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Abstract

A system of FORTRAN language computer programs is presented
which have the ability to locate the sun at arbitrary times. On demand,
the programs will return the distance and direction to the sun, either as
seen by an observer at an arbitrary location on the Earth, or in a stan-
dard astronomic coordinate system. For one century before or after the
year 1960, the program is expected to have an accuracy of +30 seconds
of arc (2 seconds of time) in angular position, and £7 x 1075 A.U. in
distance. A non-standard algorithm is used which minimizes the number
of trigonometric evaluations involved in the computations.
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1 Introduction

Recently, the Air Resources Laboratories has been working on some projects
connected with the development of a climatology for the influx of solar energy
at various stations in the U. S. and elsewhere. In connection with these projects,
a computer algorithm was required for locating the sun in position and distance
for arbitrary times and at arbitrary locations on the Earth’s surface.

Existing algorithms, such as [Woolf, 1968], do not appear to provide the
distance to the sun. Since the Earth is over 3% closer to the sun in January
than in July, it receives more than 6% more energy influx then, and this is not
negligible for solar energy considerations.

Many published algorithms ignore the leap year cycle and treat each year as
any other year. This practice simplifies the calculation, at a cost in the precision
with which the sun can be located. Because the Earth takes 365.25 days to circle
the sun, the sun has moved an extra quarter day between noon of January 1
of an ordinary year to the same time next year; this produces a discrepancy in
solar time of about half a minute of time, and a discrepancy in declination of
about half a degree. Although slight, these discrepancies were troublesome in
the context of the solar energy climatology.

For these reasons, we have written a system of FORTRAN callable subrou-
tines which locate the solar distance and position for any arbitrary date and
time, keeping proper account of the leap year cycle. We have endeavored to
calculate these positions as closely as practicable. In this context, this is ap-
parently 30 seconds of angle or 2 seconds of time for the angular positions, and
7x107% AU for the distance to the sun. Qutput from our subroutines will differ
from the published ephemerides by no more than these amounts for at least a
century before and after the year 1966.

Higher accuracy demands consideration of the perturbations caused by the
other planets as well as parallactic changes due to the position on the Earth,
and involve excessive complications. By contrast, the diameter of the sun is
about 9 x 1073 AU and its apparent diameter as seen from Earth is about half
a degree; the point being located is actually the center of the sun.

2 Use of the Solar Ephemeris Subroutines

A listing of the subroutines is found in Appendix A; to use them, the program-
mer attaches them to his main program and places the statements

JHR = JULHR(KYR, KMON, KDAY, KHOUR)
CALL SOLEFM(JHR, DMIN, RAAPP, DECL, RADVEC, EQTIM)

in the main program.

The INTEGER variables KYR, KMON, KDAY, and KHOUR and the REAL
variable DMIN specify the time, in Greenwich Mean Time (GMT) for which
the Solar position is desired. The year KYR may be either a 4-digit or 2-digit
number (e.g. 1966 or 66), the month KMON may be an integer from 1 to 12,



and the day KDAY and the hour KHOUR from 1 to 31 or 0 to 23, respectively.
DMIN specifies the minutes and decimal fraction following KHOUR.

Programmers concerned with local standard or daylight time may modify
this sequence for convenience. For example, Eastern Standard Time lags GMT
by 5 hours; a programmer may substitute the call

JHR = JULHR(KYR, KMON, KDAY, KHOUR+5)

where now KYR, KMON, KDAY and KHOUR refer to EST. The function
JULHR will adjust the day, the month, and the year if necessary and compress
this information in the variable JHR for passing on to SOLEFM. For further
information on JULHR, see Appendix B.

If less precision is required, the information on hour, minute, and year may be
replaced by standard values for KYR, KHOUR, and DMIN. Suitable standard
values are 1978, 12, and 0.0; i.e. half through a leap year cycle, at noon GMT.

Values for all other variables will be returned by the subroutine. These
variables and their meaning are as follows:

RAAPP - The Apparent Right Ascension. The angle, in degrees, of the sun’s
projection on the celestial equator, as measured from the Vernal Equinox
and corrected for aberration. This is analogous to a point’s longitude on
the Earth’s surface.

DECL - The Apparent Declination. The angle, in degrees, of the sun above
(below, if negative) the celestial equator, as corrected for aberration. This
is analogous to a terrestrial point’s latitude.

RADVEC - The radius vector. The distance, in Astronomical Units (AU),
from the Earth to the sun.

EQTIM - The Equation of Time. This is a correction! term representing, in
minutes of time, the difference in right ascension between the actual sun
and a fictitious body called the mean sun. The mean sun moves along the
celestial equator at a uniform rate which is equal, on the average, to that
of the true sun. The equation of time must be added to the Mean Solar
Time (time determined by the mean sun) to obtain the True Solar Time.

These values specify the position of the sun in geocentric, equatorial coor-
dinates. This coordinate system is independent of the position of the observer
on the Earth, and in particular does not specify where the sun is in relation to
the observer’s horizon.

Solar energy studies, of course, depend on the relative position of the sun
above the horizon, and a conversion must be made to the site of the observer.

IThe name derives from the centuries old practice among astronomers of using the term
”equation” to mean a correction to be applied to a simple approximation, such as the position
of the mean sun, to get a more accurate expression (the true sun). The term has no particular
relation to the modern mathematical use of the term ”equation”.



Two subroutines, SOLTIM and EQ2AZM are provided to perform this conver-
sion. They use the information returned by SOLEFM and JULHR and may be
invoked with the statements

CALL SOLTIM( JHR, DMIN, EQTIM, XLONG, STT, STM)
CALL EQ2AZM( DECL, STT, XLAT, ELEV, AZIM)

where XLAT and XLONG are the latitude and longitude of the required site.
Latitude and longitude must be supplied in degrees and decimal fraction, with
North and West positive, South and East negative.

Subroutine SOLTIM returns the following new variables:

STT - True Solar Time. The proportional angle traversed by the sun on its
apparent daily course across the sky, measured in hours and fraction of
time (at 15° per hour, 360 ° in 24 hours), adjusted so that the crossing of
the meridian (great circle from pole through the zenith) takes place at 12
hours (noon). This is the time (neglecting refraction) which would register
on an ideal sundial.

