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ABSTRACT

Using a reanalysis of the climate of the past half century as a model of temperature variations over the
next half century, tests of various data collection protocols are made to develop recommendations for
observing system requirements for monitoring upper-air temperature. The analysis focuses on accurately
estimating monthly climatic data (specifically, monthly average temperature and its standard deviation) and
multidecadal trends in monthly temperatures at specified locations, from the surface to 30 hPa. It does not
address upper-air network size or station location issues.

The effects of reducing the precision of temperature data, incomplete sampling of the diurnal cycle,
incomplete sampling of the days of the month, imperfect long-term stability of the observations, and
changes in observation schedule are assessed. To ensure accurate monthly climate statistics, observations
with at least 0.5-K precision, made at least twice daily, at least once every two or three days are sufficient.
Using these same criteria, and maintaining long-term measurement stability to within 0.25 (0.1) K, for
periods of 20 to 50 yr, errors in trend estimates can be avoided in at least 90% (95%) of cases. In practical
terms, this requires no more than one intervention (e.g., instrument change) over the period of record, and
its effect must be to change the measurement bias by no more than 0.25 (0.1) K. The effect of the first
intervention dominates the effects of subsequent, uncorrelated interventions. Changes in observation sched-
ule also affect trend estimates. Reducing the number of observations per day, or changing the timing of a
single observation per day, has a greater potential to produce errors in trends than reducing the number of
days per month on which observations are made.

These findings depend on the validity of using reanalysis data to approximate the statistical nature of
future climate variations, and on the statistical tests employed. However, the results are based on conser-
vative assumptions, so that adopting observing system requirements based on this analysis should result in
a data archive that will meet climate monitoring needs over the next 50 yr.

1. Introduction

In specifying requirements for upper-air temperature
observations for climate monitoring, several issues
must be addressed. These include the spatial and tem-
poral resolution of the observations, and their accuracy,
precision, and long-term stability. To address them re-
quires an understanding of the expected future varia-
tions in temperature, the types of climate statistics that
will be required from the observations, and the way in
which individual observations will be assembled to de-
velop those statistics.

In this study, we develop recommendations for mea-

surement requirements for monitoring upper-air tem-
perature. We use the reanalysis of the climate of the
past half century as a model of the spatial and temporal
variations in temperature that we might expect over the
next half century, from the surface to 30 hPa. We focus
on identifying data needs to accurately estimate
monthly climatic data (specifically, monthly average
temperature and its standard deviation) and multidec-
adal trends in monthly temperatures, at specified loca-
tions. We do not address spatial sampling questions
such as the optimal number of stations or their place-
ment, which are topics of other, complementary inves-
tigations (Free and Seidel 2005; M. McCarthy, Met Of-
fice, 2005, personal communication).

Previous work by Kidson and Trenberth (1988) em-
ployed meteorological analyses to quantify the effect of
missing data on monthly climate statistics. Unlike any
existing observational dataset, analyses offer complete
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global coverage and sufficient temporal resolution to
depict the diurnal cycle. The availability of reanalyses,
performed with a consistent assimilation model with
data spanning several decades, allows extension of this
approach to address long-term climate monitoring is-
sues.

Section 2 describes the reanalysis data and our meth-
odology, including the simulated measurement proto-
cols tested and statistical tests employed. Section 3 pre-
sents results of experiments addressing measurement
precision, the sampling of the diurnal cycle, the sam-
pling of the month, the long-term stability of the ob-
servations, and the observing schedule. Issues that
might influence the interpretation of the results are dis-
cussed in section 4, and section 5 summarizes our find-
ings.

