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Chemistry Observations into Air Quality Modeling

Goals
Our primary goal of assimilating atmospheric chemical observations
into the Community Multi-scale Air Quality (CMAQ) Modeling System
is to generate better air quality analyses and forecasts. The adjoint
model associated with 4-Dimensional variational (4D-Var) data
assimilation method model can provide a unique tool to study
receptor-based model sensitivities to multiple model parameters. This
will help us understand the air quality model in its underlying
physics, chemistry, as well as the numerical schemes implemented.
In addition, we can mitigate the large emission uncertainties caused
by the outdated inventories through chemical data assimilation., i.e.
emission inversion.

Approaches
1. In data assimilation, background error covariance (B) not only

determines the weighting between observations and a priori
background model results, it also dictates the spread of the
increment in space and between variables. We estimate the
CMAQ error statistics through both the so-called NMC (National
Meteorological Center) and Hollingsworth-Lönnberg methods.

2. A simple sequential data assimilation method, Optimal
Integration (OI) or 3D-Var, is used to test the effects of
assimilating in-situ and satellite observations on the air quality
forecasts and re-analyses.

3. The 4D-Var approach is investigated in its ability to provide re-
analyses. It is also used to provide diagnosis to the air quality
model , including its ability to generate receptor-based
sensitivities. Emission inversion is going to be studied under the
4D-Var framework as well.

MODIS Aerosol Optical Depth Assimilation  
We assimilated MODIS aerosol optical depth (AOD) using OI approach. At each time 
step, we solve an analysis problem

Where X and Y are the state and observation vectors, respectively.  B and O are 
background and observation error covariance matrices.  H is the observational 
operator.  Superscripts a and b indicates analysis and background states. Observations 
far away (beyond background error correlation length scale) have no effect  in the 
analysis.  In the current study, the daily data injection takes place at 17Z. 

Figure 3. MODIS AOD (fine mode) and CMAQ reconstructed AOD.  AOD_Recona and AOD_Reconb are 
calculated before and after assimilation.  The differences (AOD_Recona - AOD_Reconb) are also shown.     

Future Directions and Collaborators
1. Assimilate MODIS AOD and AIRNow PM2.5 predictions to 

generate PM2.5 re-analysis and forecast products using OI 
method (in collaboration with US EPA)

2. Improve operational air quality forecasting capabilities using GSI 
3D-Var method (with NOAA/NESDIS, NOAA/NWS, NASA, NRL, 
and University of Wisconsin, Madison)

3. Develop adjoint model and its interface for assimilation 
capabilities, to be released with the next CMAQ release (with US 
EPA, Univ. of Iowa, Virginia Tech, U. of Colorado, and others) 

4. Evaluate and/or reduce emission uncertainties using data 
assimilation approach.  

CMAQ Model Error Statistics
Hollingsworth-Lönnberg and NMC results are shown in Figs 1 and 2 
respectively.  The ozone horizontal error statistics from them agree 
reasonably  well, in terms of error variances and correlation length.  
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Figure 1 – Ozone error statistics results through Hollingsworth-Lönnberg approach.  
AIRNow observations are used  to get horizontal error statistics  (left).  Ozonesonde
observations are used in calculating vertial model error statistics (right).  Unit of 
height: meter.    

Figure 2. Horizontal error statistics (in east-west direction) results through NMC approach.
Ozone error covariances are shown on the left and correlation coefficients are shown on the
right. Numbers shown on both axes are in units of number of 12-km grid cells.
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R2 8/15/09 8/16/09 8/17/09 8/18/09 8/19/09 8/20/09
UM 0.420 0.138 0.355 0.154 0.234 0.021
UM-OI 0.399 0.178 0.311 0.180 0.270 0.041
NE 0.253 0.416 0.097 0.070 0.156 0.217
NE-OI 0.306 0.367 0.110 0.207 0.171 0.206

Results (Fig. 3 and Table 1) show that assimilating MODIS AOD using OI method is 
able to improve AOD and PM2.5 predictions in selected regions, namely Upper 
Midwest (UM) and Northeast (NE) US.  But, the improvement is not significant.  

Table 1. Correlation between CMAQ PM2.5 predictions and AIRNow hourly observations 
in Upper Midwest and Northeast US before and after (OI) MODIS AOD assimilation.  

CMAQ Adjoint and 4D-Var 
CMAQ v4.5.1 adjoint model was originally developed at Virginia 
Tech University.  We added the observational interface for 4D-Var 
applications. A receptor-based adjoint sensitivities are shown in 
Figs 4 and 5. Currently the adjoint of the newer CMAQ version is 
being developed, as a collaboration among several institutions. 

Figure 4. Adjoint sensitivities of “target” to surface ozone at earlier hours. Target is 
defined as the sum of ozone concentrations in a selected region covering 
Washington DC area, extending from layer 1 to 4, at the final time (20Z, 08/06/2007).

Figure 5. Adjoint sensitivities of “target” to NO and isoprene emissions in a 32-hour 
simulation. Target is defined as the sum of ozone concentrations in a region covering 
Washington DC area, extending from layer 1 to 4, at the final time (20Z, 08/06/2007).


	Slide Number 1

