

NOAA Technical Memorandum ERL ARL-87

THE TRAPS SONIC BOOM PROGRAM

Albion D. Taylor

Air Resources Laboratories
Silver Spring, Maryland
July 1980

NOAA Technical Memorandum ERL ARL-87

THE TRAPS SONIC BOOM PROGRAM

Albion D. Taylor

Air Resources Laboratories
Silver Spring, Maryland
July 1980

ii

NOTE FOR THE ELECTRONIC VERSION

The original tech memo included a microfiche giving a copy of the
FORTRAN CODE for TRAPS, due to the size of the printouts. For the
electronic (pdf) version, this code is now included as an additional
appendix.

NOTICE
The Environmental Research Laboratories do not approve, recommend,

or endorse any proprietary product or proprietary material mentioned in
this publication. No reference shall be made to the Environmental
Research Laboratories or to this publication furnished by the
Environmental Research Laboratories in any advertising or sales
promotion which would indicate or imply that the Environmental Research
Laboratories approve, recommend, or endorse any proprietary product or
proprietary material mentioned herein, or which has as its purpose an
intent to cause directly or indirectly the advertised product to be
used or purchased because of this Environmental Research Laboratories
publication.

TABLE OF CONTENTS

 APPENDIX A - STRUCTURE OF TRAPS A-1
 Environment of the Program A-1
 Program Listings .. A-2
 Organization of the Program A-2
 Input Reader Routines A-3
 Ray Tracing Routines .. A-5
 Signature Aging Routines A-7
 Physical Utility Routines A-9
 General Utility Routines A-9

Page

 SONIC BOOM FORTRAN LISTINGS Microfiche Inside Back Cover

iii

 ABSTRACT ... iv

 1. INTRODUCTION ... 1

 2. RAY CHARACTERISTICS 3

 3. THE MODEL ATMOSPHERE 5

 4. THE AIRCRAFT TRACK 7

 5. RAY ORIGINS AND ADMITTANCE CRITERIA 9

 6. RAY TUBE AREAS AND SONIC BOOM AMPLITUDE 13

 7. FOLDING SURFACES AND CAUSTICS 14

 8. AGING OF SIGNATURES 17

 9. THE CAUSTIC PASSAGE 19

 10. SUMMARY .. 21

 11. REFERENCES ... 22

 APPENDIX B - DATA PREPARATION FOR TRAPS B-1
 Data Preparation for the TRAPS Program B-1

RAOB File - Pressure/Temperature/Height Profile B-4
 Action taken by Input Reader Routine B-6
 WINDS File - Height/Direction/Speed Profile B-7
 Action taken by Input Reader Routine B-9
 TRACK File - Aircraft Position/Height vs Time B-10
 Action taken by Input Reader Routine B-12
 COMMAND File - Specifying Rays and Output B-13
 The F-FUNCTION File B-18

Abstract

A new program called TRAPS has been written having the

capability of modeling an aircraft-created sonic boom. Like
an earlier program (ARAP), this program allows the aircraft
to perform an arbitrary sequence of maneuvers,
accelerations and deaccelerations, and it uses a stratified
atmospheric model of either a standard or user specified
composition. The new program introduces the new feature of
accounting for sonic booms which travel upward initially,
but are subsequently refracted from the stratopause
(~50,000 meters) or the thermosphere (~100,000 meters).
Overpressures and shocks are computed from an initial
aircraft F-function on the basis of Aging and Hilbert
Transforms applied according to the travel paths (rays) of
the acoustic energy. In addition, input procedures are
simplified and information is made available as to what
proportion of the aircraft sonic boom can intercept the
ground.

iv

THE TRAPS SONIC BOOM PROGRAM

Albion D. Taylor
National Oceanic and Atmospheric Administration

Air Resources Laboratories
Silver Spring, MD 20910

July 1980

1. Introduction

In 1969, members of the Aeronautical Research Association of Princeton, Inc. wrote a

computer program (referred to in this report as the ARAP program) which investigates the
propagation of pressure disturbances (sonic booms) from a supersonic aircraft. The program traces
such a disturbance as it follows an acoustic ray path and adjusts the form of the disturbance
according to weak non-linear interaction (aging) until it strikes the ground.

The program was fully documented by its authors, Hayes, Haefeli, and Kulsrud in their

report [Hayes et al:1969], referred to in this report as the ARAP report.