2. Data and methods

The basis for this study is the assumption that the
four-dimensional temperature fields generated by re-
analysis of the observed climate of the second half of
the twentieth century provide a good approximation of
the statistical nature of temperature variations locally
and globally, on diurnal to multidecadal time scales.
Thus we treat reanalysis as statistical “truth” and per-
form data sampling experiments to simulate the mea-

surement of the true temperature by the observing sys-
tem. By varying the simulated observing system’s mea-
surement protocols, we can mimic the effects of
different choices regarding sampling frequency and
measurement error. Comparison of climate statistics
based on the simulated measurements with those based
on the true reanalysis provides quantitative measures of
the ability of a given set of measurement protocols to
faithfully reproduce climate statistics.

a. Reanalysis data

We employ the temperature data at 6-h intervals (4
times per day) from the National Centers for Environ-
mental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalysis for the period
1948–2003 (Kistler et al. 2001). Data from 15 locations,
shown in Fig. 1 and listed in Table 1, were extracted
from the global reanalysis archive, as a representative
sample of the Global Climate Observing System
(GCOS) Upper Air Network (Daan 2002). The loca-
tions include continental and maritime sites and range
in latitude from the Tropics to the high latitudes. We
avoided the polar regions because of concerns about
reanalysis data quality there. We selected data from the
following 6 of the 18 available vertical levels for analy-
sis: surface and the 850-, 500-, 250-, 100-, and 30-hPa
levels.

FIG. 1. Map of the 15 sampling locations used in this study and listed in Table 1.
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As an aside, we note that, because of a programming
error, in addition to the 15 locations listed in Table 1,
we also analyzed data at the same set of latitudes but
with longitudes opposite those shown (east and west
exchanged). Our conclusions (as summarized in section
5) were completely unchanged after correcting this er-
ror, demonstrating the sufficiency of the spatial sam-
pling for the purposes of this analysis.

b. Simulated measurement protocols

Taking the reanalysis temperature data as a true rep-
resentation of the atmosphere, we simulate tempera-
ture measurements, carried out under different proto-
cols, to evaluate their ability to faithfully reproduce
true climatological temperatures and temperature
variations. While contemporary reanalyses are not per-
fect representations of past climate variations, particu-
larly in data-sparse regions or during periods of changes
in available observations (Stendel et al. 2000), they pro-
vide realistic approximations of the statistics of tem-
perature variations and trends (Basist and Chelliah
1997).

Five separate observing system choices are examined
in a series of experiments. Each experiment is based on
monthly average temperature and its standard devia-
tion.

The first group of experiments tests the sensitivity of
climatological statistics to temperature measurement
precision, by which we mean the random error of a
measurement (as distinct from systematic bias error).
Taking the reanalysis temperatures as truth, tests of
reduced measurement precision involve rounding the
true values to the nearest 0.01, 0.1, 0.5, or 1.0 K, to
simulate thermometers with those precisions. For this
and subsequent experiments, we then compare monthly

averages, standard deviations, and trends based on the
unmodified (in this case, maximum precision) data to
those based on the experimental data (in this case, with
reduced precision).

The second set of experiments examines the sam-
pling of the diurnal cycle. The reanalysis temperatures
are available at 0000, 0600, 1200, and 1800 UTC. Using
the maximum precision reanalysis data, we perform
three subsampling experiments, one with observations
twice daily, at 0000 and 1200 UTC, and two with ob-
servations once daily, at either 0000 or 1200 UTC.

The third set of experiments considers the number of
days per month on which observations are taken.
Guided by results of the diurnal sampling experiments,
these experiments of the submonthly sampling all in-
volve twice-daily (0000 and 1200 UTC) observations.
Four cases test the effects of sampling every day, and
every two, three, and seven days. These cases are tested
both with the full precision data and with the reduced
precisions of 0.1 and 0.5 K.

The final two sets of experiments deal with the long-
term stability of the measurements, and so involve time
series of monthly means and standard deviations. In the
fourth set we imagine an observing system protocol that
requires observations to remain stable to within a speci-
fied accuracy over a specified period of time. We simu-
late the effects of artificial inhomogeneities (time-
varying systematic biases due to instrument changes,
e.g.) on monthly temperature data, for a specific calen-
dar month. Using data segments of 20, 25, 30, and 50 yr,
we introduce a step change, or intervention, in the
monthly temperature data at one particular time. The
time is randomly selected to occur at any point in the
time series. The magnitude of the step change is also
randomly determined to vary between 0 and a fixed
value and can be either positive or negative. Seven dif-
ferent fixed values were used: 0.10, 0.25, 0.50, 0.75, 1.00,
1.50, and 2.00 K. These experiments are performed with
monthly values based on twice-daily data, taken every
day, every two days, and every three days, and with
both maximum measurement precision and reduced
precision of 0.1 or 0.5 K. Thus these experiments allow
us to examine the combined effects of different mea-
surement protocols. We also examine the effects of
multiple interventions on trends.