STM - Mean Solar Time. The value that Solar Time would have if
measured by the mean sun. This will lead or lag civil time by a fixed
amount.

Subroutine EQ2AZM returns values for the following new variables:

ELEV - Elevation Angle. The angle between the horizon and the center of
the sun, measured in degrees and decimal fraction. Positive values are
returned if above the horizon, negative if below; no correction for refraction
is made.

AZIM - The Azimuth Angle. The angle, measured from True North, eastward
to the horizontal projection of the sun, measured in degrees and fraction.

3 Astronomical Terminology and Coordinate Sys-
tems

Before describing the techniques of computation in our subroutines, it is im-
portant to acquaint the reader with certain facts and definitions used by as-
tronomers. Only those which have a direct bearing on our program will be
given; for further information, see e.g. [Smart, 1944] or the Explanatory Sup-
plement to the American Ephemeris [USNO, 1977].

If perturbations by other bodies are neglected, the path taken by the Earth
around the sun is an ellipse, and the center of mass of the Earth-sun pair is
located in one focus. This is Kepler’s first law. To our specified accuracy, the
center of the sun is indistinguishable from that mass-center, and we place the
sun S at one focus in Figure 1, whichdiagrams the orbit of the Earth. For
clarity, the eccentricity of the orbit has been increased by a factor of five, and



Figure 1: Elliptical path of the Earth about the Sun. Eccentricity exaggerated
for clarity.

the divisions between months adjusted according to Kepler’s second law. Even
with this exaggeration, the ellipticity of the orbit is scarcely discernible.

The nearest and furthest points from the sun on the ellipse are called per-
thelion and aphelion respectively. If the Earth is located at the point E, then
the angle § = PSE is called the anomaly and defines the location of the Earth
on its elliptical path. The ratio e of the distance CS between the center C and
one of the foci S to the distance CP between the center C and either perihelion
or aphelion is called the eccentricity of the ellipse. The eccentricity specifies the
exact shape of the ellipse.

The mean distance from sun to Earth is defined to be the distance PC = AC
= half the sum of PS+AS, and this serves to define the length of an astronomic
unit (AU). For historic reasons, 1 AU is actually slightly less (by 30 x 1079)
than the mean distance, but this is not significant for present purposes.



Figure 2: Comparison of the Celestial (ecliptic) and Equatorial Coordinate Sys-
tems

An ellipse is a plane curve, and so from the viewpoint of an observer on the
Earth, the sun appears to remain in a plane passing through the Earth and
called the plane of the ecliptic. The entire sky can be projected onto a celestial
sphere having the observer as center; the intersection of the plane of the ecliptic
with that sphere (see Figure 2) is a great circle called the ecliptic.

Because of the Earth’s diurnal rotation, the stars all appear to describe daily
circles centered on two poles on the celestial sphere, which are projections of
the Earth’s North and South Poles. Similarly, the Earth’s equator is projected
onto a celestial equator.

Because of the orientation of the Earth’s axis, the equator and ecliptic meet
at only two points, called the equinozes. The angle € between the equator and
ecliptic at the equinoxes is called the obliquity of the ecliptic. The apparent
passage of the sun through one of the equinoxes, (the Vernal Equinox V) to
the Northern Hemisphere marks the beginning of spring; through the other (the
Autumnal Equinox F) marks the beginning of Fall.

The ecliptic and the equator each form the basis of a set of spherical coor-
dinates for specifying the positions of points in the sky such as stars or planets.
Given any point Q (see Figure 2), drop an arc of a great circle meeting the



Figure 3: Comparison of the Topocentric Equatorial and Azimuthal Coordinate
Systems

ecliptic at a point Q’. The angular size in degrees of the arc QQ’ is called the
celestial latitude of Q. The celestial longitude is the arc VQ’, measured from
the Vernal Equinox to Q’ in the direction of motion of the sun, also in degrees.
These form the ecliptic or celestial coordinates. By convention, the latitude of
a celestial object is denoted by 8 and the longitude by .

Another system of coordinates is the system of equatorial coordinates. An
arc QQ” is dropped to the Equator; its angular size is the declination. The arc
VQ’ from the Vernal equinox to Q7 in the direction of motion of the sun is
called the right ascension. By convention, the declination of a celestial object
is denoted by § and its right ascension by «.

The process of conversion from one system to the other is simplified by the
use of the same point (the Vernal Equinox) as a zero for both.

The celestial and equatorial coordinate systems are used to locate the po-
sition of one celestial point relative to other celestial points. In order to relate
that celestial point to the reference system of an Earthbound observer, we need a
means of specifying coordinates relative to that observer (topocentric systems).

To an observer located at a prescribed latitude and longitude on the Earth,
the celestial sphere appears tilted so the North celestial pole is at an angle
above the horizon equal to his latitude (below, for South latitudes). The point
Z immediately overhead is called the Zenith; the half great circle from the North
Pole through the Zenith and the horizon to the South pole is called the Meridian



(see Figure 3). These reference points and circles depend on the observer’s
location and are different for observers located elsewhere.

For a given point Q, the angle from the Meridian to Q subtended at the North
pole and increasing Westward is called the Hour Angle. The hour angle and
the declination (conventionally denoted by h and ¢, respectively) form another
system of equatorial spherical coordinates, one which depends on the location
of a specific observer. Indeed, the hour angle of a point as measured by this
observer is less than the hour angle measured simultaneously by an observer
on the Greenwich Meridian in an amount equal to his (West) longitude. The
combination of Hour angle and Declination form a set of topocentric equatorial
coordinates.

The final set of spherical coordinates of interest to us is the system of az-
tmuthal coordinates based on the horizon. In this system, the arc dropped from
Q normal to the horizon is in angular measure the altitude a (also called ele-
vation), and the angular measure of the arc along the horizon from true North
eastward is the azimuth A.

Conversions between the celestial ecliptic and equatorial system, and be-
tween the topocentric equatorial and the azimuthal coordinates are straight-
forward matters of spherical trigonometry. The formulae involved are indepen-
dent of the time and of the observer’s position. To go from the celestial to the
topocentric, the formulae do depend on time and position. The simplest case
is between the two equatorial systems, since the declination of a point does not
change in the transition, and the only change is between right ascension and
hour angle.

