variability in observed tropospheric temperatures. The
real world provides only one sample of how ENSO
and other modes of internal climate variability influ-
ence atmospheric temperature. This makes it difficult to
achieve an unambiguous separation of signal from noise
in observational data. Models, however, can be run many
times to generate many different realizations of historical
climate change,7 thus facilitating the separation of φm(t)

from ηm(t). Since ηm(t) is uncorrelated from one realiza-
tion to the next, averaging over many realizations reduces
noise levels and improves estimates of any overall trend
in φm(t).

This is clearly illustrated in Figure 1A–E, which
shows tropical T2LT changes over 1979–1999 in five
20CEN realizations performed with the Japanese Mete-
orological Research Institute (MRI) model. The char-
acter of ηm(t) is different in each realization, result-
ing in a large range of trends in ym(t) (from 0.042 to
0.371 °C/decade). The small overall trend in the first real-
ization is partly due to the chance occurrence of El Niños
near the beginning and middle of the time series, and
the presence of a La Niña at the end. Averaging over
these five realizations reduces the amplitude of ηm(t),
and improves the estimate of the true forced change in
ym(t) (Figure 1F). The key point to note is that the same
MRI model, with exactly the same physics and forcings,
produces a range of self-consistent estimates of tropical
T2LT trends over a particular time interval, not a sin-
gle discrete value. Many other models with ensembles of
20CEN runs also show substantial inter-realization trend
differences (see Section 5.1.1).

A number of factors may contribute to differences
between modelled and observed temperature trends.
These include:

1. Missing or inaccurately specified values of the exter-
nal forcings applied in the model 20CEN run.

2. Errors in φm(t), the model’s response to the imposed
forcing changes.

3. Errors in the variability and other statistical properties
of ηm(t).

4. The irreproducibility of the specific, essentially ran-
dom sequence of observed noise, even by a model
which correctly simulates the statistical properties of
ηo(t).

5. The number of 20CEN realizations for any given
model, which influences how well we can estimate
φm(t). If many individual realizations of ym(t) were
available, the model’s ensemble-mean trend would
provide an accurate estimate of the forced component
of change in ym(t).

6. Residual inhomogeneities in yo(t).

Even in a model with no errors in forcing, response, or
internally generated variability, there could by chance be
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Figure 1. Anomaly time series of monthly-mean T2LT , the spatial average of lower tropospheric temperature over tropical (20 °N–20 °S) land
and ocean areas. Results are for five different realizations of 20CEN climate change performed with a coupled A/OGCM (the MRI-CGCM2.3.2).
Each of the five realizations (panels A–E) was generated with the same model and the same external forcings, but with initialization from a
different state of the coupled atmosphere-ocean system. This yields five different realizations of internally generated variability, ηm(t), which
are superimposed on the true response to the applied external forcings. The ensemble-mean T2LT change is shown in panel F. Least-squares
linear trends were fitted to all time series; values of the trend and lag-1 autocorrelation of the regression residuals (r1) are given in each panel.
Anomalies are defined relative to climatological monthly means over January 1979 to December 1999, and synthetic T2LT temperatures were

calculated as described in Santer et al. (1999).

realizations of noise that differed markedly from that in
the real world, leading to a large difference between mod-
elled and observed trends that was completely unrelated
to model error. Any procedure for testing the signif-
icance of differences between simulated and observed
trends must therefore account for the (potentially dif-
ferent) effects of internally generated variability on bm

and bo.

4. Significance tests

Our significance testing strategy addresses two different
questions. The first is whether models can simulate
individual temperature trends that are consistent with the
single observed trend. The second question is whether our
current best estimate of the model response to external
forcing is consistent with our estimate of the externally
forced temperature trend in observations.

Each question involves testing a different hypothesis.
In the first question, we are testing hypothesis H1 that

the trend in any given realization of ym(t) is consistent
with the trend in yo(t). As noted previously, interannual
climate noise makes it difficult to obtain reliable estimates
of the forced components of temperature change [φo(t)

and φm(t)] from the single yo(t) time series and from
any individual realization of ym(t). Under hypothesis
H1, therefore, we are comparing trends arising from a
combination of forced and unforced temperature changes.

The hypothesis H2 tested in the second question
involves the multi-model ensemble-mean trend. Aver-
aging over realizations and models reduces noise and
provides a better estimate of the true model signal in
response to external forcing. Under H2, we seek to
determine whether the model-average signal is consis-
tent with the trend in φo(t) (the signal contained in the
observations).

4.1. Tests with individual model realizations

To examine H1, we apply a ‘paired trends’ test (Santer
et al., 2000b; Lanzante, 2005), in which bo is tested
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against each of the 49 individual bm trends considered
here. The test statistic is of the form:

d = (bm − bo) /
√

s{bm}2 + s{bo}2 (3)

where d is the normalized difference between the trends
in any two modelled and observed time series, and s{bm}
and s{bo} are (respectively) the standard errors of bm

and bo. The standard errors are measures of the inherent
statistical uncertainty in fitting a linear trend to noisy
data. For the model data, s{bm} is defined as:

s{bm} =
[
s2
e /

nt∑
t=1

(t − t )2

] 1
2

(4)

where t is the time index, t is the average time index, nt

is the total number of time samples (252 here), and s2
e is

the variance of the regression residuals, given by:

s2
e = 1

nt − 2

nt∑
t=1

e(t)2 (5)

(see Wilks, 1995). Note that the observed standard error,
s{bo}, is calculated similarly, but using observational
rather than model data.

Assuming that d has a Normal distribution, we can
compute its associated p-value and test whether the trend
in ym(t) is consistent with the trend in yo(t). This test
is two-tailed, since we have no expectation a priori
regarding the direction of the trend difference.

In the case of most atmospheric temperature series, the
regression residuals e(t) are not statistically independent.
For RSS tropical T2LT data, for example (Figure 2A),
values of e(t) have pronounced month-to-month and
year-to-year persistence, with a lag-1 temporal autocorre-
lation coefficient of r1 = 0.884 (Table I). This persistence
reduces the number of statistically independent time sam-
ples. Following Santer et al. (2000a), we account for the
non-independence of e(t) values by calculating an effec-
tive sample size ne:

ne = nt

1 − r1

1 + r1
(6)

By substituting ne – 2 for nt – 2 in Equation (5),
the standard error can be adjusted for the effects of
temporal autocorrelation (see Supporting Information).
In the RSS example in Figure 2A, ne ≈ 16, and the
adjusted standard error is over four times larger than the
unadjusted standard error (Figure 2C). The unadjusted
standard error should only be used if the regression
residuals are uncorrelated. In the case of the synthetic
data in Figure 2B, for example, r1 is close to zero, ne

and nt are of similar size (236 and 252), and the adjusted
and unadjusted standard errors are small and virtually
identical (Figure 2C). Our subsequent discussion of the
paired trend test (Section 5) deals exclusively with results
computed correctly with adjusted standard errors rather
than with unadjusted standard errors.

The underlying assumption in our method of adjusting
standard errors is that the temporal persistence of e(t)

can be well represented by a lag-1 autoregressive (AR)
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Figure 2. Calculation of unadjusted and adjusted standard errors for least-squares linear trends. The standard error s{bo} of the least-squares linear
trend bo (see Section 4.1) is a measure of the uncertainty inherent in fitting a linear trend to noisy data. Two examples are given here. Panel
A shows observed tropical T2LT anomalies from the RSS group (Mears and Wentz, 2005). The regression residuals (shaded blue) are highly
autocorrelated (r1 = 0.884). Accounting for this temporal autocorrelation reduces the number of effectively independent time samples from 252
to 16, and inflates s{bo} by a factor of 4 (see ‘Results from A’ in panel C). The anomalies in panel B were generated by adding Gaussian noise
to the RSS tropical T2LT trend, yielding a trend and temporal standard deviation that are very similar to those of the actual RSS data. For this
synthetic data series, the regression residuals (shaded red) are uncorrelated and r1 is close to zero, so that the actual number of time samples is
similar to the effective sample size, and the unadjusted and adjusted standard errors are small and virtually identical (see ‘Results from B’ in

panel C). All results in panel C are 2σ confidence intervals (CI). The analysis period is January 1979 to December 1999.
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Table I. Statistics for observed and simulated time series of
land and ocean surface temperatures, SST, and tropospheric

temperatures.