The fifth set of experiments also focuses on trends,
but in this case, rather than imposing a constant step
change at random times, we simulate the effects of a
change in the observation schedule at the midpoint of
each data segment. These experiments are meant to
simulate two particular circumstances that could moti-
vate a change in observing schedules. The first is a re-
duction in the frequency of observations to conserve

TABLE 1. List of locations, corresponding to GCOS upper-air
network stations, for which reanalysis data were analyzed.

Latitude Longitude Station

5.2°N 3.6°W Abidjan, Ivory Coast
38.6°N 77.3°W Sterling, VA
70.6°N 8.4°W Jan Mayen, Norway

7.2°S 112.5°E Surabaya, Indonesia
29.6°S 30.6°E Durban, South Africa
26.1°N 127.4°E Naha, Japan
54.6°N 73.2°E Omsk, Russia
13.4°N 100.4°E Bangkok, Thailand
15.5°S 47.6°W Brasilia, Brazil
0.5°S 89.4°W San Cristobal (Galapagos), Ecuador

54.3°S 158.6°E Macquarie Island, Australia
48.5°N 9.1°E Stuttgart, Germany
13.3°N 2.1°E Niamey, Niger
25.0°S 128.2°E Giles, Australia
60.0°N 111.6°W Fort Smith, NWT, Canada
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resources, such as manpower or expendables. We simu-
late reducing from two to one observations per day and
reducing from daily observations to observations every
second, third, or seventh day (in all cases retaining two
observations per day.)

We also test the effects of changing from one obser-
vation per day at 0000 or 1200 UTC to the other ob-
servation time at the midpoint of a data segment. This
experiment is meant as an (admittedly imperfect) test
of the impact of moving from launching radiosondes at
a synoptic observing time to timing launches to coincide
with overpasses of a polar-orbiting satellite, as has been
proposed to maximize the opportunities for calibration
and validation of satellite data. In practice, satellite
overpasses occur twice daily (except in polar regions
where they are more frequent) at fixed local times. Be-
cause reanalysis data are only available at four synoptic
times, we cannot fully simulate a change from a single
synoptic time to a location-specific new time. A switch
from 0000 to 1200 UTC observations (or vice versa) is
meant to approximate a worst-case scenario of the ef-
fects of changing observation time.

c. Statistical tests

The purpose of the experiments outlined above is to
determine whether different sampling protocols result
in monthly climatological data and multidecadal trends
that are representative of the true climatology and
trends. We use standard statistical tests to make these
determinations, using algorithms given by Press et al.
(1989).

To test the null hypotheses that the reanalysis truth
and the experimental results have consistent monthly
means and variances, we use the Student’s t test and the
F test, respectively. If the test indicates rejection of the
null hypothesis at the p � 0.05 level, we consider the
means (or variances) to be statistically significantly dif-
ferent. Note that these tests take into account the po-
tentially different sample sizes used to compute the
monthly statistics.

We also test whether a trend determined from a time
series of monthly values created using one of the ex-
perimental sampling protocols is consistent with the
true trend based on the fully sampled reanalysis data,
with maximum data precision and no artificial step
changes. For trend calculations, we employ linear re-
gression to estimate both the trend and its uncertainty
(or confidence interval, given as �2 standard deviations
of the trend estimate), with a chi-square merit function
that incorporates the errors in the monthly mean tem-
peratures (given by the monthly standard deviations).
This is important because different experimental mea-
surement protocols result in different monthly standard

deviations, which in turn affects the uncertainty of the
trend estimates.

All trends are based on time series of monthly data,
and trends are computed separately for each calendar
month, rather than for all months or for annual means.
This choice offers two major advantages. First, it allows
for 12 times as many trends to be computed at a given
location and level, giving a larger sample of trend cal-
culations on which to base conclusions. Second, it alle-
viates the problem of underestimating the uncertainty
of the trend estimate due to nontrend-related temporal
autocorrelation in the time series.