In making the change between right ascension and hour angle, one needs
the hour angle of the vernal equinox, to which one can add the right ascension
of the point in question. Like the hour angles of all other celestial points, this
changes by 360 ° in somewhat less than 24 hours, and may be considered as a
celestial "clock”. The value of the hour angle of the Vernal Equinox is called
the sidereal time provided it is measured in time units. It will change with the
longitude, and an observer must subtract his (west) longitude from sidereal time
at Greenwich to find sidereal time at his own site. Thus, if an observer knows
his longitude, the sidereal time at Greenwich, and the right ascension of a point,
he may find sidereal time at his site by subtracting the longitude, and the hour
angle of the point by adding the right ascension.

Alternatively, the hour angle of the sun is called (true) solar time; if this
is known at Greenwich together with the sun’s right ascension, sidereal time
may be obtained by subtracting the right ascension from the solar time and one
may proceed as before. By convention, an imaginary point is considered which
travels at a uniform rate along the equator at the same average speed as the sun
does along the ecliptic; it may be considered as what the sun would do if the
Solar system were simpler. This point is called the mean sun and its hour angle
mean solar time. At Greenwich, mean solar time is approximately universal
time, on which civil time is based, and (to date) differs by less than one minute
from Ephemeris time on which the American Ephemerides of the sun and moon
are based; to the accuracy with which we are concerned, all three time scales



may be considered as Greenwich Mean Time.

Thus, approximating Ephemeris time with Greenwich Mean Time, the right
ascension of the mean sun is calculated on the basis of the formula defining it;
this leads to the sidereal time by subtraction and then to the hour angle of a
point such as the sun when its right ascension is known.

Because of the use of the hour angles in defining time scales, they (together
with the right ascension) are usually measured in hours, minutes and seconds
of time, rather than degrees, minutes and seconds of angle. To avoid confusion
between the two types of minute and second, minutes and seconds of time are
usually written with superscript m and s, rather than the single and double
marks. The size of the time-measure quantities is 15 times that of the degree
measure quantities. Thus, 1" = 15°,1™ = 15" and 1° = 15”.

Ideally, the major features described above such as the equator, ecliptic,
equinoxes, eccentricity and obliquity would be unchanging constants. In actual
fact, they change slowly with time.

Due to the asphericity of the Earth together with the actions of the other
planets, the axis of the Earth’s rotation itself traces a small circle through the
sky in about 23,000 years; this process is called precession. Due to precession,
the equator slowly shifts and so do the equinoxes. Since the Vernal equinox is
the origin for the celestial coordinates, the longitude and right ascension of the
" fixed stars” also shift.

One result of this is that the right ascension of the perihelion (alternately,
the anomaly of the equinox) decreases, and the Earth takes more time to move
from one perihelion to the next than it takes to move from one equinox and
back again. The time it takes to move from perihelion to perihelion (i.e. for the
anomaly to change by 360 °) is called the anomalistic year. The time it takes to
move from equinox to equinox (for the longitude to change by 360 °) is called a
tropical year and is the basis for the ordinary civil calendar since the equinoxes
mark the seasons. Another often used year is the sidereal year, the time it takes
to move 360 ° relative to the stars.

The perturbations induced on the motion of the Earth by the moon and the
planets are small, but a portion does accumulate. The resulting accumulated,
long term changes in, inter alia, the eccentricity and obliquity of the Earth’s
orbit are known as secular variations.

Many parameters, such as anomaly or longitude may be regarded as made
up of two parts; a mean part due to long term motions (which are either uniform
or include secular variations), and another part due to short term fluctuations.
Thus, we may refer to mean anomaly, mean longitude, etc. The total is called
the true value, the difference between true and mean is called an equation. For
example, the difference between true anomaly and mean anomaly is called the
equation of the center, while the difference between true solar time and mean
solar time is the equation of time.

Astronomers specify time in terms of Julian Date, which is the number
of days and decimal fraction since the date January 1, 4713 B.C. (old Julian
calendar). This practice simplifies calculating motion between two given dates,
avoiding the irregularity in the lengths of the months and years. The Julian day
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begins at noon in civil or universal time, for the convenience of astronomers.

4 Computation Methods for the NOAA Solar
Ephemeris

In this section, we give a summary of the theoretical basis on which the SOLEFM
subroutine was written. This section need not be read to understand the use of
the routine, but it can be useful for comparison with other similar routines.

The physical basis for the computations is that of the dynamics of orbits
as established from the works of Kepler through Newcomb. Similar techniques
have been used for centuries to compute the ephemerides (tabulations of forecast
positions of the Sun, moon, and planets). However, whereas the published
ephemerides include the effects of perturbations on the Earth’s orbit by the
major planets and the moon, we will ignore these terms and consider a simplified,
two body problem.

We shall use the Earth orbital data from Newcomb’s tables [Newcomb, 1898]
and the Sunrise and Sunset tables [USNO, 1945] and methods of calculation for
two-body problems adapted from [Smart, 1944], [Pollard, 1976] and [Wintner, 1941].
See these references for further details or for information on techniques for cor-
recting for perturbations by other bodies.

From the Sunrise and Sunset tables, and from Newcomb’s tables, we find the
orbital parameters for Earth, together with their daily changes, for the epoch
1966 January 0.75 UT (Julian Day 243 9126.25), i.e. the positions and velocities
of the Earth relative to the sun at (approximately) 1800 GMT December 31,
1965.

The orbital parameters and their values are given in Table 1.
TABLE 1 - Earth Orbital Parameters
1966 JAN 0.75 UT

H PARAMETER \ VALUE | DAILY CHANGE H
geometric mean longitude 279°.95656 | 0°.985 647 3463
Earth’s mean anomaly 357°.60087 | 0°.985 600 2614
eccentricity of Earth’s orbit | 0.016723401 | -1.115 x 10~°
obliquity of ecliptic 23°.44371 -0°.000 000 35626
right ascension of mean sun | 279°.95232 | 0°.985 647 3494

The secular variations in obliquity and eccentricity were computed from
Newcomb’s tables; all other terms were taken from the Sunrise and Sunset
tables.