Dataset Trend 1σ S.E. S.D. r1 ne

HadCRUT3v TL+O 0.119 0.117 0.197 0.934 8.6
Multi-model mean TL+O 0.146 0.214 0.274 0.915 11.7
Inter-model S.D. TL+O 0.066 0.163 0.093 0.087 13.9
HadISST1 TSST 0.108 0.133 0.197 0.944 7.3
ERSST-v2 TSST 0.100 0.131 0.186 0.947 6.9
ERSST-v3 TSST 0.077 0.121 0.190 0.936 8.3
Multi-model mean TSST 0.130 0.333 0.243 0.959 5.3
Inter-model S.D. TSST 0.062 0.336 0.084 0.024 3.2
UAH T2LT 0.060 0.138 0.299 0.891 14.5
RSS T2LT 0.166 0.132 0.312 0.884 15.6
Multi-model mean T2LT 0.215 0.198 0.376 0.876 17.2
Inter-model S.D. T2LT 0.092 0.133 0.127 0.080 12.2
UAH T2 0.043 0.129 0.306 0.873 17.1
RSS T2 0.142 0.129 0.319 0.871 17.3
Multi-model mean T2 0.199 0.181 0.370 0.855 20.3
Inter-model S.D. T2 0.098 0.133 0.132 0.085 13.0

Results are for time series of monthly mean anomalies in land and
ocean surface temperature (TL+O ), sea surface temperature (TSST ),
and tropospheric temperature (T2LT , T2). Analyses are over the 252-
month period from January 1979 through December 1999 (the period
of maximum overlap between the observations and most model 20CEN
experiments). Gridded anomaly data were spatially averaged over
20°N–20°S. The time series statistics are the least-squares linear trend
(bo, bm; °C/decade); the standard error of the linear trend, adjusted
for temporal autocorrelation effects (s{bo}, s{bm}; °C/decade); the
temporal standard deviation of the anomaly data (s{yo(t)}, s{ym(t)};
°C); the lag-1 autocorrelation of the regression residuals (r1); and
the effective number of independent time samples (ne). The multi-
model mean and inter-model standard deviation were calculated using
the ensemble-mean values of the time series statistics for the 19
models [see Equations (7)–(9)]. Anomalies were defined relative to
climatological monthly means computed over the analysis period. For
sources of model and observed data, see Section 2.

statistical model. This assumption is not uncommon in
meteorological applications (e.g. Wilks, 1995; Lanzante
et al., 2006). If the autocorrelation structure is more
complex and exhibits long-range dependence, it may be
more appropriate to use higher-order AR models for
estimating ne (Thiébaux and Zwiers, 1984). However,
it is difficult to reliably estimate the parameters of
such statistical models given the relatively short length
(20–30 years) and high temporal autocorrelation of the
temperature data available here.

Experiments with synthetic data reveal that the use of
an AR-1 model for calculating ne tends to overestimate
the true effective sample size (Zwiers and von Storch,
1995). This means that our d test is too liberal, and
is more likely to indicate that there are significant dif-
ferences between modelled and observed trends, even
when significant differences do not actually exist.8 It
should therefore be easier for us to confirm DCPS07’s
finding that modelled and observed trends are inconsis-
tent. As described in Section 5, however, our results do
not confirm DCPS07’s findings. DCPS07’s conclusions
are erroneous, and are primarily due to the neglect of

observed trend uncertainties in their statistical test (see
Section 4.2).

4.2. Tests with multi-model ensemble-mean trend

Here we examine two different tests of the hypothesis H2

(see Section 4). Both rely on the multi-model ensemble-
mean trend,9 � bm �:

� bm �= 1

nm

nm∑
i=1

<bm(i)> (7)

where <bm(i)> is the ensemble-mean trend in the ith

model:

<bm(i)> = 1

nr(i)

nr (i)∑
j=1

bm(i, j) ; i = 1, . . . , nm (8)

The indices i and j are over model number and
realization number (respectively). The total number of
models is nm (19 here), and nr(i) is the total number of
20CEN realizations for the ith model (which varies from
1 to 5). The standard deviation of ensemble-mean trends,
s{<bm >}, is given by

s{<bm >} =
[

1

nm − 1

nm∑
i=1

(<bm(i)> − � bm �)2

]1/2

(9)

In the DCPS07 ‘consistency test’, the difference
between � bm � and bo is compared with σSE , ‘an
estimate of the uncertainty of the (multi-model) mean
(trend)’. DCPS07 do not consider any uncertainty in bo,
and σSE is based solely on the inter-model variability of
trends:

σSE = s{<bm >}/√nm (10)

To evaluate the performance of the DCPS07 test, we
define the test statistic d∗:

d∗ = (� bm � − bo) /σSE (11)

If the DCPS07 test were valid, a large value of d∗ would
imply a significant difference between � bm � and bo.
However, the test is not valid. There are a number of
reasons for this:

1. DCPS07 ignore the pronounced influence of interan-
nual variability on the observed trend (see Figure 2A).
They make the implicit (and incorrect) assumption that
the externally forced component in the observations is
perfectly known (i.e. the observed record consists only
of φo(t), and ηo(t) = 0).

2. DCPS07 ignore the effects of interannual variabil-
ity on model trends – an effect which we consider
in our ‘paired trends’ test [see Equation (3)]. They
incorrectly assume that the forced component of tem-
perature change is perfectly known in each individual
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model (i.e. each individual 20CEN realization consists
only of φm(t), and ηm(t) = 0).10

3. DCPS07’s use of σSE is incorrect. While σSE is an
appropriate measure of how well the multi-model
mean trend can be estimated from a finite sample
of model results, it is not an appropriate measure for
deciding whether this trend is consistent with a single
observed trend.

Practical consequences of these problems are discussed
later in Sections 5 and 6.

We can easily modify the DCPS07 d∗ test to account
for the factor neglected by DCPS07 – the effects of
interannual variability on the ‘trend signal’ in yo(t). The
resulting d∗

1 test is similar in form to a t-test of the
difference in means:

d∗
1 = (� bm � − bo) /

√
1

nm

s{<bm >}2 + s{bo}2

(12)

where the term 1
nm

s{<bm >}2 is a standard estimate of
the variance of the mean (in this case, the variance of the
model-average trend � bm �; see Storch and Zwiers,
1999), and s{bo}2 is an estimate of the variance of the
observed trend bo [see Equations (4)–(6)].

There are three underlying assumptions in the d∗
1

test. The first assumption (which was also made by
DCPS07) is that the uncertainty in � bm � is entirely
due to inter-model differences in forcing and response,
and not due to differences in variability and ensemble
size. The second assumption is that the uncertainties
in the observed trend are due solely to the effects of
interannual variability – i.e. there are no residual errors
in the observations being tested. The third assumption is
that d∗

1 has a Student’s t distribution, and that the number
of degrees of freedom associated with the estimated
variances of � bm � and bo are nm – 1 and ne – 2,
respectively.

As noted above, the variances of � bm � and bo are
influenced by very different factors, and are unlikely to
be identical. In this case, the degrees of freedom for the
{d∗

1 } test, DOF{d1
∗} are approximated by:

DOF{d∗
1 } = [

1/nm s{<bm >}2 + s{bo}2]2
/[

1/nm s{<bm >}2
]2

nm − 1
+

[
s{bo}2

]2

ne − 2
(13)

(see Storch and Zwiers, 1999). We will demonstrate in
Section 6 that d∗

1 and the DCPS07 d∗ test exhibit very
different behaviour when applied to synthetic data.

5. Results of significance tests

5.1. Tropospheric temperature trends

5.1.1. Tests with individual model realizations

Figure 3A shows trends in tropical T2LT in the two
satellite datasets (RSS and UAH) and in 49 realizations

of the 20CEN experiment, together with their adjusted
2σ confidence intervals. Values of bm vary substantially,
not only between models but also within the different
20CEN realizations of individual models. The adjusted
2σ confidence interval on the RSS T2LT trend includes
47 of the 49 simulated trends. This strongly suggests that
there is no fundamental inconsistency between modelled
and observed trends.11

Results from the paired trends test [see Equation (3)]
are summarized in Table II. For each of the two layer-
averaged temperatures considered here (T2LT and T2),
UAH and RSS trends were tested against trends from the
49 individual model simulations. Calculated p-values for
the d statistic were compared with stipulated p-values of
0.05, 0.10, and 0.20. We then determined the number of
tests in which hypothesis H1 (see Section 4) is rejected
at the 5, 10, and 20% significance levels.

If model and observed trends were in perfect agree-
ment, we would still expect (for a very large num-
ber of tests) p% of the tests to show significant trend
differences at the p% significance level. Our rejection
rates are invariably lower than the theoretical expectation
(Table II). There are at least four possible explanations
for this:

1. Not all 49 tests are statistically independent.
2. Tests are affected by differences between modelled

and observed variability.
3. Results are influenced by the sampling variability

arising from the relatively small number of tests
performed.

4. Our method of adjusting standard errors for temporal
autocorrelation effects is not reliable.12

Overall, however, our paired test results show broad
agreement between tropospheric temperature trends esti-
mated from models and satellite data. This consistency

Table II. Significance of differences between modelled and
observed tropospheric temperature trends: Results for paired

trends tests.

Sig.
level (%)

RSS
T2LT (%)

UAH
T2LT (%)

RSS
T2 (%)

UAH
T2 (%)

5 0 (0.0) 1 (2.0) 1 (2.0) 1 (2.0)
10 1 (2.0) 1 (2.0) 1 (2.0) 3 (6.1)
20 1 (2.0) 4 (8.2) 1 (2.0) 6 (12.2)

Results are for the paired trends test described in Section 4.1. Model
data employed in the test are tropical T2LT and T2 trends from 49
realizations of twentieth-century climate change performed with 19
different A/OGCMs (together with their associated adjusted standard
errors). Observational trends and adjusted standard errors were esti-
mated from RSS and UAH satellite data. There are 49 tests for each
tropospheric layer and each observational dataset. Results are expressed
as the number of rejections of hypothesis H1 (see Section 4) at stipu-
lated significance levels of 5, 10, and 20%. Percentage rejection rates
of H1 (out of 49 tests) are given in parentheses. All trends and standard
errors were calculated over the period January 1979 to December 1999
from time series of spatially averaged (20°N–20°S) anomaly data.
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Figure 3. Comparisons of simulated and observed trends in tropical T2LT over January 1979 to December 1999. Model results in panel A are
from 49 individual realizations of experiments with 20CEN external forcings, performed with 19 different A/OGCMs. Observational estimates
of T2LT trends are from Mears and Wentz (2005) and Christy et al. (2007) for RSS and UAH data, respectively. The dark and light grey bands
in panel A are the 1σ and 2σ confidence intervals for the RSS T2LT trend, adjusted for temporal autocorrelation effects. In the paired trends test
applied here, each individual model T2LT trend is tested against each observational T2LT trend (Section 4.1). Panel B shows the three elements
of the DCPS07 ‘consistency test’: the multi-model ensemble mean T2LT trend, � bm � (represented by the horizontal black line in panel B);
σSE , DCPS07’s estimate of the uncertainty in � bm �; and bo, the individual RSS and UAH T2LT trends (with and without their 2σ confidence
intervals from panel A). The 1σ and 2σ values of σSE are indicated by orange and yellow bands, respectively. The coloured dots in panel
B are either the ensemble-mean T2LT trends for individual models or the trend in an individual 20CEN realization (for models that did not
perform multiple 20CEN realizations). Statistical uncertainties in the observed trends are neglected in the DCSP07 test. If these uncertainties are

accounted for, � bm � is well within the 2σ confidence intervals on the RSS and UAH T2LT trends (Section 5.1.2).

holds even if we account for errors in model variability
(see Supporting Information).