We test the null hypothesis that a given trend is con-
sistent with the true trend using the t test, which incor-
porates the trend estimates and their statistical uncer-
tainties, and again use the p � 0.05 level to determine
statistically significant differences in trend. One poten-
tial complication arises when a t test result might indi-
cate that trends are not significantly different because
one or both trend estimates have very large uncertain-
ties, but when the interpretation of the two trends
would lead to different conclusions about atmospheric
temperature changes. For example, data based on one
sampling protocol indicate a warming trend with a con-
fidence interval that does not include zero, while data
based on another sampling protocol indicate a warming
trend with a confidence interval that does include zero.
In such a case, a t test could conceivably indicate that
the two trends were consistent, but a data analyst might
interpret each trend (in the absence of the other) dif-
ferently, the first but not the second indicating signifi-
cant warming.

We address such concerns using a contingency table
(Table 2) that makes use of both the t-test results and
the trend confidence intervals. The situation described
in the preceding paragraph corresponds to the second
set of possibilities presented in the table (only one
trend confidence interval does not include zero), in
which case, regardless of the t-test results, we declare
the trends to be significantly different. In the first set of
possibilities in Table 2 (neither trend confidence inter-
val includes zero), we rely completely on the t-test re-
sults. In the third set (both trend confidence intervals
include zero), we declare the trends not significantly
different regardless of the t test, since a data analyst
looking at observations based on either sampling pro-
tocol would conclude that no significant temperature
change had occurred.

Our use of standard, parametric statistics (averages,
standard deviations, and linear regression trends) for
this analysis, rather than their nonparametric equiva-
lents (e.g., medians, interquartile ranges, and median-
of-pairwise-slopes trends) leads to conservative deci-
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sions regarding the fidelity of results from a given ex-
periment compared with the true reanalysis. Because
nonparametric statistics (and nonparametric tests) are
robust to the underlying probability model (e.g., non-
Gaussian distributions) and resistant to outliers, they
are likely to yield more consistent results for some of
the experiments in which the within-month sampling
frequency is reduced or artificial step changes are in-
troduced into a time series. Therefore, we would more
likely accept the hypothesis that the experimental re-
sults do not differ significantly from the true values.
Because we do not wish to underestimate any potential
problems with a given measurement protocol, we base
our analysis on parametric statistics.

This same concern influenced our decision not to re-
duce the p value of our statistical tests, as is often rec-
ommended when a large number of tests are per-
formed. To avoid the “fishing expedition” problem, in
which some tests will give apparently statistically sig-
nificant results purely by chance if a large enough num-
ber of tests is conducted, one can use the Bonferroni
inequality (Bonferroni 1936) to make the test more
stringent by reducing p to p/N, where N is the number
of tests performed. In our case, we are more concerned
with the possibility of missing significant differences in
climate statistics than with wrongly identifying differ-
ences as statistically significant. Therefore, we report
results based on unmodified p values.

However, we did perform tests with reduced p val-
ues, and found the impact to be small. For both a simple
reduction of p from 0.05 to 0.01, as well as for further
reduction using the Bonferroni inequality, the fraction
of tests determined to yield statistically significant dif-
ferences (in means, standard deviations, or trends) was
reduced by at most a few percent, and in many cases the
change was less than 1%.

3. Results

This section presents the results of the experiments
outlined in section 2, with different simulated measure-
ment protocols, including tests of the effects of variable

precision of temperature measurements, variable sam-
pling of the diurnal cycle, variable sampling of the
month, variable constraints on the long-term stability of
measurement accuracy, and variations in observation
schedule. We examine climatological monthly statistics
first, then trends.

a. Monthly means and standard deviations

1) TEMPERATURE MEASUREMENT PRECISION

Figure 2 shows the distribution of the effects on
monthly mean temperature and its standard deviation
resulting from reducing the precision of the reanalysis
temperature. Each box plot represents 60 480 monthly
samples (the product of 15 locations, 672 months, and 6
vertical levels). For every single sample, the Student’s t
test and F test indicate that there is no significant dif-
ference, at the p � 0.05 level (or for p � 0.01), between
the monthly means and standard deviations computed
from the full precision and reduced precision data.
With measurement precision of 0.01, 0.10, 0.50, or 1.00
K, the means never differ by more than 0.01, 0.01, 0.06,
or 0.11 K, respectively. The standard deviation from the
reduced precision data is generally within 10% of the
true value (Fig. 2, bottom), although, for the 1.00-K
precision case, the reduced precision standard devia-
tion can approach 30% larger than the true value, prob-
ably because rounding to the nearest whole degree ef-
fectively increases the range of the observations.