According to Newcomb’s tables, the largest perturbations in angular posi-
tions of the sun are caused, in order, by Jupiter, the Moon, Venus, Mars, Saturn,
and Mercury; together they cause variations of up to about 30 seconds of arc
or two seconds of time. For perturbations of the radius vector, the important
bodies are, in order, the Moon, Jupiter, Venus, Mars and Saturn; together they
cause variations of up to 7 x 107° AU. These values, then, constitute the limits
of accuracy of our subroutines as stated earlier. Over a century, the secular
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variations in obliquity and eccentricity accumulate to more than these limits,
and we have therefore included them. The daily changes also undergo secular
variations, but they are not significant over a century or less.

To obtain the current mean value of any of the terms listed in Table 1, simply
calculate d, the number of days and decimal fraction elapsed since the stated
epoch, multiply by the daily change, and add to the tabular value. Thus, for
example, the mean anomaly M is given by

M = 357°.60087 + d x 0°.9856002614

Routines such as JULHR are invaluable for the calculation of d.
In order to calculate the true anomaly and Solar distance from the mean
anomaly, we recall Kepler’s first two laws for orbits in a two body system:

1. The path of one body about the other is that of an ellipse and the center
of attraction is in one of the focal points of the ellipse.

2. The radius vector between the two bodies sweeps out areas of the ellipse in
proportion to the time elapsed. (This is the law of conservation of angular
momentum.)

In Figure 4 is diagrammed this elliptical path of the Earth. Suppose the
semi-major axis CP is unity (in fact, very close to one AU), then the distance
SC from one focus (sun) to the center C is e units, e being the eccentricity. The
semi-minor axis is then equal to f = /(1 —e?) .

Consider a circle of center C and unit radius circumscribed about the ellipse.
The ellipse may be regarded as a uniform compression of that circle in a scale
factor f in the direction normal to the major axis. Thus, if the Earth is located
at E, and E’EE” is drawn normal to the major axis meeting the axis in E” and
the circle in E’, then the ratio of E’E to E’'E” is f.

The angle PCE’ is known as the eccentric anomaly p and provides a useful
intermediary between the mean anomaly M and the desired true anomaly 6.

The area of the sector PSE’ can be shown to be

po_ esin(p)

2 2

(where 1 is in radian measure). Since the area of the sector PSE’ is equal to f
times that of the sector PSE, and thus by Kepler’s second law proportional to
the mean .cc 5 anomaly M, we have (in radian measure)

M = i — esin(u) (1)

This is known as Kepler’s equation.
Further, from Figure 4, it can be shown that

rsin(6) fsin(p) (2)
rcos(d) = cos(p)—e
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Figure 4: Relations between the various Anomalies of the Earth’s orbit. Eccen-
tricity greatly exaggerated

where r is the radius vector (Earth-Sun distance). From 2, we may also calculate
r=1—-ecos(p) (3)

Equation 1 may be solved by any of a number of iterative schemes. The one
chosen for these subroutines is Newton’s method. In this case, we set initially

fro = M

and, for k>0,
M — iy + esin(puy,_q)
1~ ccos(r)

until p;, converges to the required value p.

M = Hp—1 +

13



It can be shown that convergence is guaranteed for e < 1.0 (i.e., when the
orbit is an ellipse). For the low eccentricities of the Earth sun pair, the conver-
gence is extremely fast. Indeed, in this case, the first iterate p; is always within
0.5” of the exact solution, well within the accuracy limits we have specified, and
to within this accuracy we may write

esin(M)

M:M—Flfecos(M) )

Using the eccentric anomaly p, we may find the Solar distance r from 3 and
the true anomaly 6 from 2. The next step is to find the location in the various
coordinate systems. The sun’s geometric longitude A, is found by subtracting
from 6 the anomaly of the equinox, i.e. the difference between the mean anomaly
M and the sun’s mean longitude A,;,:

Ag=0— M+ Ay,

From this, we subtract a correction for aberration to obtain the apparent lon-
gitude.

Aberration is an apparent shift in the position of a celestial object due to the
finite speed of light and the motion of either the object or the observer. From
the moving Earth, the sun appears shifted slightly in the direction opposite to
the Earth’s motion. The amount is small, namely b = 20”.50 divided by the
solar distance, but is a large enough fraction of our accuracy limit to be worth
including. Thus, the apparent longitude X is given by

b

A=), ——

v oy
The latitude of the sun, both geometric and apparent, is always zero, since
the Earth-sun line and the terrestrial motion are always (neglecting perturba-
tions) in the plane of the ecliptic. Accordingly, following the formulae for conver-
sion between the ecliptic and equatorial systems given in [USNO, 1977|pp24ft,

we have:

sin(d) = sin(e)sin(A)

(o) — cos(A)
cos(a) cos(0) (5)
) cos(e) sin(\)
sin(a) “eos0)

where ¢ and « denote the declination and right ascension (apparent) of the sun,
respectively, and € denotes the obliquity of the ecliptic.

From the right ascension a we subtract the right ascension of the mean sun
ay, calculated from Table 1, to obtain the equation of time. This is the last of
the terms returned by Subroutine SOLEFM.

The above algorithm differs from the traditional practice of expanding the
expression § — M, known as the equation of the center, in terms of a Fourier
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sine series in the mean anomaly M. Actually, the difference between any pair
of anomalies is an odd periodic function of any anomaly and can be expressed
as a sine series of that anomaly. [Smart, 1944] demonstrates how to utilize an
iterative solution of 1 with an assumed series to evaluate the coefficients of p -
M, then to convert that into a series expansion for the equation of the center.
The results are coefficients that are functions of the eccentricity.

The cost of the traditional method is a significant amount of analytic effort
in evaluating the coefficients. There are two major benefits. The first is the
fact that the coefficients, when calculated for other planets as well, provide a
good starting point for calculating the effects of the perturbations induced on
the Earth by those planets. The second is the fact that, all the analytic effort
being already expended, such an expression is well suited for hand calculation,
consisting of a series of table lookups, multiplications and addition.