5.1.2. Tests with multi-model ensemble-mean trend

We now seek to understand why DCPS07 concluded that
the multi-model ensemble-mean trend was inconsistent
with observed trends, despite the fact that almost all the
individual bm trends are consistent with observations (see
Section 5.1.1).

Application of the DCPS07 test yields values of the
test statistic d∗ [see Equation (11)] ranging from 2.25 for
RSS T2LT trends to 7.16 for UAH T2LT trends (Table III).
In all four d∗ tests,13 hypothesis H2 is rejected at the
5% level or better. This is why DCPS07 concluded that
the multi-model ensemble-mean trend is inconsistent with
observed T2LT and T2 trends. As will be shown below,
this conclusion is erroneous.

It is obvious from Figure 3B and Table I that for T2LT

data, � bm � lies within the adjusted 2σ confidence
intervals for the RSS and UAH trends. As was noted in
Section 4.2, however, DCPS07 ignore trend uncertainties
arising from interannual variability, both for observa-
tional and model trends. If DCPS07 had accounted for

Table III. Significance of differences between modelled and
observed tropospheric temperature trends: Results for tests

involving multi-model ensemble-mean trend.

Statistic
type

RSS
T2LT

UAH
T2LT

RSS
T2

UAH
T2

d∗ 2.25∗∗ 7.16∗∗∗ 2.48∗∗ 6.78∗∗∗
d∗

1 0.37 1.11 0.44 1.19

Results are the actual test statistic values for two different tests of
the hypothesis H2: the original DCPS07 ‘consistency test’ [d∗; see
Equation (11)] and a modified version of the DCPS07 test [d∗

1 ; see
Equation (12)]. Both d∗ and d∗

1 involve the model-average signal trend.
The T2LT and T2 data used in the tests are described in Table II.
One, two, and three asterisks indicate model-versus-observed trend
differences that are significant at the 10, 5, and 1% levels respectively;
(two-tailed tests).

these trend uncertainties, they would have obtained very
different results.

This is evident when we apply our modified version
of the DCPS07 test, which accounts for uncertainties in
both the observational and model trend signals. For all
four tests with d∗

1 , hypothesis H2 cannot be rejected at the
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nominal 5% level (Table III). These findings differ rad-
ically from those obtained with DCPS07’s ‘consistency
test’. We conclude, therefore, that when uncertainties in
both observational and model trend signals are accounted
for, there is no statistically significant difference between
the model-average trend signal and the observed trend in
φo(t).

5.2. Trends in lower tropospheric lapse rates

5.2.1. Tests with individual model realizations

Tests involving trends in the surface-minus-T2LT dif-
ference series are more stringent than tests of trend
differences in TL+O , TSST , or T2LT alone. This is because
differencing removes much of the common variability
in surface and tropospheric temperatures, thus decreas-
ing both the variance and lag-1 autocorrelation of the
regression residuals (Wigley, 2006). In turn, these twin
effects increase the effective sample size and decrease
the adjusted standard error of the trend, making it easier
to identify significant trend differences between models
and observations.

Despite these decreases in s{bm} and s{bo}, how-
ever, 45 of 49 trends in the simulated TSST minus
T2LT difference series are still within the ±2σ confi-
dence intervals of the ERSST-v3 minus RSS difference
series trend (Figure 4A). Irrespective of which obser-
vational dataset is used for estimating surface tem-
perature changes, each of the three TSST minus T2LT

pairs involving RSS data (and the single TL+O minus
T2LT pair) has a negative trend in the difference series,

indicating larger warming aloft than at the surface,
consistent with the model results (Table IV). Appli-
cation of the paired trends test [Equation (3)] reveals
that there are very few statistically significant differ-
ences between the model difference series trends and
observed lapse-rate trends computed using RSS T2LT data
(Table V).

For all four difference series ‘pairs’ involving UAH
T2LT data, the warming aloft is smaller than the
warming of the tropical surface, leading to a posi-
tive trend in the surface minus T2LT time series – i.e.
a trend of opposite sign to virtually all model results
(Table IV and Figure 4A). Even in the UAH cases,
however, not all models are inconsistent with the
observed estimates of ‘differential warming’ (despite
DCPS07’s claim to the contrary). Rejection rates for
paired trend tests with a stipulated 5% significance level
range from 31 to 88%, depending on the choice of
observed surface record (Table V). The highest rejec-
tion rates are for lapse-rate trends computed with the
HadCRUT3v surface data, which has the largest surface
warming.

5.2.2. Tests with the multi-model ensemble-mean trend

Figure 4B shows that the multi-model ensemble-mean
difference series trend is very close to the trend in the
ERSST-v3 minus RSS difference series. In this specific
case, even the incorrect, unmodified DCPS07 test yields
a non-significant value of d∗ (0.49; see Table VI). In
seven of the other eight difference series pairs, however,
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Figure 4. Same as Figure 3 but for the comparisons of simulated and observed trends in the time series of differences between tropical TSST

and T2LT . The observed TSST data are from NOAA ERSST-v3 (Smith et al., 2008). For trends and confidence intervals from other observed
pairs of surface and T2LT data, refer to Table IV.
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Table IV. Statistics for observed and simulated time series of differences between tropical surface temperature and lower
tropospheric temperature.

Dataset Trend 1σ S.E. Std. dev. r1 ne

HadCRUT3v TL+O minus UAH T2LT 0.061 0.036 0.165 0.642 55.0
HadCRUT3v TL+O minus RSS T2LT −0.046 0.034 0.162 0.608 61.5
Multi-model mean TL+O minus T2LT −0.069 0.040 0.164 0.614 62.5
Inter-model S.D. TL+O minus T2LT 0.032 0.031 0.057 0.137 27.3
HadISST1 TSST minus UAH T2LT 0.049 0.037 0.170 0.630 57.2
ERSST-v2 TSST minus UAH T2LT 0.041 0.040 0.172 0.665 50.7
ERSST-v3 TSST minus UAH T2LT 0.018 0.037 0.167 0.633 56.6
HadISST1 TSST minus RSS T2LT −0.058 0.035 0.170 0.595 64.0
ERSST-v2 TSST minus RSS T2LT −0.066 0.038 0.175 0.637 56.0
ERSST-v3 TSST minus RSS T2LT −0.089 0.035 0.174 0.601 62.7
Multi-model mean TSST minus T2LT −0.085 0.053 0.197 0.654 55.3
Inter-model S.D. TSST minus T2LT 0.038 0.036 0.064 0.146 28.4

Same as Table I but for basic statistical properties of observed and simulated time series of differences between tropical surface and lower
tropospheric temperatures. We use three datasets (HadISST1, ERSST-v2, and ERSST-v3) to characterize observed changes in TSST , one dataset
(HadCRUT3v) to describe changes in TL+O , and two datasets (RSS and UAH) to estimate observed changes in tropical T2LT . This yields eight
different combinations of observed surface minus T2LT difference series.

Table V. Significance of differences between modelled and observed trends in lower tropospheric lapse rates: Results for paired
trends tests.

Dataset pair 5% sig. level (%) 10% sig. level (%) 20% sig. level (%)

HadCRUT3v TL+O minus UAH T2LT 43 (87.8) 45 (91.8) 47 (95.9)
HadISST1 TSST minus UAH T2LT 28 (57.1) 39 (79.6) 44 (89.8)
ERSST-v2 TSST minus UAH T2LT 25 (51.0) 33 (67.4) 44 (89.8)
ERSST-v3 TSST minus UAH T2LT 15 (30.6) 24 (49.0) 35 (71.4)
HadCRUT3v TL+O minus RSS T2LT 1 (2.0) 1 (2.0) 3 (6.1)
HadISST1 TSST minus RSS T2LT 1 (2.0) 2 (4.1) 3 (6.1)
ERSST-v2 TSST minus RSS T2LT 1 (2.0) 1 (2.0) 2 (4.1)
ERSST-v3 TSST minus RSS T2LT 0 (0.0) 0 (0.0) 2 (4.1)

Same as Table II, but for paired tests involving trends in modelled and observed time series of differences between surface and lower tropospheric
temperatures in the deep tropics. Trends in TSST minus T2LT and TL+O minus T2LT provide simple measures of changes in lower tropospheric
lapse rates. For sources of data, refer to Table IV. Each of the eight observed difference series trends is tested against each of the 49 simulated
difference series trends. Results are the number of rejections of hypothesis H1 and the percentage rejection rates (in parentheses) for three
stipulated significance levels. The analysis period and anomaly definition are as for the T2LT and T2 data described in Table II.

use of the original DCPS07 consistency test leads to
rejection of the H2 hypothesis at the nominal 5% level
(see Section 4).