From this set of experiments, we conclude that, with
full temporal sampling of the month (four observations
per day every day), reducing the data precision has
minor effects on monthly means and standard devia-
tions. To ensure that means are accurate to within
�0.05 K, and standard deviations are accurate to
within 10%, measurement precision must be held
within 0.50 K.

2) SAMPLING OF THE DIURNAL CYCLE

The impact of subsampling the diurnal cycle on
monthly averages and standard deviations is larger than
the impact of reduced data precision. Of the 60 480

TABLE 2. Contingency table used to determine whether two trends (one with absolute magnitude T1 and 2-sigma confidence interval
C1, and the second with absolute magnitude T2 and 2-sigma confidence interval C2) are, or are not, significantly different, depending
on the t test of the null hypothesis that the two trends are consistent.

Trends and confidence intervals

t test of null hypothesis that trends are consistent

Accepted Rejected

T1 � C1 and T2 � C2 (neither trend confidence interval includes zero) Not significantly different Significantly different
T1 � C1 or T2 � C2 (only one trend confidence interval does not

include zero)
Significantly different Significantly different

T1 � C1 and T2 � C2 (both trend confidence intervals include zero) Not significantly different Not significantly different

858 J O U R N A L O F C L I M A T E VOLUME 19



cases, sampling twice daily (at 0000 and 1200 UTC)
caused monthly means and standard deviations to differ
significantly from their values based on four samples
per day in 5.5% and 3.9% of the cases, respectively.
When only 0000 UTC (1200 UTC) data were used,
means were significantly different in 20.2% (25.2%) of
the cases, and standard deviations were significantly
different in 8.7% (7.3%) of the cases.

The effects of this subsampling depend on the mag-
nitude and shape of the diurnal temperature cycle,
which varies seasonally, vertically, and from location to
location (Seidel et al. 2005), as well as the timing of the
selected observations with respect to the time of maxi-
mum and minimum temperature. Examples of the ef-

fects at two locations, Abidjan, Ivory Coast, and Ster-
ling, Virginia, are shown in Fig. 3. At Abidjan, near the
equator and the Greenwich meridian, sampling at 0000
and 1200 UTC yields monthly means that are generally
within 0.2 K, and almost always within 0.5 K, of the
values based on four observations per day, but with a
small bias toward warmer monthly means at most lev-
els. Sampling only at 0000 UTC (local midnight) yields
differences that exceed 0.2 K in more than half the
cases for the surface and for the 30-hPa level, with
cooler monthly means than those obtained using four
observations per day at those levels, and warmer values
at midtropospheric levels. Sampling only at 1200 UTC
(near local noon) has opposite, and somewhat larger,
effects. Standard deviations are generally smaller in the
subsampling cases than in the full sampling case, with
reductions of more than 5% in half the cases for twice-
daily sampling, and reductions of more than 10% in
half the cases for once-daily sampling.

At Sterling, the impact of subsampling on monthly
mean surface temperature is substantially larger than at
Abidjan, with median differences of about 0.6 K for
0000 and 1200 UTC sampling, 1.6 K for 0000 UTC sam-
pling, and 2.8 K for 1200 UTC sampling. (Note the
different x-axis scales for Abidjan and Sterling in Fig.
3.) In the free atmosphere (850 to 30 hPa), the effects
are much smaller, with differences generally �1.0 K.
The tendency for reduction in monthly standard devia-
tion is lower at Sterling than at Abidjan. This is prob-
ably because synoptic weather variability (from day to
day) contributes a greater fraction of the overall vari-
ability at Sterling than at Abidjan, where variability
associated with the diurnal cycle is a more important
factor.

