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Abstract 

DCNet is a research program established by NOAA for the National Capital Region (NCR) as a 

response to potential threats following the September 11, 2001 attacks on the U.S. Initial goals of 

DCNet were to explore variations in model inputs for both numerical weather prediction (NWP) 

as well as atmospheric transport and dispersion models (AT&D), how to assimilate urban 

observations into both NWP and AT&D models, and the provision of real-time meteorological 

observations over the greater NCR to support current numerical weather prediction models as 

well as provide the driving meteorological observations for atmospheric transport and dispersion 

models. The DCNet data relate to a large urban complex covering a broad spectrum of weather 

conditions, permitting an unparalleled description of the atmospheric flow behavior over a 

complex urban area largely unaffected by major terrain inconsistencies. The network collected 

standard meteorological data and measurement of characteristics of atmospheric turbulence at 16 

locations; only one DCNet (U.S. Department of Commerce Herbert C. Hoover Building, 

USDOC HCHB) site within the NCR is currently active. HCHB was installed in 2003; HCHB 

has a primary (Hoover-North) and secondary (Hoover-South) monitoring station. Data archiving 

began in 2004.  

Utilization of atmospheric measurements requires both a description of the acquired observations 

plus a discussion of the representativeness of those observations. This report provides a 

description and a brief analysis of both mean and turbulence observations of the DCNet HCHB 

Hoover-North monitoring station for the period 2017-2019. Comparison of mean wind and 

temperature observations against regional NOAA National Weather Service monitoring sites is 

provided as reference for the HCHB observations. Total kinetic energy (TKE) is calculated from 

the horizontal and vertical turbulence statistics u’2, v’2, w’2. Turbulence measurements are 

compared to well-accepted atmospheric boundary-layer values proposed by Garratt (1992). 

Furthermore, the mean stability term (z/L) is calculated based on Monin-Obukhov Similarity 

Theory. Overall, this data analysis is an important step to providing a foundation for the use of 

DCNet research network in order to improve the formulations of key variables controlling 

dispersion model calculations in urban areas, such as Washington, D.C.  
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1.0 Introduction 

DCNet is a research program established by NOAA for the National Capital Region (NCR) as a 

response to potential threats following the September 11, 2001 attacks on the U.S. As a spatially 

and temporally high-resolution meteorological network in the NCR, DCNet was developed to 

support improvement of urban monitoring methodologies (Hicks, 2005). The goal of DCNet has 

been the provision of real-time meteorological observations over the greater NCR to support 

development of numerical weather prediction models as well as provide the driving 

meteorological observations for atmospheric transport and dispersion models (Hicks et al., 

2012), such as the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model 

(Draxler and Hess 1997; Stein et al., 2015) developed by NOAA ARL (National Oceanic and 

Atmospheric Administration Air Resources Laboratory). Additionally, observations have served 

as a rich observational database of mean values and turbulence supporting the development of 

the next generation hazard assessment tools. 

Discussions within NOAA questioned what sort of atmospheric monitoring network was needed 

for the NCR, the original concept called for 100+ monitoring stations to cover the roughly 500 

km2 of the NCR. The envisioned extensive network of surface-based meteorological stations and 

boundary-layer monitoring was designed to address potential chemical, biological, radiological 

and nuclear threat analyses that would allow emergency managers and first responders to make 

timely and effective decisions.  

The design of the DCNet monitoring network was based on a tiered weather monitoring 

approach which recognized that multiple levels of meteorological monitoring were required to 

address dispersion predictions for a wide range of nuclear, biological radiological and chemical 

(NBRC) potential airborne threats to the NCR. It was simply not economically nor logistically 

feasible to install and maintain the initially proposed extensive (100+ station) surface-based 

atmospheric turbulence network for the NCR. A viable alternative approach was proposed to 

utilize the complex network of private meteorological monitoring stations, to explore the utility 

of using local meteorological data from private as well as government sources in forecasting for 

urban areas (Pendergrass et al., 2010). For example, WeatherBug (originally a component of 

AWS or Earth Works, now GroundTruth [xAd]) provides routine monitoring data from dozens of 

school systems across the region (see http://weather.weatherbug.com). The surrounding states of 

Maryland and Virginia, offer a limited set of meteorological observations from highway systems 

and environmental compliance networks. NOAA’s Meteorological Assimilation Data Ingest 

System (MADIS) program captures much of the available information to support daily weather 

forecasts.  

While there is a wide range of weather monitoring capability within the region, not all weather 

monitoring can provide appropriate support for atmospheric transport and dispersion. Within 

WMO’s guidance for meteorological instruments and methods of observation (WMO, 2008), the 
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first requirement is site representativeness. Primary importance is placed on defining the 

reference scale for the observations; whether micro (less than 100 m), local scale (100m to 3 

km), or mesoscale (3 km to 100 km). For example, State and local transportation (highway) 

systems are designed to monitor the micro-scale associated with road conditions; Weatherbug 

school systems installed above the school roofs represent local-scales. In these examples, 

incorporating weather data from stations with multiple scales associated with instrument siting, 

without through analyses defining how to extract relevant dispersion statistical measures, can 

lead to misleading conclusions with respect to atmospheric dispersion. However, the data 

provide a rich background of atmospheric information to supplement the detailed intensive 

measurements of DCNet. 