The modified DCPS07 test with d∗
1 [see Equation (12)]

yields strikingly different results: there is no case in
which the model-average signal trend differs significantly
from the four pairs of observed surface-minus-T2LT

trends calculated with RSS T2LT data (Table VI). When
the UAH T2LT data are used to estimate lapse-rate trends,
however, H2 is rejected at the nominal 5% level for
all four of the observed surface-minus-T2LT trends. This
sensitivity of significance test results to the choice of
RSS or UAH T2LT data is qualitatively similar to that
obtained for ‘paired trends’ tests of the H1 hypothesis
(see Section 5.2.1).14

5.2.3. Summary of tests with lower tropospheric lapse
rates

On the basis of these new results, we conclude that
considerable scientific progress has been made since

the CCSP report, which described ‘a potentially serious
inconsistency’ between recent modelled and observed
trends in tropical lapse rates (Karl et al., 2006, p. 11). As
described in Sections 5.2.1 and 5.2.2, modelled trends
in tropical lapse rates are now broadly consistent with
results obtained using RSS T2LT data. Why has this
progress occurred?

There are at least two contributory factors. First,
the new RSS tropical T2LT trend is over 25% larger
than the old trend (0.166 vs 0.130 °C/decade), primarily
due to a change in RSS’s procedure of adjusting for
inter-satellite biases. Adjustments now incorporate a
latitudinal dependence (as in Christy et al., 2003), which
tends to increase trends in the tropics and decrease
trends at mid-latitudes. Second, our work reveals that
comparisons of modelled and observed tropical lapse-
rate changes are sensitive to structural uncertainties in
the observed SST data, and that these uncertainties may
be larger than one would infer from the CCSP report. The
tropical SST trends estimated here range from 0.077 to
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Table VI. Significance of differences between modelled and
observed trends in lower tropospheric lapse rates: Results for

tests involving multi-model ensemble-mean trend.

Dataset pair d∗ d∗
1

HadCRUT3v TL+O minus UAH T2LT 17.05∗∗∗ 3.50∗∗∗
HadISST1 TSST minus UAH T2LT 14.94∗∗∗ 3.52∗∗∗
ERSST-v2 TSST minus UAH T2LT 14.01∗∗∗ 3.04∗∗∗
ERSST-v3 TSST minus UAH T2LT 11.43∗∗∗ 2.68∗∗∗
HadCRUT3v TL+O minus RSS T2LT 3.05∗∗∗ 0.67
HadISST1 TSST minus RSS T2LT 3.01∗∗∗ 0.75
ERSST-v2 TSST minus RSS T2LT 2.09∗∗ 0.48
ERSST-v3 TSST minus RSS T2LT 0.49 0.12

Same as Table III, but for tests of hypothesis H2 involving trends in
modelled and observed time series of differences between surface and
lower tropospheric temperatures in the deep tropics.

0.108 °C/decade (see Table I), with differences primarily
related to different processing choices in the treatment of
satellite and buoy data and in the applied infilling and
filtering procedures (Smith and Reynolds, 2005; Brohan
et al., 2006; Rayner et al., 2006; Smith et al., 2008).
The smaller observed SST changes in the ERSST-v2 and
ERSST-v3 data yield lapse-rate trends that are in better
accord with model results. These two SST datasets were
not examined in DCPS07 or in the study by Santer et al.
(2005, 2006).

6. Experiments with synthetic data

The following section compares the performance of d ,
d∗, and d∗

1 under controlled conditions, when the test
statistics are applied to synthetic data. We use a standard
lag-1 AR model to generate the synthetic time series x(t):

x(t) = a1(x(t − 1) − am) + z(t) + am ; t = 1, . . . , nt

(14)

where a1 is the coefficient of the AR-1 model, z(t) is
randomly generated white noise, and am is a mean term.
Here, we set a1 to 0.87 (close to the lag-1 autocorrelation
of the monthly-mean UAH and RSS T2LT and T2 anomaly
data; see Table I), and am to zero. The noise z(t) is
scaled so that x(t) has approximately the same temporal
standard deviation as the UAH anomaly data. Each x(t)

series has the same length as the observational and model
data (252 months), and monthly-mean anomalies were
defined as for ym(t) and yo(t).

Rejection rate results for these idealized cases are
shown in Figure 5 as a function of N , the number of
synthetic time series. Consider first the results for our
‘paired trends’ test of hypothesis H1 (see Section 4). For
each synthetic time series, we calculated the trend bx

and its unadjusted and adjusted standard errors, and then
computed the test statistic d for all unique combinations
of time series pairs. In the N = 19 case, for example
(which corresponds to the number of A/OGCMs used

in our study), there are 171 unique pairs. Under the
assumption that d has a Normal distribution, we deter-
mined rejection rates for H1 at stipulated significance
levels of 5, 10, and 20%. This procedure was repeated
1000 times, with 1000 different realizations of 19 syn-
thetic time series, allowing us to obtain estimates of the
parameters of the underlying rejection rate distributions.
We followed a similar process for all other values of N

considered.
The paired trend results obtained with adjusted stan-

dard errors are plotted as blue lines in Figure 5A. The
percentage rejections of hypothesis H1 (averaged over
all values of N ) are close to the theoretical expecta-
tions: the 5, 10, and 20% significance tests have rejection
rates of ca. 6, 11, and 21%, respectively (see Supporting
Information).

This bias of roughly 1% between theoretical and empir-
ically estimated rejection rates is very small compared to
the bias that occurs if the paired trends test is applied
without adjustment for temporal autocorrelation effects.
In the latter case, rejection rates for 5, 10, and 20% tests
consistently exceed 60, 65, and 72% respectively; (see
green lines in Figure 5A). Clearly, ignoring the influence
of temporal autocorrelation on the estimated number of
independent time samples yields incorrect test results.

We now examine tests of hypothesis H2 with the
DCPS07 d∗ statistic [Equation (11)] and our d∗

1 statistic
[Equation (12)]. Consider again the example of the
N = 19 case. The first time series is designated as the
‘observations’, from which we calculate the trend bx(1)

and its adjusted standard error. With the remaining 18
time series, we compute the ensemble-mean ‘model’
trend, <bx >, and DCPS07’s σSE . We then calculate the
test statistics d∗ and d∗

1 . This is repeated with the trend in
the second time series as surrogate observations, and with
<bx > and σSE calculated from time series 1, 3, 4, . . . 19,
etc. For each of the two test statistics, our procedure
yields 19 separate tests of hypothesis H2 (see Section 4).
As for the paired trends test with synthetic data, we
repeat this procedure 1000 times, generate distributions of
rejection rates at the three stipulated significance levels,
and then repeat the process for all other values of N .

Application of the unmodified DCPS07 test to syn-
thetic data leads to alarmingly large rejection rates of
H2 (Figure 5B; red lines). Rejection rates are a func-
tion of N . For 5% significance tests, rejection rates rise
from 65 to 84% (for N = 19 and N = 100, respectively).
Although DCPS07 refer to this as a ‘robust statistical
test’, it is clearly flawed, and is robust only in its ability
to incorrectly reject hypothesis H2. When our modified
version of this test is applied to the same synthetic data,
results are strikingly different: rejection rates are within
1-2% of the theoretical expectation values (Figure 5B;
black lines).

The lesson from this exercise is that DCPS07’s con-
sistency test, when applied to synthetic data generated
with the same underlying statistical model, yields incor-
rect results. It finds a very high proportion of significant
differences between ‘modelled’ and ‘observed’ trends,
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Figure 5. Performance of statistical tests with synthetic data. Results in panel A are for the ‘paired trends’ test [d; see Equation (3)], in which
trends from ‘observed’ temperature time series are tested against trends from individual realizations of ‘model’ 20CEN runs. Two versions of
the paired trends test are evaluated, with and without adjustment of trend standard errors for temporal autocorrelation effects. Panel B shows
results obtained with the DCPS07 ‘consistency test’ [d∗; see Equation (11)] and a modified version of the DCPS07 test [d∗

1 ; see Equation (12)]
which accounts for statistical uncertainties in the observed trend. In the d∗ and d∗

1 tests, the ‘model-average’ signal trend is compared with the
‘observed’ trend. Synthetic x(t) time series were generated using the standard AR-1 model in Equation (14). Rejection rates for hypotheses H1

(for the ‘paired trends’ test) and H2 (for the d∗ and d∗
1 tests; see Section 4) are given as a function of N , the total number of synthetic time

series, for N = 5, 6, . . . 100. Each test is performed for stipulated significance levels of 5, 10, and 20% (denoted by dashed, thin and bold lines,
respectively). For each value of N , rejection rates are the mean of the sampling distribution of rejection rates obtained with 1000 realizations
of N synthetic time series. The specified value of the lag-1 autocorrelation coefficient in Equation (14) is close to the sample value of r1 in
the UAH and RSS T2LT data (Table I). Similarly, the noise component of the synthetic x(t) data was scaled to ensure x(t) had (on average)

approximately the same temporal standard deviation as the observed T2LT anomaly data. See Section 6 for further details..

even in a situation where we know a priori that trend
differences should occur by chance alone, and that the
proportion of tests with significant differences should
be small. Although these synthetic data simulations are
not an exact analogue of the ‘real-world’ application of
the d∗ and d∗

1 tests, a test that yields incorrect results
under controlled conditions with synthetic data cannot be
expected to produce reasonable results in a ‘real-world’
application.