The first benefit is inapplicable in the present case, since we have elected
to neglect perturbations. As to the second, for computer based algorithms
the computation of trigonometric functions is relatively costly and should be
minimized. The algorithm presented in this paper involves fewer sine evaluations
than any Fourier sine series of comparable accuracy, and there is no need to
reevaluate coeflicients for differing eccentricities.

Persons interested in accounting for perturbations, or producing ephemerides
for the various planets, are referred to [VanFlandern & Pulkkinen, 1979], where
conventional trigonometric terms are supplied.

The complete account of the solar radiation incident on the ground requires
consideration of atmospheric and meteorological factors as well. These factors
include refraction, attenuation, and climatological effects. The present paper
concentrates on the astronomical aspect of the question, and we will not deal
with these other matters.

Refraction is significant primarily at low solar elevation angles, where the
attenuation is greatest and there is little solar energy available in any case. At
these low angles, it is of the order of 34’ of arc and will affect the times of sunset
and sunrise by about 2 minutes of time (more at higher latitudes). Refraction
depends on the elevation angle of the sun, as well as temperature gradients and
the altitude of the observer. An analysis may be found in [Smart, 1944].

There are a number of models of the attenuation of solar radiation as it
passes through the atmosphere. In general, they depend on the total air mass
through which the radiation passes, and except for very low elevation angles,
this is approximately inversely proportional to the sine of the elevation angle.
Some models may be found in, e.g.[Hoyt, 1979] and [Reivfeim, 1978].

Climatological effects include atmospheric turbidity, cloud cover, and at-
mospheric moisture. The study of these processes and their affects on solar
radiation is the subject of much current research. Some results may be found,
e.g. in [Cotton, 1979] .

15



5 References

References

[Cotton, 1979]

[Hoyt, 1979]

[Newcomb, 1898]

[Pollard, 1976]

[Reivfeim, 1978]

[Smart, 1944]

[USNO, 1945

[USNO, 1977]

Cotton, Gerald F., ”ARL Models of Global
Solar Radiation”, Appendix VI in SOL-
MET, Volume 2, Final Report, TD-9724
Hourly Solar Radiation - Surface Meteo-
rological Observations. Environmental Data
and Information Services, NOAA, Asheville,
NC 28801 (1979)

Hoyt, Douglas V., " Theoretical Calculations
of the True Solar Noon Atmospheric Trans-
mission”, Appendix V in SOLMET, Volume
2, Final Report, TD-9724 Hourly Solar Radi-
ation - Surface Meteorological Observations.
Environmental Data and Information Ser-

vices, NOAA, Asheville, NC 28801 (1979)

Newcomb, Simon, ”Tables of the Motion
of the Earth on its Axis and Around the
Sun”, Astronomical Papers of the American
Ephemeris, Vol VI, part I U.S. Naval Obser-
vatory, (1898)

Pollard, Harry, ” Celestial Mechanics”, Carus
Mathematical Monographs, No. 18, Mathe-
matical Association of America, (1976)

Revfeim, K.J.A.” A Simple Procedure for Es-
timating Global Daily Radiation on Any Sur-
face”, Jour. Appl. Meteor. vol 17, no 8, pp.
1126-1131 (1978)

Smart, W.M., ”"Textbook on Spherical As-
tronomy”, Cambridge, (1944)

USNO 7”Tables of Sunrise, Sunset, and
Twilight”, supplement to the American
Ephemeris, 1946, U.S. Naval Observatory,
(1945)

USNO ”Explanatory Supplement to the
American Ephemeris 1978”, U.S. Naval Ob-
servatory, (1977)

16



[VanFlandern & Pulkkinen, 1979] Van Flandern, T.C. and K.F. Pulkkinen,

”Low-Precision Formulae for Planetary Po-
sitions”, Astrophysical Journal Supplement
Series, vol 41; pp.391-411, (1979)

[Wintner, 1941] Wintner, Aurel, ”The Analytical Founda-

tions of Celestial Mechanics”, Princeton Uni-
versity Press, (1941)

[Woolf, 1968] Woolf, Harold, ”On the Computation of So-

lar Elevation Angles and the Determination
of Sunrise and Sunset Times” NASA TM X-
1646, NTIS, Springfield, VA (1968)

A Program Listings

A.1 SOLEFM

SOLEFM Locates the Sun in Celestial Coordinates

SUBROUTINE SOLEFM(JHR,DMIN,RAAPP,DECL,RADVEC,EQTIM)
INPUT TO SUBROUTINE: JHR (JULIAN HOUR FROM SUBROUTINE JULHR),
DMIN (MINUTES PAST HOUR); ASSUMED VALUES IN EPHEMERIS TIME
(APPROXIMATELY GREENWICH MEAN TIME).
RETURNED VALUES: RIGHT ASCENSION AND DECLINATION OF APPARENT
SUN (AS CORRECTED FOR ABERRATION), DISTANCE TO GEOMETRIC SUN
(NOT CORRECTED FOR ABERRATION), AND THE EQUATION OF TIME (THE
HOUR ANGLE OF THE APPARENT SUN MINUS THAT OF THE MEAN SUN, A
FICTITIOUS POINT MOVING ALONG THE CELESTIAL EQUATOR AT UNIFORM
RATE AND DEFINING EPHEMERIS TIME) .

UNITS: DECLINATION AND RIGHT ASCENSION IN DEGREES AND FRACTION,
RADIUS VECTOR IN ASTRONOMIC UNITS (AU) AND FRACTION, THE
EQUATION OF TIME IN MINUTES OF TIME AND FRACTION. (ONE MINUTE
OF TIME = 15 MINUTES OF ARC.)