The ARAP program has been frequently used in the forecast of the sonic boom, as an adjunct

to experiment planning, and as a planning tool for the regulation of supersonic traffic, and it has
enjoyed a notable agreement with observation [Herbert & Hass:1971], [Haglund & Kane:1974],
[Maglieri et al:1972]. However, its applicability has always been restricted to the sonic boom carpet
directly below the aircraft (direct sonic boom). It was never designed to treat the situation near the
edges of the carpet, or where the ray encounters a folding surface or caustic, as may occur during
acceleration or in certain maneuvers (the so-called "superboom"). It cannot follow the boom on
reflection from the ground, or when refraction causes it to curve upward, or handle an upward
moving disturbance in any way.

Furthermore, the preparation of input data for the program has often proven awkward. The

maneuver data for the aircraft were required in terms of Mach numbers and of elevation and azimuth
angles of the motion relative to the surrounding air, whereas the available data were often in terms
of position relative to the ground. Not only did velocities have to be derived, but a windage
correction had to be applied and the sound speed at the aircraft had to be considered. Again, the
ARAP program calls for temperature and pressure of the atmosphere to be entered as a function of
height. In practice, by contrast, meteorological upper air soundings do not measure or report height
but require height to be computed from the pressure and temperature. Thus, much precomputation
must be done before the ARAP program can be used.

 In its original form, the ARAP program even requires some post processing to be performed on
its output before an actual pressure signature results, since it stops at obtaining the information
required to fit shock waves to the signature and does not go on to produce the signature itself. Rather,
instructions are provided in the documentation for the graphical completion of the task. (This fact has
led several users, such as NOAA [Herbert & Hass:1971] to modify the program to perform this task).

 From 1976 through 1978 there were reports of audible and infrasonic disturbances in the eastern
U.S. and Canada [Balachandran et al:1977], [NRL:1978], [DOT:1978] and analysis showed that at
least some of these could be correlated with the scheduled flights of the Concorde. These
disturbances could not have been the direct sonic boom that the ARAP program was designed to
handle, since the Concorde flights were adequately slowed at sufficient distance from the coastline,
but they could have been shock waves which had reflected from the water, and then traveled to a
height of 50 to 100 kilometers before refracting back toward the ground. Alternately, the boom might
have been initially headed upward.

 Since these propagation modes are precisely those which the existing ARAP program could not
handle, it was decided to rewrite the program to introduce this capability. In 1979, the Air Resources
Laboratories of NOAA undertook this task.

 A review of the ARAP program and its physical foundations (geometric acoustic theory) was
undertaken. It showed that there was nothing in geometric acoustics that prevents its application to
rays that reflect from a surface or refract through the horizontal to begin moving downward.
Nevertheless, the mathematical analysis on which the program was based began with a choice of
coordinates which introduced an artificial infinity in the ray tube area calculations. Further, since
height was used as the independent variable, there were logical difficulties in handling rays which
alternately traveled upward and downward. The consequences of these choices permeated the
program so thoroughly that it was impractical to simply modify the existing program.

 Accordingly, it was decided to write a completely new program, using the same fundamental
physical concepts and generally the same terminology, but for which the mathematical analysis,
program logic, and some definitions were completely revised. The new program has been designated
TRAPS (Tracing Rays and Aging Pressure Signatures). In the course of this, the data input routines
and the output routines were also rewritten to remove some of the pre- and post-processing burdens
from the user.

 This report outlines the features of the new program and describes how to prepare the data, run
the program, and interpret the results.

2

2. Ray Characteristics

 The pressure waves traced by the ARAP program can follow only one path - from the
aircraft directly to the ground. The new TRAPS program, on the other hand, must deal with a
wide variety of paths, including possibly multiple strikes of the ground by the same ray. To
avoid confusion in interpreting the results, it is essential to have a systematic classification of
the results according to the pathway over which the ray traveled. Such a classification may be
provided by considering the mechanism of the ray propagation and the nature of our
atmosphere.