7. Vertical profiles of atmospheric temperature
trends

DCPS07 also use their consistency test to compare
simulated vertical profiles of tropical temperature change
with results from radiosondes. They conclude that the
multi-model ensemble-mean trend profile, � bm(z) �
(where z is a nominal height coordinate), is inconsistent

with the trends inferred from radiosondes. We have
shown previously that their test is flawed and yields
incorrect results when applied in controlled settings
(Sections 5 and 6).

A further concern relates to the observational data used
by DCPS07. They rely on radiosonde data from HadAT2
(McCarthy et al., 2008), RATPAC version B (Free et al.,
2005),15 RAOBCORE version 1.2 (Haimberger, 2007),
and the Integrated Global Radiosonde Archive (‘IGRA’;
Durre et al., 2006). DCSP07 claim that these consti-
tute ‘the best available updated observations’. As noted
in Section 1, there are large structural uncertainties in
radiosonde-based estimates of atmospheric temperature
change (see, e.g. Seidel et al., 2004; Thorne et al., 2005b;
Mears et al., 2006). An important question, therefore, is
whether DCSP07 accurately represented our best cur-
rently available estimates of structural uncertainties in
radiosonde data.
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To address this question, we first consider the RAOB-
CORE datasets developed at the University of Vienna
(UnV). We use three versions of the RAOBCORE data:
v1.2 and v1.3, which were described in Haimberger
(2007), and v1.4, which was introduced in Haimberger
et al. (2008). While RAOBCORE v1.2 shows little net
warming of the tropical troposphere over the satellite era,
v1.3 and v1.4 exhibit pronounced tropospheric warm-
ing, with warming maxima in excess of 0.6 °C/decade
at 200 hPa, and cooling of up to 0.1 °C/decade between
700 and 500 hPa (Figure 6A). These large differences in
RAOBCORE vertical temperature profiles arise because
of different decisions made by the UnV group in the data
homogenization process. Although DCPS07 had access
to all three RAOBCORE versions, they presented results
from v1.2 only.

We also analyse two new radiosonde products, RICH
and IUK, which were not available to DCPS07. RICH
relies on the same procedure as the RAOBCORE datasets
to identify inhomogeneities (‘breaks’) in radiosonde data.
Unlike the RAOBCORE products (which use informa-
tion from the ERA-40 background forecasts for break

adjustment), RICH adjusts for breaks with homogeneous
information from nearby radiosonde stations (Haimberger
et al., 2008). IUK employs a new homogenization pro-
cedure in which raw radiosonde data are represented
by a model of step-function changes (associated with
instrument biases) and natural climate variability (Sher-
wood, 2007).16 Both RICH and IUK do not display
the prominent lower tropospheric cooling evident in the
RAOBCORE, HadAT2, and RATPAC-A products. For
comparisons over the period 1979–1999, the multi-model
ensemble-mean trend profile in the tropical lower tropo-
sphere is closer to the IUK and RICH results than to the
changes derived from the other five radiosonde datasets.

The results presented here illustrate that current struc-
tural uncertainties in the radiosonde data are substan-
tially larger than one would infer from DCPS07. Dif-
ferent choices in the complex process of dataset con-
struction and homogenization lead to marked differ-
ences in both the amplitude and vertical structure of
the resulting tropical trends. Temperatures from the most
recent homogenization efforts, however, invariably show
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Figure 6. Vertical profiles of trends in atmospheric temperature (panel A) and in actual and synthetic MSU temperatures (panel B). All trends
were calculated using monthly-mean anomaly data, spatially averaged over 20 °N–20 °S. Results in panel A are from seven radiosonde datasets
(RATPAC-A, RICH, HadAT2, IUK, and three versions of RAOBCORE; see Section 2.1.2) and 19 different climate models. Tropical TSST and
TL+O trends from the same climate models and four different observational datasets (Section 2.1.3) are also shown. The multi-model average trend
at a discrete pressure level, � bm(z) �, was calculated from the ensemble-mean trends of individual models [see Equation (7)]. The grey-shaded
envelope is s{<bm(z)>}, the 2σ standard deviation of the ensemble-mean trends at discrete pressure levels. The yellow envelope represents
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confidence intervals (see Section 4.1). Model results are the multi-model average trend and the standard deviation of the ensemble-mean trends,
and grey- and yellow-shaded areas represent the same uncertainty estimates described in panel A (but now for layer-averaged temperatures rather
than temperatures at discrete pressure levels). The y-axis in panel B is nominal, and bears no relation to the pressure coordinates in panel A.
The analysis period is January 1979 through December 1999, the period of maximum overlap between the observations and most of the model

20CEN simulations. Note that DCPS07 used the same analysis period for model data, but calculated all observed trends over 1979–2004.
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greater warming in the tropical troposphere than is evi-
dent in the raw data upon which they are based. Climate
model results are in closer agreement with these newer
radiosonde datasets, which were not used by DCPS07.

The model-average warming of the tropical surface
over 1979–1999 is slightly larger than in the single
realization of the observations, both for TSST and TL+O

(Figure 6A and Table I). As discussed in Section 3,
this small difference in simulated and observed surface
warming rates may be due to the random effects of natural
internal variability, model error, or some combination
thereof.17 One important consequence of this difference
is that we expect the simulated warming in the free
troposphere to be generally larger than in observations.

Figure 6B summarizes results from a variety of trend
comparisons, and shows trends in tropical T2LT and T2

from RSS and UAH, in synthetic MSU temperatures
from the seven radiosonde products, and in the model-
average synthetic MSU temperatures. Results are also
given for DCPS07’s σSE and for s{<bm >}, the inter-
model standard deviation of trends. Application of the
DCPS07 consistency test leads to the incorrect conclusion
that the model-average T2LT and T2 signal trends are
significantly different from the observed signal trends
in all radiosonde products. Modification of the test to
account for uncertainties in the observed trends leads to
very different conclusions. For T2LT , for example, the
d∗

1 test statistic [see Equation (12)] indicates that the
model-average signal trend is not significantly different
(at the 5% level) from the observed signal trends in three
of the more recent radiosonde products (RICH, IUK, and
RAOBCORE v1.4). Clearly, agreement between models
and observations depends on both the observations that
are selected and the metric used to assess agreement.

8. Summary and conclusions

Several recent comparisons of modelled and observed
atmospheric temperature changes have focused on the
tropical troposphere (Santer et al., 2006; Douglass et al.,
2007; Thorne et al., 2007). Interest in this region was
stimulated by an apparent inconsistency between cli-
mate model results and observations. Climate models
consistently showed tropospheric amplification of surface
warming in response to human-caused increases in well-
mixed GHGs. In contrast, early versions of satellite and
radiosonde datasets implied that the surface had warmed
by more than the tropical troposphere over the satellite
era. This apparent discrepancy has been cited as evidence
for the absence of a human effect on climate (e.g. Singer,
2008).

A number of national and international assessments
have tried to determine whether this discrepancy is real
and of practical significance, or simply an artifact of
problems with observational data (e.g., NRC, 2000; Karl
et al., 2006; IPCC, 2007). The general tenor of these
assessments is that structural uncertainties in satellite- and
radiosonde-based estimates of tropospheric temperature

change are currently large: we do not have an unam-
biguous observational yardstick for gauging true levels
of model skill (or lack thereof). The most comprehen-
sive assessment was the first report produced under the
auspices of the U.S. Climate Change Science Program
(CCSP; Karl et al., 2006). This report concluded that
advances in identifying and adjusting for inhomogeneities
in satellite and radiosonde data had helped to resolve the
discrepancies described above, at least at global scales.

In the tropics, however, important differences remained
between the simulated and observed ‘differential warm-
ing’. In climate models, the tropical lower troposphere
warmed by more than the surface. This amplification
of surface warming was timescale-invariant, consistent
across a range of models, and in accord with basic theo-
retical considerations (Santer et al., 2005, 2006; Thorne
et al., 2007). For month-to-month and year-to-year tem-
perature changes, all satellite and radiosonde datasets
showed amplification behaviour consistent with model
results and basic theory. For multi-decadal changes, how-
ever, only two of the then-available satellite datasets (and
none of the then-available radiosonde datasets) indicated
warming of the troposphere exceeding that of the surface
(Karl et al., 2006).

Karl et al. noted that these findings could be interpreted
in at least two ways. Under one interpretation, the
physical mechanisms controlling real-world amplification
behaviour vary with timescale, and models have some
common error in representing this timescale-dependence.
The second interpretation posited residual errors in many
of the satellite and radiosonde datasets used in the CCSP
report. In view of the large structural uncertainties in
the observations, the consistency of model amplification
results across a range of timescales, and independent
evidence of substantial tropospheric warming (Santer
et al., 2003, 2007; Paul et al., 2004; Mears et al., 2007;
Allen and Sherwood, 2007, 2008), this was deemed to be
the more plausible explanation.

DCPS07 reached a very different conclusion from
that of the CCSP report, and claim to find significant
differences between models and observations, both for
trends in tropospheric temperatures and for trends in
lower tropospheric lapse rates. Their claim is based on
the application of a ‘consistency test’ to essentially the
same model and observational data available to Karl
et al. (2006). Their test has two serious flaws: it neglects
statistical uncertainty in observed temperature trends
arising from interannual temperature variability, and it
uses an inappropriate metric [σSE; see Equation (10)] to
judge the statistical significance of differences between
the observed trend and the multi-model ensemble-mean
trend, � bm �.

