

Improving NAQFC O₃ Predictions over remote sensing-derived chemical regimes

Yunsoo Choi^{1,2}, Daewon Byun¹, Pius Lee¹, Rick Saylor¹, Ariel Stein^{1,2}, Daniel Tong^{1,2}, Hyuncheol Kim^{1,2}, Fantine Ngan³, Tianfeng Chai^{1,2}, and Yunhee Kim^{1,2}

Goal: Improved ground-level O₃ predictions

Various global/regional chemical transport models including Community Multiscale Air Quality Modeling System (CMAQ) overpredict summer daytime O₃ over the eastern US. Peak concentrations predicted by CMAQ are routinely 5-10 ppbv higher than surface EPA Air Quality System (AQS) observations.

Fig.1 Surface O₃ variation from AQS observations (black) and CMAQ (red) over 6 US regions for

Approach: Integrate the National Air Quality Forecasting Capability (NAQFC) system with satellite resources

- Time period: August 2009 with the greatest O₃ biases in NAQFC during 2007-2009
- The NAQFC system produces 48 hour forecasts of surface O₃ and PM2.5 concentrations over the CONUS. The NAQFC numerical modeling system couples the National Centers for Environmental Prediction (NCEP) Weather Research and Forecasting Non-hydrostatic Mesoscale Model (WRF-NMM) with CMAQ (12km spatial resolution).
- ■4 NAQFC setups:
- NAQFC: operational forecasting system based on CMAQ4.6
- NAQFC_2: updating Monin-Obukhov equation using NOAH land surface model variables and implement satellite canopy heights (aerodynamic resistance, Ra update)
- NAQFC_3: updating wet cuticle resistance (canopy resistance, Rc update) from NAQFC 2
- NAQFC_4: CMAQ4.7 with satellite canopy heights
- Satellite measurements: providing canopy heights and chemical regimes

GOME-2 and CMAQ NO₂ (10¹⁵ molecules cm⁻²)

Accomplishments:

(1) Identification of chemical regimes using satellite (category 1=NOx-saturated regime; category 2=Mixed regime; category 3=NOx-sensitive regime) over the CONUS

Fig. 2 The surface O₃ changes of CMAQ4.7 by 30% NOx and VOC emissions reductions to the ratio of GOME-2 HCHO/NO₂ columns (left panel). The ratio of HCHO versus NO₂ between GOME-2 and CMAQ4.7 (9-10 am, LT) over CONŪS for August 2009. Category 1 is for GOME-2 HCHŌ/NO₂ < 1, category 2 is for 1<GOME-2 HCHO/NO₂<3, and category 3 is for GOME-2 HCHO/NO₂>3 (right panel).

(2) Improved O₃ daily predictions over three chemical regimes in CONUS (applicable to other global/regional models)

(3) Improved weekly anomaly predictions (including "Weekend effects" over category 1) of O₃ in NAQFC over chemical regimes of the CONUS

NAQFC_3(green) and NAQFC_4(red)

NAQFC(black), NAQFC_2(red), and NAQFC_3(green

Fig.5 Weekly anomalies of surface O₃ from AQS and NAQFC_4

Indicators of success:

- •Manuscripts in preparation:
- -Choi, et al., The impact of satellite-observed canopy heights on improving surface O₃ simulations over the eastern US, will be submitted to Geophysical Research Letters, 2011
- -Choi, et al., Weekly variations of the surface NOx and O₃ over the USGS LULC regions and GOME-2-derived chemical regimes of the US: CMAQ4.7 model evaluation and analysis, Atmospheric Chemistry and Physics, 2011, in preparation
- -Choi et al., Modeled O₃ and PM2.5 from CMAQ4.6 and CMAQ4.7 over satellite-derived chemical regimes over the US, Atmospheric Environment, 2011, in preparation
- Serving the satellite and modeling communities as the science team member of NASA TES project and as a scientific advisory committee of US-Korea geostationary satellite project, GEMS

Collaborators/Partners:

Institute	Group	Lead Scientist
NASA Jet Propulsion Laboratory	OCO-2, TES, and MISR Groups	Dr. Annmarie Eldering, Dr. John Worden, Dr. Dong Wu
Georgia Institute of Technology	Regional Modeling Group	Prof. Yuhang Wang
California Institute of Technology	Atmospheric Science Group	Prof. Yuk L. Yung
UCLA	Global/regional Modeling Group	Prof. Qinbin Li
UCLA	Climate Modeling Group	Prof. K.N. Liou and Dr. Jinwon Kim
University of Maryland	Global/regional Modeling Group	Drs. Ken Pickering and Dale Allen
Harvard-Smithonian	Satellite Retrieval Group	Dr. Kelly Chance
PNNL	WRF-Chem Modeling Group	Drs. Chun Zhao and Qing Yang
Dalhousie University	Modeling/Satellite Group	Prof. Randall Martin
Yonsei University (in Korea)	Satellite Retrieval Group	Prof. Jhoon Kim
Laboratoire d'Aerologie (in France)	MOZAIC Group	Dr. Valeri Thouret

Future direction:

- -Update NAQFC forecasting system with improved physics and chemistry
- -Evaluate current bottom-up emissions inventory using top-down approach (using satellite observations)
- -Utilize the data from the forecasting system to establish a long-term monitoring system with corresponding satellite measurements:

Column O₃, NO₂, BrO, OCIO from GOME and GOME-2

Column O₃, HCHO and NO₂ from SCIAMACHY

Column O₃, HCHO and NO₂ from OMI

CO profiles from MLS

O₃ and CO profiles, CO₂, H₂O, and CH₄ from TES

Temperature and CO₂ at 8km from AIRS; CO profiles from MAPS

CO profiles, CO column, CH₄ column from MOPITT

Cloud top height and aerosol optical depth from MODIS

DEDICATION:

This presentation is dedicated to the memory of ARL Air Quality Group Lead Dr. Daewon Byun (1955-2011), whose leadership and pursuit of scientific excellence continues to inspire us.

¹NOAA/OAR/ARL, 1315 East West Hwy, Room 3316, Silver Spring, MD 20910; Yunsoo.Choi@noaa.gov

²Earth Resources Technology, Annapolis Junction, MD.

³University of Corporation of Atmospheric Research, Boulder, CO