The focus of DCNet is “dispersion meteorology”; in this application it is predicting the transport 

and dispersion of chemical, biological, radiological and nuclear materials within complex 

environment of the urban environment. Given the state-of-the-science of urban numerical 

consequence assessment capabilities at the time of the September 11, 2001 attacks, and perhaps 

even today, the best approach to support dispersion meteorology has been provision of accurate 

and timely model input data through extensive meteorological monitoring. Operationally, the 

detailed numerical weather prediction models which drive state-of-the-science dispersion models 

such as HYSPLIT provide 12 km gridded output. For the NCR, this results in roughly 2 or 3 

model grid points within the central NCR urban core on which to forecast transport and 

dispersion. Numerical weather predictions from the NOAA National Weather Service (NWS) 

models are at a larger grid size and do not make use of observations within the urban core. 

Instead, they are based on micrometeorological data gathered up to tens of kilometers away from 

the urban area in question. Their weather-forecasting purpose ordains that their intended 

application is sufficiently above the surface roughness layer where people live and work (Hicks 

et al., 2013). 

For the NCR, NWS meteorological stations located at the regional major airports provide 

meteorological information representative of environments considerably different from 

downtown NCR urban core. NWS weather monitoring is designed to provide the best possible 

guidance for aircraft operations, but the DCA observations are often not relevant to the 

dispersion regime of the central part of the NCR. Even higher resolution NWS models, such as 

the 3 km High Resolution Rapid Refresh (HRRR) Model (Glahn et al., 2017), are influenced by 

the site-specificity of the routinely-collected NWS data. Programs, like DCNet, provide a sound 

basis for improving descriptions of wind fields within the NCR and for producing dispersion 

assessments that correctly account for the changing surface of the area (Callahan et al., 2008). 

Urban environments present numerous challenges to predicting potential street level exposures to 

releases of hazardous materials. As indicated in the previous discussion, operational numerical 

weather prediction models have very limited, or no, information about the underlying urban 

environment. Since NWP model scales do not allow for incorporation of the urban topology, 

addressing the increased turbulence imposed by building, etc. is accomplished through changing 
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the underlying surface roughness effectively slowing and redirecting the local flow as well as 

increasing the level of turbulent mixing (Baklanov et al., 2018). 

The National Urban Data and Access Portal Tool (NUDAPT) provides basic urban 

parameterization values for buildings including plan and frontal areas as well as the estimated 

increased surface roughness (Ching, 2009). Surface roughness values are tied to ratios of plan 

area (λp) and frontal areas (λf). Again, this only provides a methodology to address the overall 

flow structure, and it does not apply to the urban street canyon. For those urban areas where 

structure heights are well controlled and building densities provide relatively large plan ratios, 

atmospheric flows tend to separate regimes where the highly three-dimensional chaotic flow 

within street canyons tends to be decoupled from flow conditions above the urban rooftops (the 

so-called “skimming” flow).  

The NCR was selected as the focal area because of: (i) its known status as a target for terrorist 

attack, (ii) its history as a site for research using atmospheric tracers (Draxler, 1987a, b; Draxler, 

2006), and (iii) the unusually confined building dimensions (with building heights not exceeding 

about 27 m as required by the Washington Building Act of 1910). Even beyond the urban core, 

the NCR is “well behaved” (Figure 1, note λf and λp for the NCR). Remember that it is not only 

the buildings that cause urban turbulence; the NCR is well forested. The urban environment 

presents a dense surface structure to the over-lying atmospheric flow. The NCR provides a case 

of skimming flow where the assumptions of horizontal homogeneity and stationarity apply 

(Hicks et al., 2009).  

The NCR experience is not unlike the dense urban areas of Los Angeles. Beyond the urban core; 

the LA urban area is dominated by one-or-two story closely packed areas. The NCR offers a 

tractable testbed for addressing the complex flow structure of the urban environment. As 

illustrated in Figure 1, the NCR falls within a defined skimming flow regime. From a modeling 

and analysis perspective, the urban area can be divided into the atmosphere above the tops of the 

local building configuration and the flow within the complexity of the urban street canyon. 

Skimming flow is characterized, much like a forest, with the intermittent transfer of energy and 

mass between the over-riding atmosphere with the chaotic flow of the street canyon. 

The DCNet urban data are unique because they cover many years at many locations. They relate 

to a large city during all weather and climatic conditions, permitting an unparalleled description 

of the atmospheric flow behavior over a complex urban area largely unaffected by major terrain 

inconsistencies (Hicks et al., 2012). This report only describes the installation of the two DCNet 

stations on the USDOC H.C. Hoover (HCHB) building. Within the network, these two sites are 

referenced as Hoover-North (primary) and Hoover-South (secondary). For this report, the HCHB 

Hoover-North (hereafter simply referenced as Hoover) database will be explored. 

Chapter two provides a detailed description of siting, instrumentation, and data logistics 

associated with the Hoover measurement systems. Chapter three provides illustrations of the 

standard meteorological data and the characteristics of atmospheric turbulence. Chapter four 
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provides an analysis of mean and turbulent wind and temperature measurements with a 

comparison to regional NWS measurement sites and accepted micrometeorological measures to 

document the representativeness of the DCNet Hoover observations. 