Consider first the issue of statistical uncertainties.
DCPS07 make the implicit assumption that the observed
and simulated trends are unaffected by interannual cli-
mate variability, and provide perfect information on
the true temperature response to external forcing. This
assumption is incorrect, as examination of Figures 1 and
2A readily shows: the true response is not perfectly
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known in either observations or the model results. It
can only be estimated from a single, noisy observational
record and from relatively small ensembles of model
results. Any meaningful consistency test must account for
the effects of interannual variability, and for the uncer-
tainties it introduces in estimating the underlying (but
unknown) ‘trend signal’ in observations. The DCPS07
test does not do this.

Second, DCPS07’s σSE is not a meaningful basis for
testing whether a highly uncertain observed trend signal is
consistent with the average of imperfectly-known model
signal trends. This is readily apparent when one applies
the DCPS07 test to synthetic data with approximately the
same statistical properties as satellite T2LT and T2 data.
In this case, we know a priori that the same statistical
model generated the synthetic ‘observed’ and synthetic
‘simulated’ data, and that application of the test should
yield (on average) rejection of the hypothesis of ‘no
significant difference in signal trends’ approximately p%
of the time at a stipulated p% significance level. The
DCPS07 test, however, gives rejection rates that are many
times higher than values expected by chance alone (see
Figure 5B).

In contrast to DCPS07, we explicitly account for
the effects of interannual variability on observational
trends. We do this using two different significance testing
strategies. In the first, we use a ‘paired trends’ test
[with the d statistic; Equation (3)] that compares each
observational trend with the trend from each individual
realization of each model. With this procedure, we test
the hypothesis (H1) that the trend in an individual model
realization of signal plus noise is consistent with the
single realization of signal plus noise in the observations.
In our second approach, we use a modified version
of DCPS07’s consistency test [with the d∗

1 statistic;
Equation (12)], to test the hypothesis (H2) that the model-
average signal trend is consistent with the signal trend
estimated from the single realization of the observations.
With the d test, very few of the model trends in tropical
T2LT and T2 over 1979 to 1999 are significantly different
from RSS or UAH trends (Table II). Similarly, when the
d∗

1 test is applied to T2LT and T2 trends, hypothesis H2

cannot be rejected at the nominal 5% level (Table III).
A more stringent test of model performance involves

trends in the time series of differences between surface
and lower tropospheric temperature anomalies. Trends in
TSST (or TL+O) minus T2LT provide a simple measure of
changes in lapse rate. Differencing reduces the amplitude
of the (common) unforced variability in surface tempera-
ture and T2LT , and makes it easier to identify true model
errors in the forced component of lapse-rate trends.

While tests involving trends in T2LT and T2 time
series almost invariably showed non-significant differ-
ences between models and satellite data (Section 5.1),
results for lapse-rate trends are more sensitive to struc-
tural uncertainties in observations (Section 5.2). If RSS
T2LT data are used for computing lapse-rate trends, the
warming aloft is larger than at the surface (consistent with

model results). Very few simulated lapse-rate trends dif-
fer significantly from observations in ‘paired trends’ tests
(Table V). When the d∗

1 test is applied, there is no case
in which hypothesis H2 can be rejected at the nominal
5% level (Table VI).

When UAH T2LT data are used, the warming aloft is
smaller than at the surface. Even in the UAH case, how-
ever, hypothesis H1 is not rejected consistently. Rejec-
tion rates for ‘paired trends’ tests conducted at the 5%
significance level range from ca. 31 to 88%, depend-
ing on the choice of observational surface temperature
dataset (Table V). Alternately, our modified version of
the DCPS07 test reveals that hypothesis H2 is rejected at
the nominal 5% level in all cases involving UAH-based
estimates of lapse-rate changes (Table VI).

Our findings do not bring final resolution to the issue
of whether UAH or RSS provide more reliable estimates
of temperature changes in the tropical troposphere. We
note, however, that the RSS-based estimates of tropi-
cal lapse-rate changes are in better accord with satel-
lite datasets developed by the UMd and NOAA/NESDIS
groups (Vinnikov et al., 2006; Zou et al., 2006), with
newer radiosonde datasets (e.g. Allen and Sherwood,
2007, 2008; Haimberger et al., 2008; Sherwood et al.,
2008; Titchner et al., 2008), and with basic moist adi-
abatic lapse-rate theory. Furthermore, RSS results show
amplification of tropical surface warming across a range
of timescales (consistent with model behaviour), whereas
UAH T2LT data yield amplification for monthly and
annual temperature changes, but not for decadal changes.
If the UAH results were correct, the physics controlling
the response of the tropical atmosphere to surface warm-
ing must vary with timescale. Mechanisms that might
govern such behaviour have not been identified.

Model errors in forcing and response must also con-
tribute to remaining differences between simulated and
observed lapse-rate trends. For example, only 9 of the 19
models used in our study attempted to represent the cli-
mate forcing associated with the eruptions of El Chichòn
and Pinatubo (Forster and Taylor, 2006). Statistical com-
parisons between modelled and observed temperature
changes can be sensitive to the inclusion or exclusion
of volcanic forcing (Santer et al., 2001; Wigley et al.,
2005; Lanzante, 2007).

Similarly, roughly half the models analysed here
exclude stratospheric ozone depletion, which has a pro-
nounced impact on lower stratospheric and upper tro-
pospheric temperatures, and hence on T2 (Santer et al.,
2006). Even models which include some form of strato-
spheric ozone depletion do not correctly represent the
observed profile of ozone losses below ca. 20 km in the
tropics (Forster et al., 2007). The latter deficiency may
have considerable impact on model-predicted tempera-
ture changes above the tropical tropopause and in the
uppermost troposphere, and therefore on agreement with
observations.

In summary, considerable scientific progress has been
made since the first report of the U.S. Climate Change
Science Program (Karl et al., 2006). There is no longer a
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serious and fundamental discrepancy between modelled
and observed trends in tropical lapse rates, despite
DCPS07’s incorrect claim to the contrary. Progress has
been achieved by the development of new TSST , TL+O ,
and T2LT datasets, better quantification of structural
uncertainties in satellite- and radiosonde-based estimates
of tropospheric temperature change, and the application
of rigorous statistical comparisons of modelled and
observed changes.

We may never completely reconcile the divergent
observational estimates of temperature changes in the
tropical troposphere. We lack the unimpeachable obser-
vational records necessary for this task. The large struc-
tural uncertainties in observations hamper our ability to
determine how well models simulate the tropospheric
temperature changes that actually occurred over the satel-
lite era. A truly definitive answer to this question may be
difficult to obtain. Nevertheless, if structural uncertain-
ties in observations and models are fully accounted for, a
partial resolution of the long-standing ‘differential warm-
ing’ problem has now been achieved. The lessons learned
from studying this problem can and should be applied
towards the improvement of existing climate monitoring
systems, so that future model evaluation studies are less
sensitive to observational ambiguity.

Acknowledgements

We acknowledge the modelling groups for providing
their simulation output for analysis, the Program for Cli-
mate Model Diagnosis and Intercomparison (PCMDI)
for collecting and archiving this data, and the World
Climate Research Programme’s Working Group on Cou-
pled Modelling for organizing the model data analysis
activity. The CMIP-3 multi-model dataset is supported
by the Office of Science, U.S. Department of Energy.
The authors received support from a Distinguished Sci-
entist Fellowship of the U.S. Dept. of Energy, Office of
Biological and Environmental Research (BDS); the joint
DEFRA and MoD Programme (PWT; contracts GA01101
and CBC/2B/0417 Annex C5, respectively); Grant no.
P18120-N10 of the Austrian Science Funds (LH); and the
NOAA Office of Climate Programs (‘Climate Change,
Data and Detection’) Grant no. NA87GP0105 (TMLW).
We thank Mike MacCracken (Climate Institute), David
Parker (U.K. Meteorological Office Hadley Centre), Dick
Reynolds (NCDC), Dian Seidel (NOAA Air Resources
Laboratory), Francis Zwiers (Environment Canada), and
an anonymous reviewer for useful comments and discus-
sion. Dave Easterling and Imke Durre (NCDC) and R.
Dobosy and Jenise Swall (NOAA Air Resources Labora-
tory) provided helpful comments in the course of NOAA
internal reviews. Observed MSU data were kindly pro-
vided by John Christy (UAH) and Konstantin Vinnikov
(UMd). Observed surface temperature data were pro-
vided by John Kennedy at the U.K. Meteorological Office
Hadley Centre (HadISST1), and by Dick Reynolds at the
NCDC (ERSST-v2 and ERSST-v3).