 Like the ARAP program, the TRAPS program assumes the atmosphere (pressures,
temperatures and winds) to be stratified in the vertical but uniform in the horizontal direction
and steady in time. These assumptions impose stringent conditions on the possible paths of
motion (rays) of the wave. This motion is governed by a variant of Snell's law, which by virtue
of the stratification of the atmosphere, requires the horizontal components of wave number, the
frequency, and hence the horizontal velocity of the phase surfaces of the wave to be constant
with respect to the ground. This constant differs from one ray to another. When combined with
the requirement that the net speed be that of sound relative to the air, it determines the size of
the vertical component of motion, and thus the motion itself. The result is that, for each ray,
there are combinations of wind velocity and temperature at which it cannot exist (see
Admittance Criteria, below). Where the ray can exist, its path curves toward regions more
favorable to it; i.e. toward levels where the sound speed is lower and/or where the wind
component in its direction is greater. Since the sound speed is proportional to the square root of
the temperature, for each ray there is a critical combination of temperature and wind velocity
that will cause its vertical motion to slow, stop, and reverse.

 It should be noted that a downward moving ray which meets such a reversal layer and
turns away from the ground will never, because of our stratification assumptions, reach the
ground no matter what path it subsequently follows, but will always reverse again at the same
height.

 If an upward moving ray is to be of concern to us on the ground, it must meet a reversal
level in the upper atmosphere. Neglecting the wind for the moment, the conditions for reversal
depend solely on the temperature. The graph of molecular-scale temperatures in Figure 1,
adapted from the U.S. Standard Atmosphere, 1976 [COESA:1976], demonstrates the typical
temperature behavior of the atmosphere for temperate latitudes.

 The temperature drops from that at ground level to a minimum at a layer between
10 and 20 km, or the level at which the Concorde flies on its approach to the U.S. Above
this level, the temperature again rises and attains a peak at the stratopause (around
50km) before dropping again at heights in the mesosphere. In the thermosphere,

3

Figure 1
Vertical Profile of Molecular-Scale Temperature

Adapted from U.S. Standard Atmosphere, 1976

above approximately 100km, the temperature again rises sharply.

 Because the temperature is so low at the Concorde flight level, there will generally be rays
(e.g. those which leave the aircraft horizontally) which cannot reach the ground. If the aircraft
speed is sufficiently low, even though supersonic, all rays will he unable to reach the ground,
Such a speed is said to be below the "Threshold Mach number", see [Haglund & Kane:1974] and
"Admittance Criteria" below.

 At higher speeds, there will be rays, especially those directed forward and up or forward
and down, for which the ground is attainable. Those moving upward must first encounter a
reversal layer. Neglecting wind, this reversal layer must be at a temperature exceeding the
ground temperature, or another reversal will take place above the ground.

4

 The temperature peak at the stratopause is generally not high enough to meet this
condition. Rays which are reversed here will not come within a few hundred meters of the
ground before reversing again. The next opportunity for reversal is above 110 km, and the air at
this altitude is so rarefied that any acoustic energy is quickly dissipated through the non-linear
"aging" process, as well as linear viscosity and heat conduction. Indeed, the molecular mean
free path is so long as to cast doubt on the very concept of sound propagation at these altitudes!

 Referring again to the peak at 50km, it is true that seldom if ever will the temperature
exceed the ground temperature. However, the winds at this level are not negligible and may
attain speeds of 50 to 100 meters per second. If such a wind is in the proper direction, then in
concert with the high sound speed, it can cause the reversal of a ray for which the ground is
attainable.

 Thus, a downward reversal is possible at two levels: one at around 50km which we will
designate the M (middle) level, and one above 100 km which we will designate the H (high)
level. Of course, it is also possible to reflect from the ground (G) level.

 We will designate a ray path which runs directly from the aircraft to the ground as a G
ray. If the path then rebounds to the M level and is reversed, when it again meets the ground it is
a GMG ray. If the ray moved directly upward from the aircraft to the M layer without an initial
ground reflection, we will designate it as an MG ray. If such rays pass the M level and continue
to the H level before reversal, they are GHG or HG rays. If a ray reflects twice from the ground,
it becomes a GMGMG or GHGHG ray. These codes will be recognized by the program, which
actually makes the distinction according to whether reversal occurs above or below 70 km.

 It should be noted that our stratification assumptions ensure that reversals always take
place at the same altitudes, so that mixed codes such as GMGHG or GHGMG cannot occur. The
overpressure signatures, overpressures, sonic boom footprints, etc. associated with a given class
of ray will also be designated by the same code.