2.0 Hoover Station Design 
 

At its largest configuration, the DCNet network collected standard meteorological data and 

measurement of characteristics of atmospheric turbulence at 16 locations (Figure 2). Station 

locations were designed to maximize interoperability with available private weather networks. 

Only one DCNet site within the NCR is currently active (DC001, DC002) as of 2020 (Table 1). 

 

For logistical support, there was one standard design for all DCNet stations sensors, installation 

hardware, data acquisition software and communications hardware. Only the physical installation 

and support structure, was modified to meet site specific requirements.  

This report focuses on the description of the DCNet core observation site on the rooftop of the 

US Department of Commerce, Herbert Building, 1401 Constitution Avenue, Northwest, 

Washington, DC (38.8940N, 77.0330W). Two monitoring stations (a primary and backup) are 

installed at this site. Monitoring towers are sited to provide 10 m observations above the zero-

plane displacement referenced to the HCHB rooftop. Observations of winds and temperature are 

10 m above the top of the roof (Figure 3). USDOC HCHB Hoover-North station (Hoover) was 

installed in 2003 with data archiving began in 2004. This operated continuously from 2003 to 

2010 when the station was dismantled to facilitate installation of a new roof for the HCHB 

building. The site was maintained intermittently after 2012 until 2016 when the monitoring 

station was refurbished. This site served as the central point within the NCR, and it is on a 

multistory building that occupies most of a city block but that is similar in height to most of its 

neighbors. 

 

This DCNet site includes sonic anemometers installed on top of meteorological tower mounted 

10 m above the rooftops of the HCHB building (Figure 4). The meteorological tower also 

included instruments to measure air temperate, relative humidity and net radiation. All of these 

variables were measured at high temporal frequency (10 Hz). Data included in this analysis 

covers only the period between 2017 and 2019. 

 

2.1 Instrumentation 

 

A heavy-duty tower (C-33, 10 m, Climatronics Corporation, Bohemia, NY) was mounted above 

the rooftops of the Hoover building. The meteorological tower is equipped with a sonic 

anemometer (RM Young model 81000V) and a wind vane propeller (RM Young model 05305). 
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The tower also includes instruments to measure air temperate, relative humidity and net 

radiation. The specifications of temperature and solar radiation sensors are shown in Table 2. A 

Campbell scientific datalogger (CR1000) is used for data acquisition and measurement control. 

2.2 Data Acquisition and communications 

DCNet data are recorded at a rate of 10 Hz then reported as 15 min averages. Initial 

communications were provided through a dedicated RF Radio network at 170.2 Mhz; this 

communication system was replaced with dedicated Cellular modems. Note that the Campbell 

Scientific software is able to identify the station by dedicated IP address.  

2.3 Data processing and archiving 

DCNet data collected and/or recorded and products generated are managed by Air Resources 

Laboratory (ARL) and the principle investigator (PI) and are archived on secure computing 

systems at Atmospheric Turbulence and Diffusion Division (ATDD). All data recorded, products 

generated, and discoveries made during experimental studies will be made discoverable and 

accessible to the general public after quality assurance (QA) and quality control (QC). Public 

access of these data is achieved through secure FTP servers, public access websites, and 

customized applications. 

Acquired 15-minute averaged observations were stored on the Campbell scientific datalogger 

(CR1000, Campbell Scientific, Inc., Logan, UT). Running means and cross-products were 

carried out within the data acquisition process. Due to the limited computing speed on the 

CR1000 datalogger to both acquire and process data, the post-processing step began by using 

software to provide an initial level of quality control and particularly to perform the coordinate 

transformation.  

Large errors have been reported by several researchers in evaluating fluxes because of the 

inappropriate orientation of the vertical sensors due to the non-simple terrain and non-

stationarity. Therefore, the central consideration to assess turbulent fluxes is the alignment of the 

anemometers with the average wind vector. Based on the coordinate-rotation scheme developed 

by Wesely (1970), McMillen (1988) adapted, at the Atmospheric Turbulence and Diffusion 

Division (ATDD) of the NOAA ARL, located in Oak Ridge, Tennessee, a coordinate 

transformation technique routinely used in order to rotate the instrumentation coordinate system 

to ensure that the average vertical wind speed �̅� is zero, with the implicit assumption that the 

fast-response fluctuations in velocity are also appropriately corrected. The software was also 

used to calculate turbulence variables, such as the friction velocity (𝑢∗), and stability variables,

such as the stability parameter (z/L). Acquired data were reported in a CSV file format. The CSV 

file contains the mean values of the meteorological data (wind speed, wind direction, 
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temperature, relative humidity, solar radiation) and turbulence data (𝑢∗, TKE, z/L) including the 

applied coordinate transformation. 

3.0 Observations 
 

Long term unattended meteorological monitoring is not a simple process. Power outages, severe 

weather events, animals, transmission interference are just a few of the many interruptions to the 

process of data acquisition. For the rooftop operation on the Department of Commerce’s Hoover 

building, there is the additional impediment from the perspective of Secret Service controlled 

access to the HCHB rooftop and maintenance from a remote NOAA/ARL field division. This 

section provides a description of the acquired meteorological data and identification of outliers. 

