HYSPLIT Hybrid Single Particle Lagrangian Integrated Trajectory Model Roland Draxler Air Resources Laboratory

ARL Laboratory Review May 3-5, 2011

Research and Applications

Emergency Response

- Radiological releases
- Improvised nuclear devices
- Chemical releases
- Volcanic eruptions (Barbara Stunder)
- Air Quality
 - Kilauea plume prediction
 - Fire smoke and Wind-blown dust (Ariel Stein)
 - Global pollutant transport
 - Source-receptor analysis (Mark Cohen)
- Model Evaluation
 - Data Archive of Tracer Experiments and Meteorology
 - Meteorological data assimilation

Decision Support

- Dispersion model training
- Real-time Environmental Applications and Display sYstem

HYSPLIT Description and History

Eulerian Transport and Dispersion 1z 17 Oct 95; species = P001; level(m) = 232

- Numerical Approach
 - Follows particle motion
 - Off-line (easy to re-run)
 - Requires meteorological fields
 - Particle or puff solutions
 - UNIX, PC, Mac, Web
- History
 - 1980's used only soundings
 - 1990's switched to model fields
 - 2000's incorporate 3D turbulence

Future Directions

- In-line and multi-cpu
- Shared memory optimization

Emergency Response Radiological Releases

History

- Chernobyl accident (IAEA)
- WMO Regional Specialized Meteorological Center (RSMC)
- Support NMS in WMO Regions III and IV (Americas)

Accomplishments

- HYSPLIT installed in Australia (BoM) and China (CMA)
- Model based source-attribution applied at CTBTO

• Approaches

- Web exchange of graphics and model fields
- Communicating uncertainty through multiple dispersion products

Emergency Response

Radiological Releases

RSMC TIME OF MODEL RUN (YYYYMMDDCC_HHMM)	MODEL PARAMETERS	JOINT STATEMENT	VIEW PRODUCTS	TRAJECTORIES	TIME PERIOD 1 +24 HRS	TIME PERIOD 2 +48 HRS	TIME PERIOD 3 +72 HRS
Washington 2011011306_1334	Cover (Postscript)	Region III/IV	Check All Uncheck All	Trajectories (traj.txt)	 Exposure Deposition 	ExposureDeposition	ExposureDeposition
Montréal 2011011300_1424 All Products	Cover (Postscript)	Region III/IV	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	Exposure Deposition	 Exposure Deposition
Melbourne 2011011300_2351 All Products	Cover (Postscript)	Region V	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	Exposure Deposition	Exposure Deposition
Exeter All Products	Cover (Postscript)	Region I/VI	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	Exposure Deposition	ExposureDeposition
Toulouse 2010112610_5602 All Products	Cover (Postscript)	Region I/VI	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	Exposure Deposition	Exposure Deposition
Beijing 2010111800_1150 All Products	Cover (Postscript)	Region II	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	 Exposure Deposition 	 Exposure Deposition
Tokyo no incident All Products	Cover (Postscript)	Region II	Check All Uncheck All	Trajectories (traj.txt)	Exposure Deposition	Exposure Deposition	Exposure Deposition

Emergency Response

Improvised Nuclear Devices

History

• ARL participated in early atmospheric testing

Approaches

- 212 species considered
- Partitioned between gas and 60 particle size bins
- Time-decayed dose post-processing

Accomplishments

- New product for NOAA's HSPO and NWS WFOs
- Linked to research and operational NOAA forecast models

Emergency Response

Improvised Nuclear Devices

ATMOS

NOAA

Air Resources Laboratory

Emergency Response Chemical Releases

History

 Simple web interface for NWS WFO plume dispersion capability

Approaches

- Link to CAMEO chemicals data
- Collaboration with OR&R to include ALOHA source model

Accomplishments

 Incorporating chemical plume modeling capability at WFO

Air Quality

Air Quality

Pu'u'O'o and Halema'uma'u Plume Prediction

Concentration (ug/m3) averaged between 0 m and 100 m Integrated from 0900 06 Apr to 1000 06 Apr 11 (HST) SO4 Release started at 1400 04 Apr 11 (HST)

Approaches

- Model linked with locally (UH) run 1-km resolution WRF
- Real-time emissions monitoring
- Measurement data for verification
- Results available on-line