Appendix 1: Statistical notation

Subscripts and indices

m Subscript denoting model data
o Subscript denoting observational data
t Index over time (in months)
i Index over number of models
j Index over number of 20CEN realizations
z Index over number of atmospheric levels

Sample sizes

nt Total number of time samples (usually 252)
ne Effective number of time samples, adjusted for

temporal autocorrelation
nm Total number of models (19)
nr(i) Total number of 20CEN realizations for the ith

model
N Total number of synthetic time series

Time series

ym(t) Simulated T2LT or T2 time series
φm(t) Underlying signal in ym(t) in response to forc-

ing
ηm(t) Realization of internally generated noise in

ym(t)

x(t) Synthetic AR-1 time series
z(t) Synthetic noise time series

Trends

bm Least-squares linear trend in an individual
ym(t) time series

<bm(i)> Ensemble-mean trend in the ith model
� bm � Multi-model ensemble-mean trend
� bm(z) � Multi-model ensemble-mean trend profile

Standard errors and standard deviations

s{bm} Standard error of bm

s{ym(t)} Temporal standard deviation of ym(t)

anomaly time series
s{<bm >} Inter-model standard deviation of en-

semble-mean trends
s{<bm(z)>} Inter-model standard deviation of en-

semble-mean trends at discrete pressure
levels

σSE DCPS07 ‘estimate of the uncertainty of
the mean’

Other regression terms

e(t) Regression residuals
r1 Lag-1 autocorrelation of regression residuals

Test statistics

d Paired trends test statistic [Equation (3)]
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d∗ Test statistic for original DCPS07 consistency test
[Equation (11)]

d∗
1 Test statistic for modified version of DCPS07

consistency test [Equation (12)]

Appendix 2: Technical Notes

1See Table 3.4 in Lanzante et al., 2006. For the specific
period 1979 to 2004, tropical (20 °N–20 °S) T2 trends
range from 0.05 °C/decade (UAH) to 0.19 °C/decade
(UMd), while T2LT trends span the range 0.05 °C/
decade (UAH) to 0.15 °C/decade (RSS). The most
important sources of uncertainty are likely to be ‘due to
inter-satellite calibration offsets and calibration drifts’
(Mears et al., 2006, page 78).

2The UMd and NOAA/NESDIS groups do not provide a
T2LT product. Because of their calibration procedure,
the NOAA/NESDIS T2 data are only available for a
shorter period (1987 to present) than the T2 products
of the three other groups.

3A more recent version of the RSS T2 and T2LT datasets
(version 3.1) now exists. RSS versions 3.0 and 3.1
are virtually identical over the primary analysis period
considered here (1979 to 1999). For UAH data, a
version 5.2 exists for T2LT but not for T2 data, for
which only version 5.1 is available.

4All simulations included human-induced changes in
well-mixed GHGs and the direct (scattering) effects
of sulphate aerosols on incoming solar radiation.
Other external forcings (such as changes in ozone,
carbonaceous aerosols, indirect effects of aerosols on
clouds, land surface properties, solar irradiance, and
volcanic dust loadings) were not handled uniformly
across different modeling groups. For further details
of the applied forcings, see Santer et al., 2005, 2006.

5DCPS07 used a larger set of 20CEN runs (67 simulations
performed with 22 different models) and incorporated
model results that were not available at the time
of the Santer et al. (2005) study. This difference
in the number of 20CEN models employed in the
two investigations is immaterial for illustrating the
statistical problems in the consistency test applied by
DCPS07. All 49 simulations employed in our current
work were also analyzed by DCSP07.

6Amplification occurs due to the non-linear effect of the
release of latent heat by moist ascending air in regions
experiencing convection.

7The 20CEN experiments analyzed here were performed
with coupled atmosphere-ocean General Circulation
Models (A/OGCMs) driven by estimates of historical
changes in external forcing. Due to chaotic variability
in the climate system, small differences in the atmo-
spheric or oceanic initial conditions at the start of the
20CEN run (typically in the mid- to late-19th cen-
tury) rapidly lead to different manifestations of climate
noise. Within the space of several months, the state of
the atmosphere is essentially uncorrelated with the ini-
tial state. This means that even the same model, when

run many times with identical external forcings (but
each time from slightly different initial conditions),
produces many different samples of ηm(t), each super-
imposed on the same underlying signal, φm(t).

8Our d∗
1 test involving the multi-model ensemble-mean

trend [see Equation (12)], also relies on an AR-1 model
to estimate ne and adjust the observed standard error,
and is therefore also likely to be too liberal.

9We use <> to denote an ensemble average over multiple
20CEN realizations performed with a single model.
Double angle brackets, ��, indicate a multi-model
ensemble average.

10Under this assumption, the total uncertainty in
� bm � −bo is determined solely by inter-model
trend differences arising from structural differences
between the models [see Equations (9)–(11)]. As dis-
cussed in Section 3, however, the total uncertainty in
the magnitude of � bm � −bo reflects not only these
structural differences, but also inter-model differences
in internal variability and ensemble size.

11Inter-model differences in the size of the confidence
intervals in Fig. 3A are due primarily to differences in
the amplitude and temporal autocorrelation properties
of ηm(t), but are also affected by neglect or inclusion
of the effects of volcanic forcing (see Santer et al.,
2005, 2006). Models with large ENSO variability
(such as GFDL-CM2.1 and FGOALS-g1.0) have large
adjusted confidence intervals, while A/OGCMs with
relatively coarse-resolution, diffusive oceans (such as
GISS-AOM) have much weaker ENSO variability and
smaller values of s{bm}.

12We have explored the sensitivity of our adjusted stan-
dard errors and significance test results to choices
of averaging period ranging from two to 12 months.
These choices span a wide range of temporal autocor-
relation behaviour. Results for the d test are relatively
insensitive to the selected averaging period, suggesting
that our adjustment method is reasonable.

13There are four tests because we are using two atmo-
spheric layers (T2LT and T2) and two observational
datasets (RSS and UAH).

14One of the assumptions underlying the d∗
1 test (and all

tests performed here) is that structural uncertainty in
the observations is negligible (see Section 4.2). We
know this is not the case in the real world (see, e.g.,
Seidel et al., 2004; Thorne et al., 2005a; Lanzante
et al., 2006; Mears et al., 2006). In the present study,
we have examined the effects of structural uncertain-
ties in satellite and radiosonde data by treating each
observational dataset independently, and assessing the
robustness of our model-versus-observed trend com-
parisons to different dataset choices. An alternative
approach would be to explicitly include a structural
uncertainty term for the observations in the d∗

1 test
statistic itself.

15Note that RATPAC-B is unadjusted after 1997.
RATPAC-A, which we use here, accounts for inho-
mogeneities before and after 1997.
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16Sherwood et al. (2008) argue that this procedure does
not completely homogenize data from stations between
5 °S and 20 °N, since trends at these stations remained
highly variable and (on average) unphysically low
compared to those at neighbouring latitudes that are
much more accurately known. The implication is that
gradual (rather than step-like) changes in bias at many
tropical stations may not be reliably identified and
adjusted by the IUK homogenization procedure. If this
is the case, the IUK trends shown here are likely to be
underestimates of the true trends.

17An error in the model average surface warming is
entirely likely given the neglect of indirect aerosol
effects in roughly half of the models analyzed here.

References

Allen RJ, Sherwood SC. 2007. Utility of radiosonde wind data in
representing climatological variations of tropospheric temperature
and baroclinicity in the western tropical Pacific. Journal of Climate,
20: 5229–5243.

Allen RJ, Sherwood SC. 2008. Warming maximum in the tropical
upper troposphere deduced from thermal winds. Nature Geoscience,
65: 399–403.

Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. 2006. Uncer-
tainty estimates in regional and global observed temperature changes:
A new dataset from 1850. Journal of Geophysical Research 111:
D12106, Doi:10.1029/2005JD006548.

Christy JR, Norris WB, Spencer RW, Hnilo JJ. 2007. Tropospheric
temperature change since 1979 from tropical radiosonde and satellite
measurements. Journal of Geophysical Research 112: D06102,
Doi:10.1029/2005JD006881.

Christy JR, Spencer RW, Braswell WD. 2000. MSU tropospheric
temperatures: Data set construction and radiosonde comparisons.
Journal of Atmospheric and Oceanic Technology 17: 1153–1170.

Christy JR, Spencer RW, Norris WB, Braswell WD, Parker DE. 2003.
Error estimates of version 5.0 of MSU/AMSU bulk atmospheric
temperatures. Journal of Atmospheric and Oceanic Technology 20:
613–629.

Douglass DH, Christy JR, Pearson BD, Singer SF. 2007. A compari-
son of tropical temperature trends with model predictions. Interna-
tional Journal of Climatology 27: Doi:10.1002/joc.1651.

Douglass DH, Pearson BD, Singer SF. 2004. Altitude depen-
dence of atmospheric temperature trends: Climate models ver-
sus observations. Geophysical Research Letters 31: L13208,
Doi:10.1029/2004/GL020103.

Durre I, Vose R, Wuertz DB. 2006. Overview of the integrated global
radiosonde archive. Journal of Climate 19: 53–68.

Forster PM, Bodeker G, Schofield R, Solomon S. 2007. Effects
of ozone cooling in the tropical lower stratosphere and
upper troposphere. Geophysical Research Letters 34: L23813,
Doi:10.1029/2007GL031994.

Forster PM, Taylor KE. 2006. Climate forcings and climate
sensitivities diagnosed from coupled climate model integrations.
Journal of Climate 19: 6181–6194.

Free M, Seidel DJ, Angell JK, Lanzante JR, Durre I, Peterson TC.
2005. Radiosonde Atmospheric Temperature Products for Assessing
Climate (RATPAC): A new dataset of large-area anomaly
time series. Journal of Geophysical Research 110: D22101,
Doi:10.1029/2005JD006169.

Gaffen D, et al. 2000. Multi-decadal changes in the vertical
temperature structure of the tropical troposphere. Science 287:
1239–1241.

Haimberger L. 2007. Homogenization of radiosonde temperature time
series using innovation statistics. Journal of Climate 20: 1377–1403.