For clarity, only observations for the period 2017 – 2019 will be presented. Maintenance and 

oversight of the DCNet system became intermittent after 2010; the monitoring system was 

slowly dismantled with limited maintenance performed on the urban core DCNet. With the 2016 

Presidential inauguration, the core DCNet stations were reconditioned. The 2017-2019 dataset 

represents the latest period of qualified measurements from the HCHB observation system. As 

stated above, for this report DCNet DC002 HCHB Hoover-North will be presented; this dataset 

represents the most complete set of observations from the 2017 – 2019 period.  

3.1 Mean observations 

3.1.1 Wind Speed 

 

Figure 5 is a time-history plot of wind speed measured on the Hoover monitoring station for the 

period January 1, 2017 through December 31, 2019. As indicated above, only data from January, 

2017 through December, 2019 are plotted; every tenth data point is displayed. Time is local 

Eastern Standard Time (EST). 

 

Seasonal variation in the mean wind speed is represented in Table 3. For this statistical summary, 

mean 15-minute averaged winds were scanned to eliminate outliers. To limit extreme wind 

speeds attributable to performance issues of the sonic anemometers, velocity data were rejected 

when (1) the horizontal variance (𝑢′2) after coordinate rotation exceeded 10 m/s, (2) when the 

horizontal variance was less than 0.01 m/s, and (3) when the standard deviation of u, v, or w 

wind components was zero for the 15-minute observation and averaging period. Velocity data 

were further restricted to measurements less than 15.0 m/s. The lower wind speed limit was set at 

0.25 m/s which is based on the manufacturer published lowest measurement range. The data set 

was additionally scanned for contiguous, in time, wind speeds or directions; this often occurred 

during low temperature and high humidity when ice developed on the sonic transducers. 

Establishing an outlier identification based on horizontal variance excluded less than 0.5% of the 

wind speed observations; a histogram of accepted mean wind speeds is included in Figure 5.  
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While there is some variation by season, the overall mean wind speed of 3.0 m/s and standard 

deviation of 1.5 m/s is quite representative of the observations from the Hoover station. Column 

7 of Table 3 provides the geometric mean for each season and all data. The geometric mean is a 

better reflection of the lognormal distribution of wind speeds shown in Figure 5. 

3.1.2 Wind Direction 

The dominance of winds from the southwest to northwest is clearly evident in the time-series 

plot (Figure 6) of wind direction. Rejected wind directions are based on the previously discussed 

outlier identification process for mean wind speeds addressed in Section 3.1.1. An additional 

rejection process removed wind directions of 0.0 degrees which was a indicator of ice formation 

on the sonic anemometer transducers.  

Unfortunately, interpretation of potential dominate wind directions from Figure 6 is quite 

difficult due to the large number of data points, even with a reduced plot displaying every tenth 

point. Figure 7 plots wind speed versus wind direction for all data-hours in the 2017-2019 

dataset. Again, for clarity only every tenth data point is displayed. As shown, highest wind 

speeds are associated with winds from the northwest. The trimodal nature of wind directions 

(northeast, southwest, and northwest is clearly evident in Figure 7. As expected, this analysis 

reflects the overall impact of synoptic scale weather systems impacting on the National Capital 

Region as well as influence for regional topographical features such as the Potomac and 

Anacostia Rivers. 

3.1.3 Ambient Temperature 

Observations of ambient temperature for the Hoover site are presented in Figure 8. Monthly 

means and extremes for the 2017 – 2019 time period are tabulated in Table 4. For this analysis, 

measured temperatures were restricted to observations greater than -15 0C and less than +42 0C 

and the dataset was scanned for conditions where contiguous 15-minute means were constant.  

The column mark morning low is the mean low temperature between 1:00 and 5:00 am EST; 

daytime high is the mean high temperature between 13:00 and 17:00 hours. The last column in 

the table is the climatological monthly average based on 6 years of DCNet HCHB observations 

from 2004 – 2010. The selected dataset used in this NOAA Technical Memorandum appears 

representative of the climatological monthly averages. 

3.2 Turbulence observations 

A key component of DCNet was the acquisition of both mean and turbulence statistics for the 

Hoover station as well as the full DCNet network. Horizontal and vertical turbulence define the 

spread of hazardous materials in the atmosphere. As described in the HYSPLIT Lagrangian 
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model description (Draxler, 1997), a turbulent component is added to the mean advection to 

obtain a new particle position as (Eq. 56/Eq. 57) 

𝑋𝑓𝑖𝑛𝑎𝑙( 𝑡 + ∆𝑡) = 𝑋𝑚𝑒𝑎𝑛(𝑡 +  ∆𝑡) + 𝑈′(𝑡 +  ∆𝑡)∆𝑡𝐺 

 

𝑍𝑓𝑖𝑛𝑎𝑙( 𝑡 +  ∆𝑡) = 𝑍𝑚𝑒𝑎𝑛(𝑡 +  ∆𝑡) + 𝑊′(𝑡 + ∆𝑡)∆𝑡𝐺 

  

Where U’ and W’ are the horizontal and vertical velocity components 

 

As described in the previous section, a conservative outlier rejection process was applied to the 

turbulence measurements. Selected rejection cut-points are discussed for each of the follow 

turbulent parameters. Applying the selected outlier identification results in marking less than 

0.5% as questionable. A more aggressive process of outlier identification does not significantly 

alter the analysis of variable means suggesting a random occurrence of extremes. 

