Goals
To improve liquid and solid precipitation measurements in support of the NOAA-led effort to modernize and automate the United States Climate Reference Network (USCRN) and the Regional United States Climate Reference Network (RUSCRN).

Issue
Under-catch in windy and snowy conditions and snow accumulation on the precipitation gauge can cause large precipitation measurement errors. These errors can be minimized through proper wind shielding and inlet heating. Accumulated blowing snow, the size of the wind shield, wind shield maintenance, power requirements and the price, reliability, accuracy, and redundancy of the gauge are some of the factors considered in our search for the 'ideal' precipitation gauge and wind shield.

Approaches
ARL installed replicates of three different types of weighing gauge, one type of tipping-bucket gauge, and three types of wind shield at the winter precipitation testbed in Marshall, CO. ARL is evaluating the variability between like measurements to estimate the significance of errors due to shield and sensor type.

Accomplishments
• The testbed will be included in the upcoming World Meteorological Organization study of automated precipitation measurements.
• Results from the past three years of near-continuous operation at the testbed were recently submitted to the Bulletin of the American Meteorological Society for publication.
• In conjunction with Belfort Instruments, a new double Alter shield has been designed that demonstrates significant improvement over the standard double Alter shield.
• Improved solid precipitation measurement methodologies.
• Development of transfer functions for correcting solid precipitation measurement errors.
• Quantification of the magnitude of solid precipitation measurement errors and variability using different wind shield/gauge combinations.

Issue
Under-catch in windy and snowy conditions and snow accumulation on the precipitation gauge can cause large precipitation measurement errors. These errors can be minimized through proper wind shielding and inlet heating. Accumulated blowing snow, the size of the wind shield, wind shield maintenance, power requirements and the price, reliability, accuracy, and redundancy of the gauge are some of the factors considered in our search for the 'ideal' precipitation gauge and wind shield.

Collaborators and Partners
Accomplishments
• The testbed will be included in the upcoming World Meteorological Organization study of automated precipitation measurements.
• Results from the past three years of near-continuous operation at the testbed were recently submitted to the Bulletin of the American Meteorological Society for publication.
• In conjunction with Belfort Instruments, a new double Alter shield has been designed that demonstrates significant improvement over the standard double Alter shield.
• Improved solid precipitation measurement methodologies.
• Development of transfer functions for correcting solid precipitation measurement errors.
• Quantification of the magnitude of solid precipitation measurement errors and variability using different wind shield/gauge combinations.