Atmospheric Deposition Measurement and Program Management

Richard S. Artz Air Resources Laboratory

Air Resources Laboratory Review May 3-5, 2011

Goal

 Provide sound scientific information on the deposition of major ions*, heavy metals, and toxic substances in precipitation to the surface of the earth.

*Sulfate, Nitrate, Chloride, Phosphate, Sodium, Calcium, Magnesium, Potassium, Ammonium, pH

4/15/2011

"Acid Rain": The precursor to the "Nitrogen Cascade"

NOAA

3

Approach: ARL Collaboration in Measurements and Data Interpretation

- Short-term measurements
- U.S. Long Term Monitoring
 - NADP/NTN
 - NADP/AIRMoN-wet
 - AIRMON-dry
 - NADP/AMNet
- International Activities
 - North America: CEC, IJC
 - Global
 - WMO Global Atmosphere Watch
 - GAW linkages with other programs

National Atmospheric Deposition Program

- ARL Contributions
- National Trends Network Products

Sulfate ion wet deposition, 1994

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Sulfate ion wet deposition, 2009

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

4/15/2011

AIRMoN-wet Network

- Seven stations
- 35 year records
- Top quality

Common Applications

- Comparisons of chemistry between daily and weekly samples
- Trend analysis
- Source-receptor relationships
- Air quality model development
- Atmospheric chemistry and deposition
- Ecosystem studies
- Coastal nitrogen deposition
- Agricultural studies involving pathogens

4/15/2011

International Joint Commission --International Air Quality Advisory Board

- The IJC was established in 1909 following ratification of the Boundary Waters Treaty.
- IJC Commissioners are political appointees.
- IAQAB is an advisory board that reports to IJC.
- ARL serves in a personal advisory capacity to IJC with nine other scientists from the US and Canada.
- Contemporary issues are primarily associated with energy consumption and production

World Meteorological Organization – Global Atmosphere Watch Science Advisory Group for Precipitation Chemistry

Chaired by ARL since 1998

- Oversight of approximately 200 official and 400 unofficial sites globally
- Implementation of WMO guidelines through:
 - Development of a guidance document outlining standard operating procedures
 - Institution of a comprehensive quality assurance program
 - Development of regional programs
 - Use of information in scientific assessments
 - Conducting special studies

Manual for the GAW Precipitation Chemistry Programme

- 1. Introduction
- 2. Station Siting
- 3. Field Protocols
- 4. Laboratory Operations
- 5. Data Management
- 6. Quality Control and Quality Assurance

WMO/GAW Laboratory Intercomparison Studies

Original unpublished figure courtesy of Robert Vet and Alain Sirois

Ring Diagram Overview

GOOD - Green Hexagon SATISFACTORY - Blue Trapezoid UNSATISFACTORY - Red Triangle DETECTION LIMIT - Open Circle

Lab Intercomparison Study Data

Lab 700153 India, LIS 2010 43 Ring Diagrams

Sample 1 Sample 2 Sample 3

The ring diagrams are a useful way to summarize the essential lab-bylab results of the Laboratory Intercomparison Studies, for potential users of the measurement data

NOAA

	Sa Lab	mple 2000-1	2000-2	2000-3	2001A-1	2001A-2	2001A-3	20010-1	20010-2	20010-3	2002A=1	2002A-2	2002A-3	20020-1	20020-2	20020-3	Species
	700112	3	0	3	0	0		0			\$	Ø	-	0	\bigcirc	$\langle \rangle$	Cond. ^{pH} SO4 Acid
	700113 201112 110718	-	0	0	0	0	\Diamond	Ô	0	\bigcirc	0	Ó	0	\diamond	Ó	0	F C
,	700114 	0	Q	j	3	3	3	Ø	0	Ø	Q	Ø	C	Ø	Q	\bigcirc	Ca K ^{Na}
	700115	Q	0	Q	3		1	0	0	Q	3		(J.		3	1	Performance Indicators
	700118 550145	3		0	0	0				0	42		-		0	0	0
	700120 Salm 4515	Ú.	Ű	1	0	0	Ō	Ø	0	0	0	-	1	-	Q		Unsat sfactory < Median
	700121 Sateriation	0	ð	Ô		਼	े	0	Ó	٢	0	0	Ç	."		8	\bigcirc
1	700123 For what	4	2	t.	M.	2.0	1	Ó	*	٢	1	3	2	25	-		Satisfactory < Median
	700125 First t	3	and a	->	٩	Ċ	3	0	ి	3	3	1	3	3	The second	0	Good
	700125A		*	÷.	0	٢	ి	No. Y		New Y	٢	0	0	٢	٠	•	<u></u>
	700127	0	0	0	0	0	0	0	0	0		0	1	0	0	Ŷ	Satisfactory > Median
	70012a 'a		3	The second	3	3	\$		17	0	-	-		Q	Ō	Ó	
	700129	2	9	0	0	-	3	2	0	2	٢	3		0	0	Ő	Unsat sfactory > Median
	700130	3	1	0	ð	0	100	0	Q	0	3	0	3	3	3	Q	

The WMO 2011

Global Precipitation Chemistry and Deposition Science Assessment

• **Objective:** To review and synthesize the state of the science of the ion composition of precipitation and ion deposition on global and regional scales.

• Key Science Questions on a Global and Regional Scale:

- Spatial distribution of major ions?
- Acid-base chemistry and ion composition?
- Wet, dry and total deposition?
- Trends?
- Gaps and uncertainties?

Approach:

- 2000 to 2007
- Global and Regional scales (Africa, Asia and Oceania, Australia, Europe, North America, South America, Polar Regions, Oceans)
- Non-urban sites
- <u>Combined measurement and modeling results</u>
- To be published in Atmospheric Chemistry and Physics (ACP) in 2011
 4/15/2011

N_{oxidized} + N_{reduced} wet deposition (kg N/ha/yr) – 2000-2002 annual wet deposition and 2001 modeled wet deposition

0	0.5	1	1.5	5	10	15	20	25

Indicators of Success

- Publications
 - Atmospheric Environment, Journal Air & Waste Management Association, Journal of Geophysical Research, Environmental Science and Technology, Environmental Management, Geophysical Research Letters
- Datasets
 - AIRMoN-dry late 1980s 2000
 - MAP3S/AIRMoN-wet 1976-2010
- Air quality model applications -- CMAQ
- Membership (and leadership) in national and international organizations
 - NADP
 - IJC
 - WMO Global Atmosphere Watch
- Emerging Global Assessment Applications
 - International Nitrogen Initiative
 - GESAMP
 - IPCC

Future Directions

- Continue to make available quality assured and current datasets
- Manuscripts for peer-reviewed publications
- Atmospheric concentration and deposition assessments
- Additional data analysis
- Guidance

Products

- Instruction manuals
- Expert visitations
- Contributions to policy-relevant issues
- New analytes and the WMO
 - Mercury
 - Dry deposition

