ARL Surface Energy Budget Network (SEBN)

John Kochendorfer NOAA Air Resources Laboratory March 22, 2022

ARL Surface Energy Budget Network

- Assess land-surface feedbacks and related exchange processes
- Better understand drivers of regional climate and improve weather predictions
- Heat, water, and CO₂ exchange are monitored continuously
- Radiation, meteorology, and soil measurements are also recorded

Relevance: ARL Surface Energy Budget Network

OAR Goals:

Goal 2.2: Identify and address gaps in observation requirements needed to understand causes of variability and change

Goal 3.1: Develop interdisciplinary Earth system models

Goal 3.3: Transition science that meets users' current and future needs

Surface energy budget observations:

- Energy balance measurements are not included in typical weather or climate observations
- The energy and CO₂ absorbed and emitted by earth's ecosystems causes variability and long-term changes in weather and climate
- A better understanding of the relationship between earth's atmosphere and its surface is necessary to improve weather, climate, and Earth system models

ARL Surface Energy Budget Network

- Land surface processes moderate the seasonal and annual water and carbon budgets
- The land surface response to extreme climatic events is poorly understood
- Surface-atmospheric exchange measurements are needed to improve NOAA's models

ARL Surface Energy Budget Network

Sites chosen for representative land surface types

Long-term SEBN Sites

Site name	Vegetation	Dates
Audubon, AZ	Grassland	2002-present
Bondville, IL	Corn, Soybean	2002-present
Bondville2, IL	Corn, Soybean	2003-2007
Brookings, SD	Grassland	2004-2015
Fort Peck, MT	Grassland	2000-2015
Walker Branch, TN	Hickory/Oak/Maple	1999-2007
Chestnut Ridge, TN	Hickory/Oak/Maple	2004-present

Representative Land Surface Measurements

Chestnut Ridge, TN

Bondville, IL

Post-fire energy, water and CO₂ fluxes over a semi-arid grassland

Drylands occupy ~40% of the land surface and dominate global carbon (C) cycle and its inter-annual variability (IAV)

Seasonal and interannual variation in

Effects of seasonal change in vegetation

evapotranspiration (*E*) and canopy level

energy and water vapor fluxes

✓ Factors controlling the interannual

and soil water conditions on

biophysical parameters

Long-term observations (2002-till date) over **Audubon semi-arid grassland** in Arizona supports synthesis & Terrestrial Biosphere Models

- CO₂ exchange and evapotranspiration across dryland ecosystems of southwestern North America (*Biederman et al., 2017*)
- Dynamic global vegetation models underestimate the magnitude and variability of CO₂ fluxes in dryland ecosystems (*Mcbean et al., 2021*)
- Optimizing Carbon Cycle Parameters Drastically Improves Terrestrial Biosphere Model Underestimates of Dryland Mean Net CO₂ Flux and its IAV (*Mahmud et al., 2021*)

Effect of soil water stress on soil respiration in a semiarid grassland

- Soil surface CO₂ efflux or soil respiration (R_S) is one of the most important components of the ecosystem carbon cycle
- Understanding and quantifying the response of soil respiration to environmental variables is critical for assessing the impacts of climate on ecosystem carbon fluxes.

- ✓ Soil temperature and soil water content largely controlled soil CO₂ efflux
- Soil water stress significantly reduced soil CO₂ efflux (Rs) and ecosystem respiration(Re)
- Soil water stress substantially reduced the sensitivity of Rs to temperature
- Below the threshold soil water content, nighttime soil CO₂ efflux decreased with increase in soil temperature, mostly above ~18 °C.

Long-term measurements of evapotranspiration and net ecosystem exchange

Fire-induced changes in land cover evapotranspiration (E) and net ecosystem exchange (NEE) over a semi-arid grassland

Audubon grassland was a source of C (NEE=231±221 gCm⁻²y⁻¹) during 2003-2009

Controls on seasonal and interannual variability in ecosystem exchange of CO_2 (NEE), ecosystem respiration (RE) and gross ecosystem photosynthesis (GEP) over different ecosystems were evaluated.