DOUBLE PRECISION GML,GMLO,GMLPR,ASL,EMA,EMAO,EMAPR

DOUBLE PRECISION EQCENT,SOLDST,OBLQ,0BLQO,O0BLQPR

DOUBLE PRECISION TAU,TAUO,TAUPR,ECCEN,ECCENO,ECENPR

DOUBLE PRECISION DAYS,RADPDG,ABRCON,ECA,COSECA,SINECA,TANOM

DOUBLE PRECISION F,X0,YO,X1,Y1,DARSIN,DARG

LOGICAL READY

DATA GMLO0/279.95656D0/,GMLPR/.985 647 3463D0/

DATA EMAO/357.60087D0/,EMAPR/.985 600 2614D0/

DATA 0BLQO/23.44371D0/,0BLQPR/-3.562 6283D-7/

DATA TAU0/279.952 23D0/,TAUPR/.985 647 3494D0/
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Q

DATA ECCENO/1.672 3401D-02/,ECENPR/1.1149D-9/
DATA RADPDG/1.745 329 252D-2/
DATA ABRCON/5.693 333 333D-3/
DATA READY/.FALSE./
DARSIN(DARG)=DATAN2 (DARG,
A DSQRT (DMAX1 ( (1DO+DARG) * (1DO-DARG) ,0D0)))
IF(READY) GO TO 5
JHEPOK=JULHR (1966,1,0,18)
READY=.TRUE.
5 DAYS=(DBLE(FLOAT (JHR-JHEPOK) ) +DMIN/60D0) /24DO0
DAYS ELAPSED SINCE (OR PRECEDING) EPOCH OF ORBITAL ELEMENTS.
GML=(GMLO+DAYS*GMLPR) *RADPDG
MEAN GEOMETRIC LONGITUDE OF SUN, MEASURED ON ECLIPTIC FROM
VERNAL EQUINOX.
EMA=(EMAO+DAYS*EMAPR) *RADPDG
EARTH’S MEAN ANOMALY, MEASURED AT SOLAR CENTER FROM PERIHELION
TO FIDUCIAL POINT REPRESENTING EARTH, BUT MOVING AT UNIFORM
SPEED AND TOUCHING EARTH AT APHELION AND PERIHELION.
OBLQ=(0BLQO+DAYS*0BLQPR) *RADPDG
OBLIQUITY OF THE ECLIPTIC
TAU=(TAUO+DAYS*TAUPR) *RADPDG
POSITION OF MEAN SUN ON THE CELESTIAL EQUATOR
ECCEN=ECCENO+DAYS*ECENPR
F=DSQRT (1DO-ECCEN*%*2)
ECCENTRICITY OF THE TERRESTRIAL ORBIT
ALL THE ABOVE ELEMENTS OF MEAN TERRESTRIAL ORBIT EVALUATED FOR
1966 JAN 0.75 UT. (JULIAN DAY 2439126.25). SEE
SUNRISE AND SUNSET TABLES SUPPLEMENT TO THE AMERICAN
EPHEMERIS, 1946.
ECA=EMA
COSECA=DCOS (ECA)
SINECA=DSIN(ECA)
ECA=EMA+ECCEN#*SINECA/ (1DO-ECCEN*COSECA)
ECA = EARTH’S ECCENTRIC ANOMALY.
COSECA=DCOS (ECA)
SINECA=DSIN(ECA)
TANOM=DATAN2 (F*SINECA, COSECA-ECCEN)
TANOM = EARTH’S TRUE ANOMALY.
SOLDST=1D0-ECCEN*COSECA
RADVEC=SOLDST
EQCENT=TANOM-EMA
EQCENT = EQUATION OF THE CENTER = TRUE EARTH ANOMALY MINUS
MEAN EARTH ANOMALY.
ASL=GML+EQCENT-ABRCON*RADPDG/SOLDST
APPARENT SOLAR LONGITUDE = GEOMETRIC MEAN LONGITUDE PLUS
EQUATION OF THE CENTER MINUS ABERRATION.
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YO=DSIN(ASL)
DECL=DARSIN(DSIN(OBLQ)*YO) /RADPDG
C DECL = DECLINATION OF THE APPARENT SUN IN DEGREES AND FRACTION;
C RETURNED.
YO=Y0*DCOS (0BLQ)
X0=DCOS (ASL)
RAAPP=DATAN2(-Y0,-X0) /RADPDG+180D0
C RAAPP = RIGHT ASCENSION OF THE APPARENT SUN IN DEGREES AND
C FRACTION; RETURNED.
Y1=DSIN(TAU)
X1=DCOS (TAU)
EQTIM=4DO*DATAN2(Y1*X0-X1*Y0,YO*Y1+X0*X1) /RADPDG
C EQUATION OF TIME IN MINUTES OF TIME AND FRACTION; RETURNED.
RETURN
END

A.2 SOLTIM
SOLTIM - Returns True and Mean Solar Time

SUBROUTINE SOLTIM(JHR,DMIN,EQTIM,XLONG,STT,STM)
GMTIM=FLOAT (MOD(JHR,24))+DMIN/60.
STM=GMTIM-XLONG/15.

STM=AMOD (AMOD(STM,24.)+24.,24.)
STT=STM+EQTIM/60.

STT=AMOD (STT+24.,24.)

RETURN

END

A.3 EQ2AZM
EQ2AZM - Converts from Equatorial to Azimuthal Coordinates

SUBROUTINE EQ2AZM(DECL,STT,XLAT,ELEV,AZIM)

DATA RADPDG/1.745329252E-2/,RADPHR/2.617993878E-1/
DECLR=RADPDG*DECL

XLATR=RADPDG*XLAT

STTR=RADPHR*STT

SLAT=SIN(XLATR)

CLAT=COS (XLATR)
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SDECL=SIN(DECLR)
CDECL=COS (DECLR)
CSTT=COS (STTR)
SSTT=SIN(STTR)
Z=SLAT*SDECL-CDECL*CLAT*CSTT
X=-CDECL*SSTT
Y=-CLAT*SDECL-CDECL*SLAT*CSTT
R=SQRT (X**2+Y*%x2)
IF(R.EQ.0.) GO TO 20
AZIM=ATAN2(X,Y)/RADPDG+180.
ELEV=ATAN2(Z,R) /RADPDG
RETURN