 

The large apparent variability in turbulence statistics (Figures 9,10, and 11) is a consequence of 

the averaging period. The 15-minute averaging period for turbulence was a compromise between 

obtaining mean wind and temperature observations to support emergency management 

requirements and obtaining representative velocity variances. While perhaps desirable, longer 

sampling and averaging time were restricted by data acquisition and process capabilities of the 

station datalogger.  

 

3.2.1 Horizontal and vertical velocity variances 

 

Figures 9, 10 and 11 plot time series of horizontal and vertical velocity variances (u’2, v’2 and 

w’2) measured based on technique previously detailed in section 2.3 with the coordinate 

transformation applied. Included with each plot is a histogram of measured variances based on 

the outlier identification process. For all three turbulence variances, a minimum level was set at 

0.01 m2/s2. Velocity variances were rejected for u’2 >10.0 m2/s2, v’2 >7.0 m2/s2, and w’2 > 1.5 

m2/s2. As illustrated in supplied histogram of measured variances, the outlier rejections process 

was quite conservative; this process simply rejected the far extremes of each variance 

distribution. 

Figure 12 plots the hourly mean horizontal and vertical velocity variances for the 2017 – 2019 

dataset. The hourly averaged variances appear quite consistent and do not show significant 

excursions across the 24-hour period. The near constant value across the nighttime period, 

increase with onset of sunrise, daytime mid-afternoon peak, and slow decrease with evening 

transition are quite typical of diurnal variation in atmospheric turbulence. 
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3.2.2 Shear Stress 

 

Figure 13 plots a time series of shear stress (or 𝑢∗) for the Hoover monitoring station. As 

previous, a histogram is included to demonstrate the limited impact of applying the outlier 

identification process on the distribution of observations. In this case, measurements of 𝑢∗ were 

limited to observations greater than 0.01 m/s and less than 1.5 m/s.  

The dataset mean 𝑢∗is 0.4 m/s.  

3.2.3 Sensible Heat Flux 

 

Figure 14 plots the time series of acquired sensible heat flux. Observations of 𝑤′𝑇′̅̅ ̅̅ ̅̅  have been 

scaled with density and heat capacity to obtain units of watts/m2. As with previous 

measurements, a histogram has been added to document the spread of Heat flux measurements 

after a lower outlier bound of -150 watts/m2 and upper bound of 350 watts/m2 have been applied. 

Eliminating observations outside of these bounds has little impact on calculation of means. Note 

that, with the exception of the latter months of 2019, the measured heat flux rarely falls below 

zero. It should be recognized that, in the same manner that the forest floor and canopy contribute 

to the measured heat flux, Hoover measurements of heat reflect the anthropogenic contribution 

from the rooftop surface of the HCHB complex and operating environment of HCHB 

contributing to the heat transfer to the roof surface. 

4.0 Data Evaluation  
 

Section 4 provides a brief analysis of mean and turbulent wind and temperature observations 

demonstrating the representativeness of the Hoover measurements. Comparison of mean wind 

and temperature observations against regional National Weather Service monitoring sites is 

provided as reference for the Hoover mean wind speed, wind direction, and temperature 

observations. Turbulence measurements are compared to well-accepted atmospheric boundary-

layer values developed by Garratt (1992). 

4.1 Mean Wind and Temperature 
 

Figure 15 provides a set of wind rose (joint wind speed and wind direction frequencies) plots of 

the 2017-2019 Hoover 15-minute mean wind observations. Seasons are defined as January – 

March (Winter), April – June (Spring), July – September (Summer) and October – December 

(Fall). The dominant southerly and northwestly wind directions are quite apparent. As previously 

shown in Figure 7, highest wind speeds are associated with northwesterly winds.  
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Comparison of the regional climatological wind is provided in Figure 16. In addition to the 

Hoover site, joint wind speed and wind direction distributions are plotted for two regional NWS 

stations (DCA and IAD). NWS station DCA (Ronald Reagan National Airport) is located 

approximately 5 kilometers south of the HCHB complex. NWS station IAD (Dulles International 

Airport) is located roughly 35 km northwest of the HCHB complex. In general, the three stations 

are quite comparable. All three sites show the dominate northwestly and southerly winds 

attributed to the passage of synoptic scale weather systems. Northeasterly winds measured at 

DCA and Hoover both reflect the influence of the Potomac and Anacostia Rivers.  

Figure 17 plots a simple linear regression of DCA and IAD measured wind speeds against 

Hoover observations; the linear fits indicate similar agreements and correlation with mean winds 

although there is considerably more variability between Hoover and IAD wind speeds. Based on 

the simple linear regression, central urban wind speeds are roughly 75% of the non-urban areas. 

At the level of the mean Hoover wind speed (3.0 m/s), the Hoover wind speed is roughly 1 m/s 

slower than DCA and IAD. 