Future Directions

 Conversion of SO₂ to SO₄ in unique vent environment

History

- Many of the old Kr-85 experiments affected by varying background concentrations
- Lagrangian models not suitable for global predictions

Approaches

 Stand-alone Eulerian global CTM model to predict background

Accomplishments

- Fast for single species (2.5 deg 20 min/yr)
- CTM now included as a HYSPLIT subroutine
- Hg background for source-receptor analysis

Future Directions

- Parallelization needed for multiple species
- Nested grids may be required

Air Quality

4/15/2011

NARR METEOROLOGICAL DATA

Data Archive of Tracer Experiments and Meteorology

Information Summary

DATEM - Data Archive of Tracer Experiments and Meteorology

Information on the DATEM project

Click on the experiment name for experiment details.

- Cross APpalachian Tracer EXperiment (CAPTEX) Release: Dayton, OH: Sep. 18, 25, Oct. 02, 14 1983 & Sudury,ONT: Oct. 26, 29 1983
- Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE) Release: Savannah River Plant, SC: Spr.1982, Sum.1982, Fal.1982, Win.1982/3, Spr.1983,
- Across North America Tracer Experiment (ANATEX) Release: Glasgow, MT and St. Cloud, MN: Jan. through Mar. 1987
- OKlahoma Tracer EXperiment (OKTEX) Release: Norman, OK: Jul. 08 1980
- MEtropolitan Tracer EXperiment (METREX) Release: metropolitan Washington, DC: Jan. through Dec. 1984
- European Tracer Experiment (ETEX) Release: Rennes, France: Oct. 23 1994

- Approach
 - Creation of the NARR ... data better than observations!
 - Common statistical evaluation protocols

Accomplishments

- Web access to run HYSPLIT for each experiment
- Standardized model change testing in conjunction with version control

Data Archive of Tracer Experiments and Meteorology

Future Directions

- More user training on model parameters
- Include more dispersion experiments
- Add new meteorological data files ...

Meteorological Data Assimilation

• Approaches

- Testing WRF-ARW with historical tracer measurements
- Manage data volume (1 km domain = 1.6 Gb / time)

Meteorological Data Assimilation

Future Directions

- Evaluate ...
 - time frequency versus grid size
 - Instantaneous versus time averaged fields
 - In-line model versus offline model
 - Optimize model's data
 I/O for large files

Decision Support

Decision Support Dispersion Model Training

Click to Begin

MetEd Home COMET Home Contributors | Tech Notes | Print Version | User Survey

CAMEO/

HYSPLIT

©The COMET Program

Produced by the COMET[®] Program Copyright 2003, <u>University Corporation for Atmospheric Research</u>. All Rights Reserved. Legal Notices

Approaches

- Annual 3-day PC training workshop (14 since 2004)
- Interact with stakeholders

Accomplishments

 New collaboration with COMET to satisfy WFO training requirement

Future Directions

 Need to develop a model front-end black-box

Decision Support

Real-time Environmental Applications and Display sYstem

Approaches

- WEB based interface
- Perl for input and Postscript (PS) output
- Utilities to convert PS to SVG, ESRI-SHP, KMZ
- Accomplishments
 - New interface using FLASH and output to Google Maps

Future Directions

 Couple with GSD's High Resolution Rapid Refresh at ESRL

Indicators of Success

Emergency Response

- 150 web simulations per month
- Air Quality
 - 50,000 web simulations per month
 - PC downloads: 4743

Decision Support

- Workshops ~ 140 persons
- Invitational ~ 100 persons
- International ~ 100 persons

4/15/2011

ATMO

Collaborators / Partners

- Australian Bureau of Meteorology: HYSPLIT, GUI, SVG
- Chinese Academy of Meteorological Sciences: MeteoInfo
- National Cancer Institute: nuclear testing dose
- Office of Response and Restoration: ALOHA/CAMEO
- ESRL Global Systems Division: GTAS
- ESRL Global Monitoring Division: STILT integration
- US Forest Service: Bluesky, VSMOKE
- University of Huelva: arsenic, dust, READY web
- University of Hawaii: Kilauea SO2/SO4 plumes

Possible Future Directions

- Emergency Response
 - Establishment of a Plume Prediction Center
 - Web backup and redundancy
 - Closer coupling of dispersion and meteorology models
- Decision Support
 - Dispersion model integration into AWIPS-II
 - Dispersion model linked with local predictions