20 ELEV=SIGN(90.,Z)AZIM=0.
RETURN
END

A.4 JULHR
JULHR - Returns Hours Since Beginning of Julian Calendar

FUNCTION JULHR(MYR,KMO,KDA,KHR)
DIMENSION MONTH(12)
DATA MONTH /0,31,60,91,121,152,182,213,244,274,305,335/
KYR=MYR
IF (MINO (KYR, 99-KYR) .GE.0)
KYR=KYR+1900
LMO=KMO
LHR=LM0O/12
LMO=LMO-12*LHR
IF(LMO.GT.0) GO TO 10
LMO=LMO+12
LHR=LHR-1
10 KYR=KYR + LHRLHR=KHR+24#* (KDA+MONTH (LMO)+366% (KYR-2000))
IF(LHR.LT.1464) GO TO 22
INCR1=(LHR-1464) /8784
GO TO 25
22 INCR1=(LHR-1463)/8784
C INCR1= NUMBER OF YEARS PASSED SINCE 2000 MARCH 1 00Z
C IF NEGATIVE, UNTIL 2000 FEB 29 23Z
25 INCR2=INCR1/4
C INCR2= NUMBER OF YEARS THAT ARE LEAP YEARS
INCR3=INCR2/25
C INCR3= NUMBER OF CENTURIES PASSED
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INCR4=INCR3/4
C INCR4 = NUMBER OF 4- CENTURY PERIODS
JULHR=LHR+(245 1544 - INCR1 + INCR2 - INCR3 + INCR4) * 24
RETURN
END

A.5 DATEX
DATEX - Converts JULHR Value to Calendar Date

SUBROUTINE DATEX(JULHR,KYR,KMO,KDA,KHR,KNAMMO,KDAYWK)
INTEGER WEEK
DIMENSION MONTH(12),NAMEMO(12) ,WEEK(7)
DATA MONTH /0,31,60,91,121,152,182,213,244,274,305,335/
DATA NAMEMO/3HJAN, 3HFEB, 3HMAR, 3HAPR, 3HMAY, 3HJUN, 3HJUL,
1 3HAUG,3HSEP, 3HOCT, 3HNOV, 3HDEC/
DATA WEEK/3HSUN, 3HMON, 3HTUE, 3HWED , 3HTHU, 3HFRI , 3HSAT/
MDA=JULHR/24
KHR=JULHR-MDA*24
KDAWK=MOD (MDA+1,7)
KDAYWK=WEEK (KDAWK+1)
MDA=MDA-245 1605
C NUMBER OF DAYS SINCE (NEGATIVE, UNTIL) 2000 MAR 1
IF(MDA.LT.0) GO TO 5
N400= MDA/146 097
GO TO 10
5 N400=(MDA+1)/146 097 -1
C NUMBER OF 400-YEAR PERIODS SINCE DAY 2000 MAR 1 (IF NEGATIVE,
C UNTIL 2000 MAR 1)
10 MDA=MDA-146 097%*N400
N100=MDA/36 524
C N100= NUMBER OF CENTURIES SINCE LAST 400-YR PERIOD
MDA=MDA-36 524 * N100
NO4=MDA /1461
MDA=MDA- 1461 *N0O4
NYR= MDA/365
MDA=MDA-365*xNYR+61
KYR=2000+NYR+4* (NO4+25% (N100+4*N400) )
IF (MAXO(NYR,N100) .LT.4) GO TO 20
C LEAP DAY
KM0O=2
KDA=29
KNAMMO=NAMEMO (2)
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RETURN
20 IF(MDA.LE.366) GO TO 30
KYR=KYR+1
MDA=MDA-366
30 DO 40 K=2,12
IF(MONTH(X) .GE.MDA) GO TO 50
40 CONTINUE
K =13
50 KMO = K-1
KDA=MDA-MONTH (KMO)
KNAMMO=NAMEMO (KMO)
RETURN
END

B The Calendar Routines JULHR and DATEX

In the automatic processing of archived data covering a period of years, a com-
mon source of problems to programmers lies in the nature of our calendar,
particularly the irregular number of days per month. This presents especial
difficulties if an analysis calls for data points uniformly spaced in time. Again,
if one wishes to test a sequence of points for missing data, it makes a difference
whether the absence of an entry for the 31st is due to the lack of data or the
lack of a day. Even when a programmer has carefully tested each month for its
expected number of days, he may come to find on Feb. 29 that he forgot about
leap year.

Historically, this irregularity has been of annoyance to astronomers, who
may well need to know how many days it is between, say, Jan. 1, 1900 and
Dec. 21, 1960. Although the arithmetic involved is not sophisticated, it can be
quite tedious, and it is not uncommon to make errors of perhaps several days.
If many such calculations are required, the calculation easily goes from tedious
to costly.

The solution to this problem was provided in 1582 by the Italian Protestant
scholar, Joseph Scaliger. Basically, his system was to assign to each day a
number, the Julian Date, which was the number of days elapsed since Jan. 1,
4713 B.C., this date being arbitrarily chosen as being early enough to precede all
historical events and precisely observed and recorded astronomical phenomena.
The name Julian was applied in honor of his father, Julius Caesar Scaliger. The
calendar in which 4713 B.C. was specified was the calendar in force in his day,
i.e. the Julian calendar (named after the Roman emperor). In our modern
Gregorian calendar, the same date would be displaced by five weeks in time.

Since days are numbered consecutively, if the Julian dates of any two days
are known, a simple subtraction suffices to determine how many days separate
them. Julian dates for a wide range of dates are published, e.g. in the American
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Ephemeris. Thus, for example, Dec. 21, 1960 is Julian day 2,437,290 while Jan.
1, 1900 is Julian day 2,415,021 and there are 22,269 days between them.

To take advantage of this simplicity in automatic data processing, routines
are required to translate from calendar date to Julian date and back again.
Many such routines have been written and are available from various sources.
The ones we have provided have several features which we feel make them more
than usually useful.

We have extended the concept from days to hours. Thus, a meteorologist
who must think in 3, 6, and 12-hour increments does not have to separately keep
track of days and hours. Furthermore, changing from one time zone to another
can be accomplished by simply adding or subtracting the appropriate number
of hours without concern about possible changes of date. We have defined the
Julian Hour to be the number of hours elapsed since 0000 hours, Jan. 1, 4713
B.C. (Julian calendar)?

Another feature is that out-of-range arguments are allowed in the input for
calendar dates, and treated in a logical fashion. This has several benefits for
users of the routines, as will be elaborated in the examples below.