Results of a simple linear regression of ambient temperature measured at IAD and DCA against 

Hoover’s observations are given in Figure 18. As with the wind speed correlation there is general 

agreement (large R2) between measured mean ambient temperatures between Hoover and the 

two regional NWS stations, DCA and IAD. There is clearly more variability associated with the 

regression between Hoover and IAD. Figure 19 explores this variability with a comparison of the 

mean temperature difference between the two regional NWS stations and the Hoover 

observations. Graphed in Figure 19 is the mean temperature difference (defined as Hoover minus 

NWS station) as a function of hour (EST) of the day. Both plots show a decided diurnal pattern 

with mean temperature differences near +0.5 degrees at night and -0.5 degrees during the day for 

DCA and near +3.0 degrees at night and +0.5 degrees during the day for IAD. The IAD 

comparison provides an indicator of the heat-island effect where the consolidated urban core is 

significantly warmer than the surrounding suburban/urban areas. This is readily evident during 

the night attributed to building thermal storage associated with the NCR central urban area.  

4.2 Turbulence Statistics 

Confidence in the turbulent wind and temperature data comes through a comparison of Hoover 

measured and calculated turbulence parameters against well accepted values defined in the 

atmospheric literature. In particular, within this section, Hoover measured and calculated values 

will be compared to the suggested values of Garratt (1992), 

TKE/𝑢∗
2 = 5.46,

u’2/𝑢∗
2 = 5.76,

v’2/ 𝑢∗
2= 3.61, and

w’2/ 𝑢∗
2= 1.56.
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Confirmation of Hoover shear stress (𝑢∗) measurements comes indirectly through evaluation of 

the normalized shear stress using the mean wind speed; defined as the friction coefficient (cf). 

Figure 20a provides a regression analysis of wind speed (u) versus 𝑢∗, the coefficient of 0.13 is 

within bounds of accepted values ranging from 0.1 to 0.14 depending on surface type (Hicks et 

al., 2014). Figure 20b plots Hoover friction coefficient as function of hour of the day; while there 

appears to be some variability between nighttime and daytime conditions, diurnal differences are 

small and well within uncertainty bounds.  

Figure 21 plots measured sensible heat flux (H) for the Hoover station; the variability in 

measured sensible heat flux is both a reflection of natural variability and the reduced averaging 

period selected for DCNet as discussed in the previous Section. The red curve is the mean heat 

flux binned by hour. It is interesting that while observations show stable conditions during late 

evening and early morning periods, the mean heat flux for the HCHB building never goes stable. 

From the measured shear stress (𝑢∗) and heat flux (H), the stability (z/L) associated with the 

Hoover monitoring station can be calculated based on Monin-Obukhov Similarity Theory 

(MOST). The height, z, is the measurement height above the height of the zero-plane 

displacement and L is defined as  

𝐿 =  𝑢∗
3�̅�𝑣/𝑘𝑔(𝑤′𝜃𝑣

′̅̅ ̅̅ ̅̅ ). 

Figure 22 plots a histogram of M-O stability (z/L) for the Hoover monitoring station using the 

observed shear stress, heat flux and temperature as defined in the above equation. Figure 22 

provides a binning of calculated stability (z/L) indicating near neutral conditions (+/- 0.2) for 

almost 80% of the monitoring hours; The near neutral conditions for the Hoover site are 

highlighted in Figure 23. Across much of the diurnal cycle, the mean stability term (z/L), as 

plotted in Figure 24, is near zero indicating neutral to slightly unstable conditions. 

The assumption of near neutral atmospheric stability for the Hoover station provides the 

framework for evaluating measured turbulence statistics against the accepted values provided by 

Garratt (1992). 

Figure 25 plots the calculated total kinetic energy (TKE, with the role of air density ignored as is 

common in relevant literature) from the horizontal and vertical turbulence statistics u’2, v’2, w’2 

in the form 

𝑇𝐾𝐸 = 0.5 ∗  (𝑢′2 +  𝑣′2 +  𝑤′2). 

Graphed variables of TKE have been limited based on the previously described outlier 

identification process.  

Following the formulation presented in Garratt, Figure 26 (all observations) and 27 (day/night 

separation) provide regression analyses of calculated TKE versus measured shear stress. Figures 

28,29, and 30 present regression analyses of turbulence statistics and TKE for u’2, v’2, and w’2 
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respectively. Slopes from the individual regression analyzes are tabulated in Table 5. The larger 

values of TKE and variances are simply a reflected of the increased turbulence associated with 

the urban environment. However as shown in Table 6, the relative contribution of individual 

turbulence components is quite comparable to that proposed by Garratt (1992). 

5.0 Summary 

This report presents a description and a brief analysis of the standard meteorological data and the 

characteristics of atmospheric turbulence of the DCNet Hoover-North station for the period 

2017-2019. These data are unique because they are gathered within the urban core with sufficient 

sensors to describe all of the motions that are controlling local dispersion. A key component of 

DCNet is the acquisition of both mean and turbulence observations, these observations were 

scanned to eliminate outliers. The method of outlier identification resulted in loss of less than 

0.5% of the overall data. Seasonal wind roses showed that highest wind speeds are associated 

with winds from the northwest and the south. This analysis reflects the overall synoptic scale 

weather systems impacting on the NCR as well as influence for regional topographical features 

such as the Potomac and Anacostia Rivers. The comparison of mean wind and temperature data 

for the Hoover observations against regional NWS monitoring sites enabled the demonstration of 

the representativeness of the Hoover measurements. The calculated TKE from the horizontal and 

vertical turbulence statistics u’2, v’2, w’2 showed large values reflecting the increased turbulence 

associated with the urban environment. However, the relative contribution of individual 

turbulence components is quite comparable to the suggested values of Garratt (1992). 