 The primary sonic boom carpet below the aircraft, which is treated by the ARAP
program, is the G carpet. The principal source of the audible indirect sonic boom events seems to
be the GMG or the MG carpet [Gardner & Rogers:1980], [George & Kim:1979].

3. The Model Atmosphere

 The ARAP program allowed the user his choice of using the built-in atmosphere,
taken from the U.S. Standard Atmosphere, 1962 [COESA:1962], or of entering data
consisting of a selection of pressures and temperatures at significant heights.
The latter had to be computed on the basis of the available upper air radiosonde

5

soundings, collected on a twice-daily basis at many sites in the U.S. There was no attempt in the program
to check the input data for physical consistency. The unwary user could experience some difficulty if he
used a radiosonde report from a station having a higher elevation than the site in which he was interested; if
he began his data entry at the station elevation (say 300m) and wished his output at sea level, the program
would "blow up" for lack of data as the rays went down past 300m. To avoid this, it was important to
introduce dummy data points below the elevation of the station. Another idiosyncrasy arises from the fact
that input data and the Standard Atmosphere are treated differently. Thus, slight differences in the output
occur if, instead of specifying directly the use of the Standard Atmosphere, an input atmosphere is used
with the same significant heights, pressures and temperatures!

 In the TRAPS program, it was decided to ensure consistency by requiring the identical handling of
data in either case. It was also decided to write the input reader routines keeping in mind the type of data
actually available, the necessity for ensuring the hydrostatic consistency of the model, and the desirability
of reducing the pre-processing tasks of the user.

 Direct sounding data for the atmosphere are operationally of two types: balloon-borne radiosondes
and rocket-borne rocketsondes. Some indirect data are also available through processing infrared satellite
imagery.

 Radiosonde data are available on a twice-daily basis (0000 and 1200 GMT) from a number of

stations in the U.S. The instruments measure temperatures and dewpoints at a variety of pressure levels,
and winds are derived by tracking devices. In general, the resulting data apply from ground to an altitude of
about 30 km, which as noted above seldom includes the stratopause so that these reports alone will not
suffice for tracking the GMG rays.

 Rocketsondes, being considerably more expensive, are generally available only on a weekly basis

from a limited number of stations. Temperatures (but usually not pressures) are returned from a selection of
heights ranging from 20 km to between 55 and 70 km. By tracking the instrument, winds are also
determined.

 The supplemental data from satellite infrared analysis yield heights and temperatures of the 5mb,
2mb, 1mb, and 0.4mb pressure surfaces on a once-daily basis (1200GMT). Wind information must be
derived on the basis of a geostrophic assumption. These levels correspond to the range of around 35 to 55
km, so they do not extend the range of the rocketsondes, but are rather a substitute when the latter are not
available. Like rocketsondes, there is generally a delay of a few days before they are available.

 From the above discussion, it is apparent that the H layer is higher than all the operationally
available data. If the program is to treat the H type paths at all, data at such heights must be supplied
artificially except in very special circumstances.

6

 It was decided to write the input reader subroutines to accept a composite of radiosonde type data
(pressure - temperature - dewpoint) and of rocketsonde data (temperature-height), and to use data from the
U.S. Standard Atmosphere, 1976 [COESA:1976] to extend the data down to -5 km and up to 130 km*. In
the event that no data were provided, the result would be a copy of the Standard Atmosphere.

 Where pressures and temperatures are available, the program computes heights using the hydrostatic
assumption. If heights but not pressures are available, the program computes pressures under the same
assumption. For consistency, the variation of temperature between levels was assumed to be the same as
that in the Standard Atmosphere, namely linearly dependent on geopotential height, rather than on
pressure. Slight variations may be expected between the resulting heights and those computed by other
programs.

 Above 86 km, the Standard Atmosphere, 1976 itself changes from a segmented linear temperature
variation satisfying the hydrostatic law to a smoothly varying profile with the hydrostatic law relaxed. To
avoid problems of logic in our program, we have reinstated the lower conditions in our version, forcing a
segmented linear profile with hydrostatic law. The resulting model differs from the standard by no more
than one degree C in temperature, and seldom by more than 1% in pressure.