From these experiments, we conclude that sampling
once daily introduces systematic biases in monthly
mean temperatures and can either inflate or deflate
estimates of monthly standard deviations. These effects
can be mitigated by sampling twice daily, at 0000 and
1200 UTC, in which case only �5% of monthly statis-
tics will be significantly different from those based on
four observations per day. Based on this conclusion, the
remaining experiments are all performed using twice-
daily sampling.

3) SAMPLING OF THE MONTH

Figure 4 shows the effects on monthly means and
standard deviations of taking (twice daily) observations
once every two, three, and seven days, compared with
daily. Results are shown for the ensemble of all stations
both at all six vertical levels and at three individual
levels: 850, 500, and 100 hPa. In each case, the median
difference in means is near zero, and the median ratio

FIG. 2. The effects of reduced measurement precision on
monthly means and standard deviations of temperature. (top) The
distributions of the differences in monthly mean temperatures,
taken as the estimated mean when the precision is reduced (to
0.01, 0.10, 0.50, or 1.0 K) minus the actual monthly mean from
reanalysis data. Each box-and-whisker plot is based on 60 480
samples (from data at 15 locations, six vertical levels, and 672
months) and shows the min and max differences, and the 25th,
50th, and 75th percentile values. (bottom) Same as in top, but for
the distributions of the ratios of the estimated to actual monthly
standard deviations. All monthly means and standard deviations
are based on sampling every day of the month, 4 times per day.
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FIG. 3. The effects of reduced sampling of the diurnal cycle on monthly means and
standard deviations of temperature. (top row) The distributions of the differences in
monthly mean temperatures, taken as the estimated mean based on (left) 0000 and
1200 UTC data, (middle) 0000 UTC data, and (right) 1200 UTC data minus the
monthly mean based on 0000, 0600, 1200, and 1800 UTC data, at the location of
Abidjan, Ivory Coast, at six vertical levels, with the surface and the five pressure levels
(hPa) indicated. Each box-and-whisker plot is based on 672 samples (for 1948–2003)
and shows the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentile difference values.
(second row) Same as top row, but for the distributions of the ratios of the estimated
to actual monthly standard deviations. (third row), (bottom row) Same as first and
second rows, respectively, but for the location of Sterling, VA. Note the different x-axis
scales in the first and third rows. All monthly means and standard deviations are based
on full-precision data and sampling every day of the month.
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of standard deviations is near unity. However, there is
considerable spread about the median. For sampling
every other day, monthly means are always within 1.8 K
of the values based on daily sampling, and they are
within 0.09 K more than 50% of the time. For sampling
once every three (seven) days, means are always within
3.4 K (8.6 K), and within 0.16 K (0.39 K) more than
50% of the time.

Comparing the results at different pressure levels in
Fig. 4 indicates that monthly means at 850 hPa (and at
the surface; not shown) are more sensitive to reduced
sampling than those at higher altitude. In this regard,
subsampling the month is similar to subsampling the
day.

The effect of subsampling the month on monthly

standard deviations is substantial. Sampling every two
or every three days yields standard deviations that are
within 10% of the true value more than half the time.
But they can be as much as 30% larger or smaller for
sampling once every two days, and as much as 50%
larger or smaller for sampling once every three days.
Weekly sampling can result in standard deviations from
90% smaller to 100% larger than true values.

Rarely are the monthly averages and standard devia-
tions significantly different, according to the t test and F
test, in these submonthly sampling experiments. In the
weekly sampling experiment, they are significantly dif-
ferent in 4% of the cases. For sampling every other day
or every three days, we find significant differences in
less than 0.5% of the cases. This is because large

FIG. 4. The effects of reduced sampling of the month on monthly means and standard
deviations of temperature. Same as in Fig. 2, but comparing means and standard deviations
based on sampling every two, three, and seven days with sampling every day. In all cases,
twice-daily sampling (0000 and 1200 UTC data) and full-precision data were used. Leftmost
panels show combined results from six vertical levels, and the other three panels show results
for (from left to right) 850, 500, and 100 hPa.
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changes in means are accompanied by large changes in
standard deviations, and because the experiments re-
duce the number of samples, both of which contribute
to lower t-test scores.