Chestnut Ridge deciduous forest

was a strong sink of carbon (C) over

the 11-year period (NEE = $-408 \pm$

Interannual Variability of CO2 Exchange at Chestnut Ridge

- Variations in annual NEE were mainly due to variation in annual GEP
- Seasonal and interannual variations primarily controlled by *P* through changes in soil water content and vegetation growth
- A late spring freeze in 2007 affected leaf development, and energy fluxes and resulted in lowest annual *E*, GEP and NEE of the record

ARL Surface Energy Budget Sites

Yun Yang et al 2017 *IEEE J. of App Earth Obs. and Rem. Sens.* vol. 10, no. 6, pp. 2550-2564

Grasslands Brookings, SD

Yun Yang et al 2017 *IEEE J. of App Earth Obs. and Rem. Sens.* vol. 10, no. 6, pp. 2550-2564

ARL Surface Energy Budget Sites

Grasslands Brookings, SD

- The remote sensingbased energy balance model compared well to SEBN site measurements, and was used to estimate regional evapotranspiration (ET)
- The effects of agricultural practices on ET were evaluated throughout South Dakota
- Drained fields were more productive, and had lower total annual water use

ARL Surface Energy Budget Sites

Berkelhammer, M., et al. 2020 *Geophy Res Lett,* 47, e2019GL085652

Agriculture Bondville, IL

Quality and Performance

• Publications (14)

- 21 Citations: Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., and Rey-Sanchez, C. (2021). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales, Remote Sensing of Environment, 252, 112189.
- **176 Citations:** Pastorello, G., Trotta, C., Canfora, E. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. **Sci Data** 7, 225 (2020).
- **105 Citations:** Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, T. E., Krishnan, P., Krofcheck, D. J., et al. (2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America, **Global Change Biology**, 23, 4204-4221.
- 31 Citations: Yang, Y., Anderson, M., Gao, F., Hain, C., Kustas, W., Meyers, T., Crow, W., Finocchiaro, R., Otkin, J., Sun, L., and Yang, Y (2017). Impact of Tile Drainage on Evapotranspiration in South Dakota, USA, Based on High Spatiotemporal Resolution Evapotranspiration Time Series From a Multisatellite Data Fusion System, IEEE J. Selected Topics in Applied Earth Obs. and Remote Sensing, 10, 2550-2564.
- Presentations (14)

Surface Energy Balance Network Users

Modeling groups NOAA GFDL NCEP ECMWF EPA DOD ESRL GSD NWS CPC U. Of Washington METEO FRANCE

Satellite validation NESDIS GCIP **NESDIS GOES-R** NASA Langley NASA GSFC NASA Marshall U. of Maryland U. Of Boston Texas A&M

Other uses USGS Northrup Grumman U. of Central Fla. IBM U. of Texas U. of Mississippi U. of Michigan U. of Illinois U. of Helsinki Vanderbilt U. Canada Centre for Remote Sensing AmeriFlux FLUXNET

DOE NREL NCAR U. of Central Fla.

Future plans

Model Validation Using SEBN Measurements

- Collaborate with the GFDL Land Surface Modeling group using SEBN measurements to validate and improve the LM4.2 Land Surface Model
- Evaluate long-term trends in atmospheric composition, vapor pressure, air temperature, soil moisture, and CO₂ and H₂O fluxes
- Dryland methane fluxes from a deciduous forest at the Chestnut Ridge site
- NOAA fire research characterize energy fluxes near fires

Boundary Layer Testbeds and Upscaling

- Leverage existing NOAA collaborations to expand boundary layer profile, remote sensing, and radiation measurements to improve Bedrock to Boundary Layer observations and model validations
- Use Unmanned Aerial Systems to map areas surrounding our sites and extend SEBN site measurements to satellite and regional scales

Questions?

