Improving NAQFC O₃ Predictions over remote sensing-derived chemical regimes Yunsoo Choi^{1,2}, Daewon Byun¹, Pius Lee¹, Rick Saylor¹, Ariel Stein^{1,2}, Daniel Tong^{1,2}, Hyuncheol Kim^{1,2}, Fantine Ngan³, Tianfeng Chai^{1,2}, and Yunhee Kim^{1,2} ### Goal: Improved ground-level O₃ predictions Various global/regional chemical transport models including Community Multiscale Air Quality Modeling System (CMAQ) overpredict summer daytime O₃ over the eastern US. Peak concentrations predicted by CMAQ are routinely 5-10 ppbv higher than surface EPA Air Quality System (AQS) observations. Fig.1 Surface O₃ variation from AQS observations (black) and CMAQ (red) over 6 US regions for ## Approach: Integrate the National Air Quality Forecasting Capability (NAQFC) system with satellite resources - Time period: August 2009 with the greatest O₃ biases in NAQFC during 2007-2009 - The NAQFC system produces 48 hour forecasts of surface O₃ and PM2.5 concentrations over the CONUS. The NAQFC numerical modeling system couples the National Centers for Environmental Prediction (NCEP) Weather Research and Forecasting Non-hydrostatic Mesoscale Model (WRF-NMM) with CMAQ (12km spatial resolution). - ■4 NAQFC setups: - NAQFC: operational forecasting system based on CMAQ4.6 - NAQFC_2: updating Monin-Obukhov equation using NOAH land surface model variables and implement satellite canopy heights (aerodynamic resistance, Ra update) - NAQFC_3: updating wet cuticle resistance (canopy resistance, Rc update) from NAQFC 2 - NAQFC_4: CMAQ4.7 with satellite canopy heights - Satellite measurements: providing canopy heights and chemical regimes GOME-2 and CMAQ NO₂ (10¹⁵ molecules cm⁻²) #### Accomplishments: (1) Identification of chemical regimes using satellite (category 1=NOx-saturated regime; category 2=Mixed regime; category 3=NOx-sensitive regime) over the CONUS Fig. 2 The surface O₃ changes of CMAQ4.7 by 30% NOx and VOC emissions reductions to the ratio of GOME-2 HCHO/NO₂ columns (left panel). The ratio of HCHO versus NO₂ between GOME-2 and CMAQ4.7 (9-10 am, LT) over CONŪS for August 2009. Category 1 is for GOME-2 HCHŌ/NO₂ < 1, category 2 is for 1<GOME-2 HCHO/NO₂<3, and category 3 is for GOME-2 HCHO/NO₂>3 (right panel). (2) Improved O₃ daily predictions over three chemical regimes in CONUS (applicable to other global/regional models) (3) Improved weekly anomaly predictions (including "Weekend effects" over category 1) of O₃ in NAQFC over chemical regimes of the CONUS NAQFC_3(green) and NAQFC_4(red) NAQFC(black), NAQFC_2(red), and NAQFC_3(green Fig.5 Weekly anomalies of surface O₃ from AQS and NAQFC_4 #### Indicators of success: - •Manuscripts in preparation: - -Choi, et al., The impact of satellite-observed canopy heights on improving surface O₃ simulations over the eastern US, will be submitted to Geophysical Research Letters, 2011 - -Choi, et al., Weekly variations of the surface NOx and O₃ over the USGS LULC regions and GOME-2-derived chemical regimes of the US: CMAQ4.7 model evaluation and analysis, Atmospheric Chemistry and Physics, 2011, in preparation - -Choi et al., Modeled O₃ and PM2.5 from CMAQ4.6 and CMAQ4.7 over satellite-derived chemical regimes over the US, Atmospheric Environment, 2011, in preparation - Serving the satellite and modeling communities as the science team member of NASA TES project and as a scientific advisory committee of US-Korea geostationary satellite project, GEMS #### Collaborators/Partners: | Institute | Group | Lead Scientist | |-------------------------------------|--------------------------------|--| | NASA Jet Propulsion Laboratory | OCO-2, TES, and MISR Groups | Dr. Annmarie Eldering, Dr. John
Worden, Dr. Dong Wu | | Georgia Institute of Technology | Regional Modeling Group | Prof. Yuhang Wang | | California Institute of Technology | Atmospheric Science Group | Prof. Yuk L. Yung | | UCLA | Global/regional Modeling Group | Prof. Qinbin Li | | UCLA | Climate Modeling Group | Prof. K.N. Liou and Dr. Jinwon Kim | | University of Maryland | Global/regional Modeling Group | Drs. Ken Pickering and Dale Allen | | Harvard-Smithonian | Satellite Retrieval Group | Dr. Kelly Chance | | PNNL | WRF-Chem Modeling Group | Drs. Chun Zhao and Qing Yang | | Dalhousie University | Modeling/Satellite Group | Prof. Randall Martin | | Yonsei University (in Korea) | Satellite Retrieval Group | Prof. Jhoon Kim | | Laboratoire d'Aerologie (in France) | MOZAIC Group | Dr. Valeri Thouret | #### Future direction: - -Update NAQFC forecasting system with improved physics and chemistry - -Evaluate current bottom-up emissions inventory using top-down approach (using satellite observations) - -Utilize the data from the forecasting system to establish a long-term monitoring system with corresponding satellite measurements: Column O₃, NO₂, BrO, OCIO from GOME and GOME-2 Column O₃, HCHO and NO₂ from SCIAMACHY Column O₃, HCHO and NO₂ from OMI CO profiles from MLS O₃ and CO profiles, CO₂, H₂O, and CH₄ from TES Temperature and CO₂ at 8km from AIRS; CO profiles from MAPS CO profiles, CO column, CH₄ column from MOPITT Cloud top height and aerosol optical depth from MODIS #### **DEDICATION:** This presentation is dedicated to the memory of ARL Air Quality Group Lead Dr. Daewon Byun (1955-2011), whose leadership and pursuit of scientific excellence continues to inspire us. ¹NOAA/OAR/ARL, 1315 East West Hwy, Room 3316, Silver Spring, MD 20910; Yunsoo.Choi@noaa.gov ²Earth Resources Technology, Annapolis Junction, MD. ³University of Corporation of Atmospheric Research, Boulder, CO