Results from these tests of subsampling the month,
using full precision data, are repeated in Fig. 5, which
also shows comparable results using data with reduced
precision of 0.1 and 0.5 K. In all cases, two observations
per day were used, and Fig. 5 shows the ensemble of
results for all the stations and levels. These compari-

sons indicate that, for a given monthly subsampling
protocol, reducing data precision has a very minor im-
pact on the monthly averages and standard deviation,
consistent with our results in section 3a(1) above.

From these experiments, we conclude that sampling
every other day, or every three days (but not every
seven days) yields monthly means and standard devia-
tions that are not significantly different from the true
values at least 99.5% of the time, and this is true even
if the data precision is reduced to 0.1 or 0.5 K. To

FIG. 5. The combined effects of reduced measurement precision and reduced sampling of
the month on monthly means and standard deviations of temperature. (left) Full-precision
results from Fig. 4, but showing results only for sampling every two and three days. The effects
of reducing measurement precision to (middle) 0.1 and (right) 0.5 K.
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ensure that differences in monthly means do not exceed
2 K, sampling must be done at least once every two
days. This result—that daily observations are not nec-
essary—is consistent with the findings of Kidson and
Trenberth (1988), who stress that subsampling uni-
formly throughout the month (e.g., taking one obser-
vation every 3 days, as we have done here) is substan-
tially less problematic than clumping observations (e.g.,
taking observations for 10 consecutive days in a month,
with no measurements on the other days).

4) IMPACT OF REANALYSIS DATA PERIOD ON

CLIMATOLOGICAL RESULTS

Several investigators (e.g., Pawson and Fiorino 1999;
Kistler et al. 2001; Bengtsson et al. 2004) have pointed
out that NCEP–NCAR reanalysis fields exhibit artifi-
cial step-like behavior around 1979, the time of the start
of assimilation of satellite data, and at other times. We
tested whether the results presented in section 3a were

sensitive to the selection of reanalysis data period by
repeating our analysis for the period 1979–2003, and
they were not. Although changes in the input data
stream can introduce spurious interannual variations,
their effects on data precision, the shape of the diurnal
cycle, and submonthly variability appear to be small
enough to have no impact on this analysis.

b. Trends

So far we have examined effects of data precision and
temporal sampling on monthly climatological statistics.
Now we turn to multidecadal trends. In the 56-yr re-
analysis record, trends can be computed over various
periods, with data segments starting in different years.
Figure 6 (top) shows the number of data segments of a
given length available in the 56-yr record; these range
from 37 twenty-year segments to 7 fifty-yr segments.
Considering that we are analyzing data from six vertical
levels at 15 locations for 12 calendar months, the right-

FIG. 6. (top) The number of data segments of various lengths available during 1948–2003.
Left axis shows the number of segments, and right axis shows the number of time series
analyzed, which is the product of the number of segments and 15 stations, six levels, and 12
calendar months (bottom) The percentage of data segments with temperature trends statis-
tically significantly different from zero. Each trace is for one location, at all six levels and for
all 12 calendar months.
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hand axis of the plot shows the total number of trend
estimates possible for a given segment length, ranging
from 7560 fifty-year segments to 39 960 twenty-year
segments.

Although reanalysis trends are not reliable estimates
of true atmospheric trends, for the purposes of this
study we are not concerned that every trend for every
period and every pressure level be correct. What mat-
ters is that the distribution of reanalysis trends provides
a reasonable representation of the expected range of
atmospheric trends, and that the reanalysis signal-to-
noise (trend to shorter-term variability) ratio be realis-
tic.

Before examining the effect of different measure-
ment protocols on trends, we first examine the fre-
quency of statistically significant trends in the reanaly-
sis data. We define a trend as statistically significant if
the two standard deviation confidence interval does not
include zero. Figure 6 (bottom) shows the percentage
of data segments with statistically significant trends, for
each of the 15 locations sampled. For 20-yr data seg-
ments, less than 10% of the trends are significant. With
longer segments, the frequency of significant trends in-
creases, but even for 50-yr segments it is nowhere larger
than 40% and is less than 20% in more than half the
cases. This result emphasizes the fact that, even with
optimal “observations,” with perfect precision, full tem-
poral sampling, and no artificial discontinuities, statis-
tically significant temperature trends in the reanalysis
are not frequent, especially for short data records.