Furthermore, the mean stability term (z/L) calculated based on Monin-Obukhov Similarity 

Theory indicated near neutral conditions for almost 80% of the monitoring hours. 

In the future, analysis of the measurements and findings from the DCNet research network will 

be used to improve the current parameterizations of key variables controlling dispersion model 

calculations in urban areas, such as Washington, D.C. The next step will be to compare DCNet 

data against predictions from meteorological models of the National Weather Service, such as 

the High Resolution Rapid Refresh (HRRR) model, the North American Mesoscale (NAM) 

model, and the Finite Volume Cubed-Sphere dynamical core (FV3) to produce modifications of 

the approximation techniques which control dispersion model calculations and subsequent 

impact predictions. The proposed adjustments will be evaluated for implemented in current 

complex atmospheric transport and dispersion models such as NOAA/ARL’s HYSPLIT 

predictive system. This effort will open perspectives towards understanding the complexities of 

modeling the atmospheric dispersion process for other urban environments.  
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Table 1: Properties of Current (2020) operating DCNet monitoring stations 

Site reference: DC001/DC002 

Site name: USDOC H.C. Hoover (HCHB) building. 

Date of operation: 2003 - present 

Latitude (°N): 38.894 

Longitude (°W): 77.033 
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Table 2: DCNet standard monitoring instrumentation 

Temperature and Relative Humidity Probe Solar Radiation 

Sensor T° Sensor RH Sensor 
Model CS500 LI-190SB

Type 1000 Ω PRT, DIN 43760 B INTERCAP ® Quantum Sensor 

Range -40°C to + 60°C 0 to 100% 400-700 nm

waveband

Accuracy 0 to 10% RH at 20°C ± 5% 

Response 

time 

15 sec 10µs 
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Table 3: Seasonal variation in mean wind speed and standard deviation 

Season Arithmetic 

Mean 

(m/s) 

Trimmed 

Mean 

(m/s) 

Standard 

Deviation 

(m/s) 

Minimum 

(m/s) 

Maximum 

(m/s) 

Geometric 

Mean 

(m/s) 

January - March 3.45 3.37 1.75 0.288 10.87 3.00 

April - June 3.10 3.03 1.47 0.27 10.4 2.74 

July - September 2.52 2.48 1.15 0.25 8.97 2.24 

October - 

December 

2.93 2.84 1.52 0.27 10.35 2.53 

All 3.00 2.91 1.52 0.25 10.87 2.61 
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Table 4: Monthly mean temperature, standard deviation and extreme measurements. 

Month Average 

(°C) 

Standard 

Deviation 

(°C) 

Minimum 

(°C) 

Maximum 

(°C) 

Morning 

Low (°C) 

Daytime 

High (°C) 

Climatology 

(2004-2009) 

January 3.92 6.75 -11.96 21.7 2.56 5.83 3.16 

February 7.40 6.32 -7.32 27.08 5.53 9.68 3.81 

March 7.46 6.01 -5.48 26.8 5.28 10.09 8.75 

April 15.6 6.10 0.90 33.1 12.74 18.73 14.69 

May 20.68 5.12 8.33 33.47 17.77 23.88 19.05 

June 24.67 4.14 13.75 35.31 21.53 27.88 24.24 

July 27.24 3.64 17.74 37.39 24.30 30.40 26.08 

August 25.98 3.55 16.5 35.72 23.15 29.23 25.94 

September 23.37 4.15 12.67 34.97 20.85 26.38 22.05 

October 17.60 5.41 4.43 34.78 15.23 20.58 15.95 

November 8.78 4.89 -3.09 27.17 6.99 11.25 10.43 

December 5.34 4.76 -9.0 19.74 4.08 7.13 5.13 
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Table 5: Comparison of normalized TKE and horizontal and vertical variances. 

TKE/𝒖∗
𝟐 u’2/𝒖∗

𝟐 v’2/𝒖∗
𝟐 w’2/𝒖∗

𝟐

Garratt 5.46 5.76 3.61 1.56 

DCNet Hoover 7.03 7.29 4.67 1.69 
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Table 6: Relative contribution of horizontal and vertical turbulence to total TKE. 