 Also above 86 km, the chemical composition of the Standard Atmosphere begins to change,
incorporating a proportion of monatomic species which increases with altitude. This produces a significant
increase in the ratio of specific heats denoted γ, an important factor in the sound speed. The ARAP
program assumed γ to be constant, but TRAPS incorporates a table of γ values and assumes linear
interpolation with height. Humidity also affects γ, although to a far lesser extent; this variation is also
accounted for.

 It is important when analyzing results for the user to remember that the TRAPS program does extend
the input data using artificial data from the Standard Atmosphere, that this will generally affect the
placement of GHG sonic boom carpets, and may affect the placement of GMG carpets.

4. The Aircraft Track

 The ARAP program requires data on the motion of the aircraft in the form of Mach
number and the azimuth and elevation of its motion relative to the air, and the bank angle of
the aircraft. Whereas these coordinates are very natural to use in determining the initial

* The 1976 version of the Standard Atmosphere differs from the 1962 version only above 51km, and 'this
does not affect the ARAP program for flights below this height.

7

conditions of the rays, they are not the terms of the data generally available.

 The data which are available, from ground based radar tracking or from readouts of the Inertial
Navigation System, consist of a set of positions (which may be related to an X-Y coordinate system
on the ground) and heights sampled at time intervals typically on the order of six seconds. The
TRAPS program was written to use this type of data. A natural impulse would be to compute
velocities and accelerations from these data, combine them with the wind and sound speeds from the
model atmosphere, and convert them to the ARAP coordinates. There is a major drawback to that
procedure, however, in that the data are typically reported only to the nearest tenth of a nautical mile
in the horizontal, or 100 ft vertically. The uncertainty of as much as 600 ft in position every six
seconds can yield an uncertainty in speed of 100 ft/sec or 33 ft/sec/sec in acceleration. Fluctuations of
1g in acceleration every six seconds are not only unlikely in a passenger carrying aircraft, but if
accepted by the program will lead to spurious strong focusing and defocusing effects on the rays, and
the supposed lift required to induce them will be reflected in extra strong lift components in the
overpressures.

 For these reasons, it is essential to have the input reader routines smooth the position data
before using. Not only must the accelerations be smoothed, but the positions and velocities must be
adjusted to correspond.

 The technique which was incorporated was derived from the procedure for cubic spline
interpolation [Ahlberg et al:1967]. A cubic spline is an interpolation curve composed of a chain of
cubic polynomials which pass through the given positions and are required to have matching
velocities and accelerations. A given set of positions uniquely defines the set of accelerations at the
corresponding time nodes; between those time nodes the accelerations are linearly interpolated. In the
present instance, actual accelerations appear as persistent values over several time nodes while
accelerations due to round-off appear as short-period oscillations with a near zero mean.

 The smoothing procedure continues from this point by applying a low-pass filter to the
computed accelerations. Specifically, the accelerations are interpolated to the mid-points between the
nodes, and the results are interpolated back to the nodes. The resulting accelerations no longer
correspond to a cubic spline through the original data points, but they do correspond to a spline
through a new set of positions which can be calculated by reversing the usual spline computations.
Experience with actual radar data shows that the shift in position is seldom greater than the round-off
error associated with the input data.

 The smoothed accelerations and adjusted positions are stored as spline parameters. When
requests are issued by the ray tracing subroutines for positions, velocities, or accelerations at specific

8

times, they are satisfied by cubic interpolation using these parameters.

5. Ray Origins and Admittance Criteria

 In a reference frame at rest in the air at the altitude of the aircraft (airborne reference frame),
the normals to the phase surfaces of the wave can be taken to have vector components (p,q,r) in the
X-, Y- and vertical (Z-) directions, respectively.These components represent the wave numbers in
their respective directions; the magnitude of this vector times the sound speed is the frequency,
(scaled by the aircraft length) which in the airborne reference system we take as equal to the airspeed
of the aircraft.

 The tips of these vectors in the airborne system must lie on a sphere whose radius is the
aircraft Mach number. In addition, it can be shown that the component of the vector in the direction of
the aircraft trajectory must be unity. This means that the tips of vectors must lie in the intersection of
the Mach-number radius sphere with a plane normal to the aircraft motion; i.e. on a circle which we
call the Mach circle (see Figure 2). The cone formed by the vectors from the origin to the Mach circle
represents all the possible ray directions (in the airborne reference system) from the aircraft at any
instant; we call it the ray cone and its half-angle whose cosine is the inverse of the Mach number, is
the co-Mach angle. An individual ray in the cone is specified by an angle φ, which is measured along
the Mach circle from the lowermost ray clockwise as seen by the aircraft pilot.