The FORTRAN integer function JULHR will calculate the Julian hour for
given information in integer form on year, month, day, and hour. To use, the
programmer should insert the statement

JHR=JULHR(KYR, KMO, KDA, KHR)

in his program. The integer values KYR, KMO, KDA, and KHR which must
be supplied by the programmer represent the year, month, day, and hour, re-
spectively of the calendar date of interest.

Usage notes for JULHR:

1. The arguments are required in order of increasing resolution; i.e. the
largest time unit first, the smallest last

2. The year input may be the actual year (e.g. 1980), or it may be a value
from 0 to 99, in which case 1900 will be added before processing (e.g. 78
will be treated as meaning 1978).

3. The range of KMO will normally be from 1 to 12. If a number outside
that range is supplied, a sufficient multiple of 12 will be subtracted (or
added) from it and the appropriate number will be added (or subtracted)
to the KYR term. Thus, JULHR(1966,13,5,0) will have the same result
as JULHR(1967,1,5,0).

4. The range for KHR will normally be from 0 to 23, while that for KDA will
normally be 1 through 31. If KHR is out of range, sufficient days will be
added to KDA and multiples of 24 subtracted from KHR to fit. If KDA is

2By international agreement among astronomers, the Julian day starts at noon, 12 hours
after the corresponding civil date commences. In this way, astronomers do not have to start
a new date in the middle of their working night. Of course, users of these routines are free to
define their starting time as midnight GMT, midnight LST, or whatever is convenient.
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out of range for any month, the remainder will extend into the following
month. Thus, March 35 will become April 4.

5. Because the values of JULHR in the 20th century are so large (up to
58 x 10°), it requires a computer with a word size of no less than 27 bits
(8 digits) for integer arithmetic. If REAL arithmetic has less than 8 digits
precision (such as single precision on the IBM 360/370) an inadvertent
conversion to REAL will cause serious round-off problems. For such a
computer, avoid having JHR appear in an expression with variables of
TYPE REAL or constants in which decimal points or exponential terms
appear.

The FORTRAN callable subroutine DATEX will calculate, from any input
Julian hour, the year, month, day, and hour as integers, as well as the name of
the month as a three character alphameric string (from 'JAN’ to '"DEC’) and
the name of the day of the week (from 'SUN’ to 'SAT”’). To use, the programmer
inserts the statement

CALL DATEX(JHR, LYR, LMO, LDA, LHR,
C NAMMON, NAMDAY)

in his program. The integer value JHR (supplied by the programmer) is the
Julian hour of interest; the integer values LYR, LMO, LDA, and LHR (re-
turned by the subroutine) give the year, month, day and hour (in integer form)
corresponding to it. The variables NAMMON and NAMDAY returned by the
subroutine are 3-character left-justified Hollerith strings representing the name
of the month and the name of the weekday, respectively; they may be printed
under an A3 FORMAT specification.
Usage notes for DATEX:

1. The output arguments are supplied in order of increasing resolution; i.e.
the largest time unit first, the smallest last.

2. LYR will be the actual year. Thus, dates in the 20th century will have
LYR in the range 1900 through 1999, not 0 through 99.

3. The range of LMO, LDA, and LHR will be 1-12, 1-31, and 0-23, respec-
tively.

4. NAMMON and NAMDAY may be printed out using an A3 FORMAT.

5. Leap years and leap days are handled according to the rules of the present
day (Gregorian) calendar. Thus, if Feb. 29 is input to JULHR and re-
trieved through DATEX, the result will be Mar. 1 for the years 1975, 1900
and 1978; Feb. 29 for the years 1976, 1980, and 2000.

Following are some examples of the use of the calendar routines:
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. Calculate the Julian day of the year; i.e. the number of days since the
beginning of the year (Jan. 1 = 1 and Dec. 31 = either 365 or 366):

JDAY=(JULHR( KYR, KMO, KDA, KHR) -
C JULHR(KYR, 1, 0, 0)) / 24

(Jan. 0 is actually Dec. 31 of the preceding year).

. Given the year KYR and the Julian day of the year JDAY, calculate the

calendar date:

JHRO = JULHR( KYR, 1, 0, 0)
CALL DATEX( JHRO + 24*JDAY, LYR, LMO, LDA, LHR,
C NAMMON, NAMDAY)

Calculate the Julian date of a particular calendar date:

JULDA=JULHR(KYR,KMO,KDA ,KHR) / 24

The result should match that in the Ephemeris.

. As between two given calendar dates, determine which is earlier, and by

how many hours:

30

40
50

KGAP = JULHR(KYR2, KMO2, KDA2, KHR2) -
C  JULHR(KYRI, KMO1, KDA1, KHR1)
[IF (KGAP) 10, 20, 30

10 code for case date 2 early
20 code for case dates equal
30 code for case date 2 late

Compute mean monthly values on daily data:

DIMENSION VALUE(366)

code to evaluate KYR and VALUE

KHRO=JULHR (KYR,1,0,0)

DO 50 KMO=1,12
KDA1=(JULHR(KYR,KMO,1,0)-KHRO) /24
KDA2=(JULHR (KYR,KMO+1,0,0)-KHRO) /24
NDAYS=KDA2 - KDA1 + 1
AMEAN=0.

DO 30 KDAY=KDA1,KDA2
AMEAN=AMEAN+VALUE (KDAY)
CONTINUE
AMEAN=AMEAN/NDAYS
CALL DATEX(KHRO+24%KDA1, LYR, LMO, LDA, LHR, NAMMON, NAMDAY)
PRINT 40,NAMMON,KYR,AMEAN
FORMAT(’> MEAN FOR MONTH ’,A3,I5,’ = ’,G10.4)
CONTINUE
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Explanation: KHRO is the Julian hour beginning the last day of the preced-
ing year (Jan. 0 of this year). KDAI is the Julian day of the year beginning
the month KMO. KDA2 is the Julian day of the year ending the month KMO
(the zeroth day of month KMO+1). For KMO=12, KDA2 is the last day of
December for the current year, or the zeroth day of the 13th month of this year,
or the zeroth day of the first month of the following year. This is a sample of the
programming possibilities inherent in the handling of out of range arguments
for JULHR.
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