Source u’2/TKE v’2/TKE w’2/TKE 

Garratt 1.05 0.66 0.28 

DCNet Hoover 1.03 0.66 0.24 
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Figure 1: Comparison of plan and frontal area ratios for the NCR and other 

large urban cores. (λF = frontal area, λP = plan area.) 
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Figure 2: Maximum DCNet monitoring configuration with station identification  
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Figure 3: Google Earth image of the Department of Commerce Hoover (HCHB) 

building with station locations highlighted. Photographs show the Hoover-South 

rooftop monitoring station as installed. 
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Figure 4: Skematic of DCNet monitoring station. Note that Infrared Temperature 

sensor was used during ARL’s participation in Pasadena urban study as part of 

NOAA Calnex 2010 program.  
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Figure 5: Measured 15-minute average wind speed for the period 1/1/2017 through 

12/31/2019. For presentation clarity,every tenth data point displayed. The insert graph 

provides a histogram of accepted observed wind speeds based on the outlier identification 

process. 
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Figure 6: Measured 15-minute average wind direction for the period 1/1/2017 through 

12/31/2019. For presentation clarity, every tenth data point is displayed 
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Figure 7: Wind speed versus wind direction for the Hoover station. For presentation 

clarity, every tenth data point is displayed. The trimodal nature of winds over the Hoover 

site is quite evident. 
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Figure 8: Measured 15-minute average temperature for the period 1/1/2017 through 

12/31/2019. For presentation clarity, only every tenth data point is displayed 
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Figure 9: Measured 15-minute average horizontal u-component velocity variance for the period 

1/1/2017 through 12/31/2019. For presentation clarity,every tenth data point displayed. The 

insert graph provides a histogram of accepted observed u-component velocity variance based on 

the outlier identification process. 
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Figure 10: Measured 15-minute average horizontal v-component velocity variance for the period 

1/1/2017 through 12/31/2019. For presentation clarity,every tenth data point displayed. The 

insert graph provides a histogram of accepted observed v-component velocity variance based on 

the outlier identification process. 
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Figure 11: Measured 15-minute average vertical w-component velocity variance for the period 

1/1/2017 through 12/31/2019. For presentation clarity,every tenth data point displayed. The 

insert graph provides a histogram of accepted observed w-component velocity variance based on 

the outlier identification process. 
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Figure 12: Geometric mean of both horizontal and vertical turbulence observations. 
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Figure 13: Measured 15-minute (shear-stress)0.5 or 𝑢∗ for the period 1/1/2017 through 

12/31/2019. For presentation clarity,every tenth data point displayed. The insert graph provides a 

histogram of accepted observed 𝑢∗ based on the outlier identification process. 
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Figure 14: Measured 15-minute heat flux (w’T’) or Heat for the period 1/1/2017 through 

12/31/2019. For presentation clarity,every tenth data point displayed. The insert graph 

provides a histogram of accepted observed Heat based on the outlier identification process. 
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Figure 15: Hoover 2017 -2019 seasonal wind roses or wind speed/direction joint frequencies. 

Winter (January – March), Spring (April – June), Summer (July – September), Fall (October – 

December). 

Winter 
Spring 

Summer Fall 
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Figure 16: Comparison of 2017 – 2019 Joint wind speed/direction frequency plots for HCHB 

Hoover-North and the two nearest National Weather Service monitoring stations IAD (Dulles 

International Airport) and DCA (Reagan National Airport). 

IAD 
DCA 

HCHB 
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Figure 17: Linear regression of DCA and IAD measured wind speed against Hoover measured wind 

speed. 
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Figure 18: Simple linear regression of DCA and IAD measured temperature against 

Hoover observed temperatures. 
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Figure 19: Mean ambient temperature difference by Hour between IAD, DCA and Hoover 

monitoring stations. (DCNet minus NWS) 
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Figure 20: Hoover friction coefficient (a) regression analysis (b) geometric mean by hour (EST) of 

the day 

(a) 

(b) 
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Figure 21: Hoover sensible heat flux by hour (EST) the red line is the mean heat flux 

binned by hours of the day. 
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Figure 22: Histogram of Hoover Monin-Obukhov stability (z/L) 
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Figure 23: Partition of Monin-Obukhov stability for the Hoover station. 
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Figure 24 Mean Monin-Obukhov stability (z/L) as a function of time of day. 
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Figure 25: Calculated 15-minute average turbulent kinetic energy (TKE) for the period 1/1/2017 

through 12/31/2019. For presentation clarity,every tenth data point displayed. The insert graph 

provides a histogram of accepted calculated TKE based on the outlier identification process. 
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Figure 26: Regression analysis of TKE (turbulent kinetic energy) against 𝑢∗
2 (shear stress – u’w’) 

for the period 1/1/2017 through 12/31/2019. For presentation clarity,every tenth data point 

displayed. 
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Figure 27: Nighttime and daytime correlations of TKE against 𝑢∗
2 . 

Day 

Night 
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Figure 28: Regression analysis of 𝑢∗
2 (horizontal velocity variance velocity u-component) against 

𝑢∗
2 (shear stress – u’w’) for the period 1/1/2017 through 12/31/2019. For presentation 

clarity,every tenth data point displayed.  
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Figure 29: Regression analysis of v’2 (horizontal velocity variance velocity v-component) against 

𝑢∗
2 (shear stress – u’w’) for the period 1/1/2017 through 12/31/2019. For presentation 

clarity,every tenth data point displayed.  
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Figure 30: Regression analysis of w’2 (vertical velocity variance velocity component) against 𝑢∗
2 

(shear stress – u’w’) for the period 1/1/2017 through 12/31/2019. For presentation clarity,every 

tenth data point displayed. 
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