

USING SMOG CHAMBER DATA TO IMPROVE THE UNDERSTANDING OF SOA FORMATION Ariel F. Stein (1), Manuel Santiago (2), Rick Saylor (3), Marta G. Vivanco (2), Fong Ngan (3) (1) Earth Resources & Technology on assigment to NOAA's Air Resources Laboratory, Silver Spring, MD.

INTRODUCTION

- \succ The organic fraction of secondary particles, commonly known as secondary organic aerosols (SOA), constitutes a significant part of fine aerosols.
- > Considering that the whole complexity of the processes involved in SOA formation, there is a need to isolate the chemical contribution in 3-D photochemical models from other SOA formation processes > Measurements made under controlled environmental conditions, such as those performed in a smog
- > The comparison with chamber data allows ARL scientist to evaluate the chemical processes of SOA formation simulated by the chemical and aerosol modules used in the Community Multiscale Air Quality (CMAQ) model as part of the National Air Quality Forecast Capability (NAQFC). This assessment may lead to modifications in the modules that will enhance future PM_{25} forecast products from the system

CHAMBER EXPERIMENTS

In order to evaluate the SOA formation potential of a VOC mixture in the presence of an oxidant (HONO) under controlled experimental conditions, a set of ten experiments were performed at the EUPHORE Chamber (Figure 1)

FIGURE 1. EUPHORE CHAMBER (CEAM, Valencia, SPAIN). As the chamber opens to the sunlight, the photochemical oxidation of the VOCs starts

TABLE 1. INITIAL CONCENTRATIONS OF THE COMPOUNDS (ppbv) AND EFFECT STUDIED IN EACH EXPERIMENT. BC VOCs and BC HONO make reference to the Base Case (EXP_17) concentrations. In the Dry experiments, a relative humidity of 0.1-0.6 % was used (otherwise, the humidity is in the range 10-20 %)

	TOLUENE	1,3,5-TMB	o-XYLENE	OCTANE	HONO	SO ₂
EXP_16	53	87	12	44	47	
EXP_17	101	171	25	88	99	
EXP_18	200	300	49	155	75	
EXP_19	48	106	11	42	71	
EXP_20	98	160	24	79	156	
EXP_23	97	146	21	81	52	
EXP_24	97	146	22	82	94	
EXP_26	100	155	23	85	94	790
EXP_1	107	160	26	89	89	17
	α-ΡΙΝΕΝΕ	ISOPRENE	LIMONENE			
EXP_25	105	190	104		170	

CMAQ BOX MODEL

Four CMAQ 4.7 simulations for each experiment: 1. CB05 coupled with AERO4 (cb05_ae4) 2. CB05 coupled with AERO5 (cb05_ae5) 3. SAPRC99 coupled with AERO4 (saprc99_ae4) 4. SAPRC99 coupled with AERO5 (saprc99_ae5)

4 X 4 cell grid located in Valencia, Spain (LAT: 39, LON: 0) Only gas phase chemistry and aerosol formation are considered

>AERO4 and AERO5 are based in the partitioning theory presented by Schell et al. (2001). A seed value for the primary aerosol (AORGP) is necessary in order to start the SOA formation in the model. A value of 0.5 mg/m³ is used in each simulation (a higher value of 5 mg/m³ was needed in EXP_25).

(2) CIEMAT (Research Center for Energy, Environment and Technology). 28040 Madrid. SPAIN. (3) NOAA's Air Resources Laboratory, Silver Spring, MD

chambers, offer a unique opportunity to study the chemical processes leading to SOA production.

VARIATIONS IN RELATION TO EXP_17 0.5*[BC VOCs], 0.5*[BC HONO], Dry

> 2*[BC VOCs] 0.5*[BC VOCs] 1.5* [BC HONO] 0.5* [BC HONO] Dry High [SO2] Low [SO2]

biogenic VOCs + 2*[HONO]

This project has been partially financed by the Spanish Science and Innovation Ministry (CGL2008-02260/CLI) and the Spanish Ministry of Environment, Rural and Marine Affairs. We also gratefully acknowledge all the EUPHORE team members and Miguel Sánchez from the Technology Department in CIEMAT.

MINISTERIO **DE CIENCIA** E INNOVACIÓ