Haimberger L, Tavolato C, Sperka S. 2008. Towards elimination of the
warm bias in historic radiosonde temperature records – Some new
results from a comprehensive intercomparison of upper air data.
Journal of Climate, (in press).

Hegerl GC, et al. 2007. Understanding and attributing climate change.
In Climate Change 2007: The Physical Science Basis, Contribution
of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, Solomon S, Qin D,

Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL
(eds). Cambridge University Press: Cambridge, New York.

IPCC (Intergovernmental Panel on Climate Change). 1996. Summary
for policymakers. In Climate Change 1995: The Science of
Climate Change, Contribution of Working Group I to the Second
Assessment Report of the Intergovernmental Panel on Climate
Change, Houghton JT, Meira Filho LG, Callander BA, Harris N,
Kattenberg A, Maskell K (eds). Cambridge University Press:
Cambridge, New York.

IPCC (Intergovernmental Panel on Climate Change). 2001. Summary
for policymakers. In Climate Change 2001: The Scientific Basis,
Contribution of Working Group I to the Third Assessment
Report of the Intergovernmental Panel on Climate Change,
Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ,
Dai X, Maskell K, Johnson CA (eds). Cambridge University Press:
Cambridge, New York.

IPCC (Intergovernmental Panel on Climate Change). 2007. Summary
for policymakers. In Climate Change 2007: The Physical Science
Basis, Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change,
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB,
Tignor M, Miller HL (eds). Cambridge University Press: Cambridge,
New York.

Karl TR, Hassol SJ, Miller CD, Murray WL (eds). 2006. Temperature
Trends in the Lower Atmosphere: Steps for Understanding and
Reconciling Differences. A Report by the U.S. Climate Change
Science Program and the Subcommittee on Global Change
Research. National Oceanic and Atmospheric Administration,
National Climatic Data Center: Asheville, NC; 164.

Lanzante JR. 2005. A cautionary note on the use of error bars. Journal
of Climate 18: 3699–3703.

Lanzante JR. 2007. Diagnosis of radiosonde vertical temperature trend
profiles: Comparing the influence of data homogenization versus
model forcings. Journal of Climate 20(21): 5356–5364.

Lanzante JR, Klein SA, Seidel DJ. 2003. Temporal homogenization of
monthly radiosonde temperature data. Part II: Trends, sensitivities,
and MSU comparison. Journal of Climate 16: 241–262.

Lanzante JR, Peterson TC, Wentz FJ, Vinnikov KY. 2006. What do
observations indicate about the change of temperatures in the
atmosphere and at the surface since the advent of measuring
temperatures vertically? In Temperature Trends in the Lower
Atmosphere: Steps for Understanding and Reconciling Differences,
Karl TR, Hassol SJ, Miller CD, Murray WL (eds). A Report by the
U.S. Climate Change Science Program and the Subcommittee on
Global Change Research, Washington DC.

Manabe S, Stouffer RJ. 1980. Sensitivity of a global climate model
to an increase of CO2 concentration in the atmosphere. Journal of
Geophysical Research 85: 5529–5554.

McCarthy MP, Titchner HA, Thorne PW, Tett SFB, Haimberger L,
Parker DE. 2008. Assessing bias and uncertainty in the HadAT
adjusted radiosonde climate record. Journal of Climate 21: 817–832.

Mears CA, Schabel MC, Wentz FJ. 2003. A reanalysis of the MSU
channel 2 tropospheric temperature record. Journal of Climate 16:
3650–3664.

Mears CA, Forest CE, Spencer RW, Vose RS, Reynolds RW. 2006.
What is our understanding of the contributions made by
observational or methodological uncertainties to the previously-
reported vertical differences in temperature trends? In Temperature
Trends in the Lower Atmosphere: Steps for Understanding
and Reconciling Differences, Karl TR, Hassol SJ, Miller CD,
Murray WL (eds). A Report by the U.S. Climate Change Science
Program and the Subcommittee on Global Change Research,
Washington DC.

Mears CA, Santer BD, Wentz FJ, Taylor KE, Wehner MF. 2007.
Relationship between temperature and precipitable water changes
over tropical oceans. Geophysical Research Letters 34: L24709,
Doi:10.1029/2007GL031936.

Mears CA, Wentz FJ. 2005. The effect of diurnal correction on
satellite-derived lower tropospheric temperature. Science 309:
1548–1551.

Mitchell JFB, et al. 2001. Detection of climate change and attribution
of causes. In Climate Change 2001: The Scientific Basis, Contribution
of Working Group I to the Third Assessment Report of
the Intergovernmental Panel on Climate Change, Mitchell JFB,
Karoly DJ, Hegerl GC, Zwiers FW, Allen MR, Marengo J (eds).
Cambridge University Press: Cambridge, New York; 881.

NRC (National Research Council). 2000. Reconciling Observations of
Global Temperature Change. National Academy Press: Washington,
DC; 85.

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 28: 1703–1722 (2008)
DOI: 10.1002/joc



1722 B. D. SANTER ET AL.

Paul F, Kaab A, Maisch M, Kellenberger T, Haeberli W. 2004. Rapid
disintegration of Alpine glaciers observed with satellite data. Geo-
physical Research Letters 31: L21402, Doi:10.1029/2004GL020816.

Randel WJ, Wu F. 2006. Biases in stratospheric and tropospheric
temperature trends derived from historical radiosonde data. Journal
of Climate 19: 2094–2104.

Rayner NA, et al. 2003. Global analyses of sea surface temperature,
sea ice, and night marine air temperature since the late
nineteenth century. Journal of Geophysical Research 108: 4407,
Doi:10.1029/2002JD002670, HadISST1 data are available at
http://www.hadobs.org/.

Rayner NA, et al. 2006. Improved analyses of changes and
uncertainties in marine temperature measured in situ since the mid-
nineteenth century: The HadSST2 dataset. Journal of Climate 19:
446–469.

Santer BD, Penner JE, Thorne PW. 2006. How well can the observed
vertical temperature changes be reconciled with our understanding
of the causes of these changes? In Temperature Trends in the Lower
Atmosphere: Steps for Understanding and Reconciling Differences,
Karl TR, Hassol SJ, Miller CD, Murray WL (eds). A Report by the
U.S. Climate Change Science Program and the Subcommittee on
Global Change Research, Washington DC.

Santer BD, Wigley TML, Barnett TP, Anyamba E. 1996. Detection of
climate change and attribution of causes. In Climate Change 1995:
The Science of Climate Change, Contribution of Working Group I
to the Second Assessment Report of the Intergovernmental Panel
on Climate Change, Houghton JT, Meira Filho LG, Callander BA,
Harris N, Kattenberg A, Maskell K (eds). Cambridge University
Press: Cambridge, New York; 572.

Santer BD, et al. 1999. Uncertainties in observationally based estimates
of temperature change in the free atmosphere. Journal of Geophysical
Research 104: 6305–6333.

Santer BD, et al. 2000a. Statistical significance of trends and trend
differences in layer-average atmospheric temperature time series.
Journal of Geophysical Research 105: 7337–7356.

Santer BD, et al. 2000b. Interpreting differential temperature trends at
the surface and in the lower troposphere. Science 287: 1227–1232.

Santer BD, et al. 2001. Accounting for the effects of volcanoes and
ENSO in comparisons of modeled and observed temperature trends.
Journal of Geophysical Research 106: 28033–28059.

Santer BD, et al. 2003. Contributions of anthropogenic and natural
forcing to recent tropopause height changes. Science 301: 479–483.

Santer BD, et al. 2005. Amplification of surface temperature trends and
variability in the tropical atmosphere. Science 309: 1551–1556.

Santer BD, et al. 2007. Identification of human-induced changes in
atmospheric moisture content. Proceedings of the National Academy
of Sciences of the United States of America 104: 15248–15253.

Seidel DJ, et al. 2004. Uncertainty in signals of large-scale climate
variations in radiosonde and satellite upper-air temperature data sets.
Journal of Climate 17: 2225–2240.

Sherwood SC. 2007. Simultaneous detection of climate change and
observing biases in a network with incomplete sampling. Journal of
Climate 20: 4047–4062.

Sherwood SC, Lanzante JR, Meyer CL. 2005. Radiosonde daytime
biases and late-20th century warming. Science 309: 1556–1559.

Sherwood SC, Meyer CL, Allen RJ, Titchner HA. 2008. Robust tro-
pospheric warming revealed by iteratively homogenized radiosonde
data. Journal of Climate, early online release, Doi:10.1175/
2008JCLI2320.1.

Singer SF. 2001. Global warming: An insignificant trend? Science 292:
1063–1064.

Singer SF. 2008. Nature, Not Human Activity, Rules the Climate:
Summary for Policymakers of the Report of the Nongovernmental
International Panel on Climate Change, Singer SF (ed.). The
Heartland Institute: Chicago, IL.

Smith TM, Reynolds RW. 2005. A global merged land and sea
surface temperature reconstruction based on historical observations
(1880–1997). Journal of Climate 18: 2021–2036.

Smith TM, Reynolds RW, Peterson TC, Lawrimore J. 2008. Improve-
ments to NOAA’s historical merged land-ocean surface temperature
analysis (1880–2006). Journal of Climate, (in press).

Spencer RW, Christy JR. 1990. Precise monitoring of global
temperature trends from satellites. Science 247: 1558–1562.

Storch H, Zwiers FW. 1999. Statistical Analysis in Climate Research.
Cambridge University Press: Cambridge; 484.
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