Improving NAQFC O₃ Predictions over remote sensing-derived chemical regimes

Yunsoo Choi¹,², Daewon Byun¹, Pius Lee¹, Rick Saylor¹, Ariel Stein¹,², Daniel Tong¹,², Hyuncheol Kim¹,², Fantine Ngan³, Tianfeng Chai¹,², and Yunhee Kim¹,²

Goal: Improved ground-level O₃ predictions

- Various global/regional chemical transport models including Community Multiscale Air Quality Modeling System (CMAQ) overpredict summer daytime O₃ over the eastern US. Peak concentrations predicted by CMAQ are routinely 5-10 ppbv higher than surface EPA Air Quality System (AQS) observations.

Approach: Integrate the National Air Quality Forecasting Capability (NAQFC) system with satellite resources

- The NAQFC system produces 48 hour forecasts of surface O₃ and PM2.5 concentrations over the CONUS. The NAQFC numerical modeling system couples the National Centers for Environmental Prediction (NCEP) Weather Research and Forecasting Non-hydrostatic Mesoscale Model (WRF-NMM) with CMAQ (12km spatial resolution).
- NAQFC setups:
 - NAQFC: operational forecasting system based on CMAQ4.6
 - NAQFC_2: updating Monin-Obukhov equation using NOAA land surface model variables and implement satellite canopy heights (aerodynamic resistance, Ra update)
 - NAQFC_3: updating wet cuticle resistance (canopy resistance, Rc update) from NAQFC_2
 - NAQFC_4: CMAQ4.7 with satellite canopy heights
- Satellite measurements: providing canopy heights and chemical regimes

Accomplishments:

1. Identification of chemical regimes using satellite (category 1=NOx-saturated regime; category 2= Mixed regime; category 3= NOx-sensitive regime) over the CONUS

2. Improved O₃ daily predictions over three chemical regimes in CONUS (applicable to other global/regional models)

3. Improved weekly anomaly predictions (including “Weekend effects” over category 1) of O₃ in NAQFC over chemical regimes of the CONUS

Indicators of success:

- Manuscripts in preparation:
 - Choi, et al., The impact of satellite-observed canopy heights on improving surface O₃ simulations over the eastern US, will be submitted to Geophysical Research Letters, 2011
 - Choi, et al., Weekly variations of the surface NOx and O₃ over the USGS LULC regions and GOME-2 derived chemical regimes of the US: CMAQ4.7 model evaluation and analysis, Atmospheric Chemistry and Physics, 2011, in preparation
 - Choi et al., Modeled O₃ and PM2.5 from CMAQ4.6 and CMAQ4.7 over satellite-derived chemical regimes over the US, Atmospheric Environment, 2011, in preparation

- Serving the satellite and modeling communities as the science team member of NASA TES project and as a scientific advisory committee of US-Korea geostationary satellite project, GEMS

Collaborators/Partners:

<table>
<thead>
<tr>
<th>Institute/Group</th>
<th>Lead Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Jet Propulsion Laboratory</td>
<td>OCO-3, TES, and MBR Groups</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>Regional Modeling Group</td>
</tr>
<tr>
<td>California Institute of Technology</td>
<td>Atmospheric Science Group</td>
</tr>
<tr>
<td>UCLA</td>
<td>Global/regional Modeling Group</td>
</tr>
<tr>
<td>UCLA</td>
<td>Climate Modeling Group</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>Global/regional Modeling Group</td>
</tr>
<tr>
<td>Harvard-Smithsonian Center for Astrophysics</td>
<td>Satellite Retrieval Group</td>
</tr>
<tr>
<td>PNNL</td>
<td>WRF-Chem Modeling Group</td>
</tr>
<tr>
<td>Dalhousie University</td>
<td>Modeling/Satellite Group</td>
</tr>
<tr>
<td>Yonsei University (In Korea)</td>
<td>Satellite Retrieval Group</td>
</tr>
<tr>
<td>Laboratoire d'Aérodéontologie (In France)</td>
<td>MIOZAC Group</td>
</tr>
</tbody>
</table>

Future direction:

- Update NAQFC forecasting system with improved physics and chemistry
- Evaluate current bottom-up emissions inventory using top-down approach (using satellite observations)
- Utilize the data from the forecasting system to establish a long-term monitoring system with corresponding satellite measurements:
 - Column O₃, NO₂, BrO, OClO from GOME and GOME-2
 - Column O₃, HCHO and NO₂ from SCIAMACHY
 - Column O₃, HCHO and NO₂ from OMI
 - CO profiles from MLS
 - CO and CO profiles, CO₂, H₂O, and CH₄ from TES
 - Temperature and CO₂ at 8km from AIRS; CO profiles from MAPS
 - CO profiles, CO column, CH₄ column from MOPITT

Cloud top height and aerosol optical depth from MODIS

DEDICATION:

This presentation is dedicated to the memory of ARL Air Quality Group Lead Dr. Daewon Byun (1955-2011), whose leadership and pursuit of scientific excellence continue to inspire us.

NOAA/Earth Resources Technology, Annapolis Junction, MD.
University of Maryland Global/regional Modeling Group Drs. Ken Pickering and Dale Allen
University of Maryland Global/regional Modeling Group Prof. Randall Martin
Harvard-Smithsonian Satellite Retrieval Group Dr. Kelly Chance
PNNL WRF-Chem Modeling Group Drs. Chun Zha and Qing Yang
Dalhousie University Modeling/Satellite Group Prof. Junsan Kim
Yonsei University (In Korea) Satellite Retrieval Group Prof. Junsan Kim
Laboratoire d’Aérodéontologie (In France) MIOZAC Group Prof. Valeri Thouret

1. NOAA/OAR/ARL, 1315 East West Hwy, Room 3316, Silver Spring, MD 20910; Yunsoo.Choi@noaa.gov
2. Earth Resources Technology, Annapolis Junction, MD.
3. University of Corporation of Atmospheric Research, Boulder, CO