1) EFFECTS OF MEASUREMENT PRECISION AND

TEMPORAL SAMPLING

Figure 7 shows the effects of various measurement
protocols on the detection (or nondetection) of tem-
perature trends. The plots show the trend error rate,
defined as the frequency (expressed as a percentage) of
erroneous trend estimates, using the criteria described
in Table 2 and section 2c above to determine whether
trend estimates are consistent. The top panel indicates
that reducing the measurement precision has little in-
fluence on trend detection, and erroneous estimates are
made in less than 1% of the cases, for all trend period
lengths, for precisions of up to 1.0 K. If precision is held
to 0.5 K, errors are made in less than 0.5% of the cases.

Subsampling the diurnal cycle has a much more sig-
nificant effect on trend estimates (Fig. 7, second panel).
Error frequency increases with increased trend period
length, because of differential daytime and nighttime
trends at some locations. (The ratio of the number of
statistically significant trends at 0000 UTC to the num-
ber at 1200 UTC, or the reciprocal, varies between 0.37
and 0.99 among the 15 locations tested, with a median

value of 0.80. This dependency of trends on time of
observation may be an artifact of the reanalysis but
might also reflect actual changes in the amplitude of the
diurnal cycle.) For 50-yr periods, sampling twice daily
(at 0000 and 1200 UTC) results in erroneous trend es-
timates in 11% of the cases, and sampling only once
daily, at 0000 or 1200 UTC, increases the error rate to
16 or 17%, respectively.

As seen in Fig. 8 (left), these trend error rates (in this
case for 50-yr trends) vary with altitude and are smaller
at 500 and 250 hPa than at the lower and higher levels.
This is probably in part a reflection of the result dis-
cussed above—larger errors in monthly means associ-
ated with reduced sampling at the lowest levels. The
errors in mean values will contribute to errors in trends.
The larger error rates at 850 hPa than at the surface
may be a reflection of the more realistic representation
of the 850-hPa diurnal cycle compared with the surface,
and the subsequent larger errors associated with re-
duced sampling of the diurnal cycle at 850 hPa. Surface
temperatures in the NCEP–NCAR reanalysis are not
based on surface temperature observations, and, as dis-
cussed in section 4 below, the amplitude of the surface
diurnal cycle is underestimated.

The high error rates at 30 hPa (up to 44% for sam-
pling only at 0000 UTC) is partially due to this same
effect of erroneous means but may also be related to
problems with the reanalysis data. Known step-like in-
homogeneities in stratospheric temperatures associated
with the introduction of satellite data into the assimila-
tion (Pawson and Fiorino 1999; Kistler et al. 2001) will
affect trend calculations. If these inhomogeneities have
different manifestations at different times of day,
trends based on subsampled data will be different from
those based on full sampling.

Compared with subsampling the day, even larger er-
ror rates are obtained in the experiments in which ob-
servations are taken less frequently than daily. In this
case (Fig. 7, third panel, and Fig. 8, middle panel), we
compare trends based on daily sampling, with two ob-
servations per day, with trends based on sampling every
two, three, or seven days, also with two observations
per day, as before. Again, the error rate increases with
increasing period length. For weekly sampling, the
overall error rate is 10% for 20-yr periods and 27% for
50-yr periods. For sampling every other day, the error
rate remains less than 12% for all periods, and it is
about 1% higher for sampling every three days. Note,
however, that these error rates for sampling every two
or three days are only 1% or 2% higher than those
based on daily sampling and are predominantly due to
subsampling the diurnal cycle rather than subsampling
the month (Fig. 7, second and third panels).
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FIG. 7. The effects of different measurement protocols on temperature trend detection, as
represented by the percentage of trends that are significantly different from the actual re-
analysis trends (error rate), for trend periods ranging from 20 to 50 yr. (See text for discussion
of tests for determining significance of trend differences.) (from top to bottom) The effects of
reduced measurement precision, the effects of subsampling the diurnal cycle, the effects of
subsampling the days of the month, and the combined effects of reduced data precision and
subsampling the days of the month. Results in the bottom two panels are based on two
samples per day (0000 and 1200 UTC), whereas the top panel is based on four samples per
day.
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