 In transferring from the airborne reference frame to one fixed in the ground the wave numbers
p, q, and r do not change at all. The frequency ω changes according to the rule

Δω = Δu p + Δv q

where Δu and Δv denote the components of the velocity difference between the two frames (i.e. the
wind components at aircraft altitude).

 Because of our stratification assumptions, it may be shown that in any unaccelerated reference
frame, the parameters ω, p and q do not change as the wave propagates along a ray. This is the
acoustic version of Snell's law. In addition, the following relation, known as the Eiconal equation,
holds:

c2 (p2 + q2 + r2) = (ω + up + vq)2

at any altitude, where u, v, and c are the wind components, and the speed of sound, respectively, at
that altitude.

9

Figure 2
The Mach Sphere, the Mach Circle, and the Ray Cone

Solving for the vertical wave number r yields

c2 r2 = uA
2 - 2uA ((u - u0) p + (v - v0) q)

-(c2 - (u-u0)2) p2 + 2(u-u0) (v-v0) pq - (c2 - (v-v0)2) q2

where uA, u0 and v0 denote the aircraft airspeed and the horizontal components of wind at the

aircraft altitude, respectively. For r to be real-valued, the right side must be positive, which requires
the point (p,q) to lie within an elliptical region (the admittance ellipse) in the p-q plane. The size and
orientation of this ellipse depends on the difference in wind components between the two regions,
and the ratio of the sound speeds as well as the aircraft Mach number.

10

 Figure 3
Solid line Projection of Mach circle
Bold dash line . . . Projection of Mach Sphere
Dashed line Admittance ellipse

11

In Figure 3, we consider the admittance region together with a projection of the Mach circle, which is
also an ellipse. In general, the admittance ellipse intersects this projection at four points, splitting the
Mach circle into four arcs, two lying inside the admittance ellipse and two outside. The arcs within
the admittance region correspond to rays which can penetrate to the altitude in question, those
without cannot. One of the two admitted arcs will consist predominantly or exclusively of rays in the
upper part of the Mach circle (i.e. rising rays), the other of rays in the lower part (descending rays).

We have introduced a routine into the TRAPS program to carry out the graphical construction of
Figure 3 for the admittance ellipse of the ground level, and to determine between which values of φ
the rays will lie inside the ellipse. There are three benefits from this:

(1) Since our interest is in the sonic boom on the ground, the program will decline to

trace rays outside the admittance ellipse. This will save computer time and printout
compared to the ARAP program, which traced all rays until they either struck ground
or a reversal layer.

(2) For an investigation of the margins of the sonic boom carpets, the user is enabled to

request the program to trace rays beginning at an edge and working inward. it is
notable when this is done that occasionally some rays traced still do not reach the
ground, because they lie outside admittance ellipses for altitudes between the aircraft
and the ground. In practice, however, these rays reverse at altitudes only a few meters
above ground and are still of interest.

(3) The program can be used to efficiently answer the question at which times on a

proposed or actual flight track will the sonic boom cease to be able to strike the
ground. This corresponds to the situation where the Mach circle no longer projects
onto the admittance ellipse because the Mach number is too small. Indeed, this
question of threshold or cutoff Mach number is answered separately for ascending
and for descending rays. It may be seen from our construction that for a descending
aircraft, the upper part of the Mach circle projects further from the origin of the p-q
plane and therefore ascending rays have a higher cutoff Mach number; the converse is
true for a climbing aircraft. If the aircraft is flying level, the two parts project onto the
same straight line and are affected symmetrically.

12

6. Ray Tube Areas and Sonic Boom Amplitude

At each instant of supersonic flight, the aircraft emits a cone of rays, each ray of which is singled out
by specifying an angle φ. The set of rays which leave the aircraft at neighboring times, between te
and te + Δt, say, and at neighboring angles, between φ and φ + Δφ, say, form a ray tube.

The total acoustic energy in a ray tube has been shown to be constant (for linear, inviscid processes)
by [Blokhintzev:1946] who formulated an invariant relating the ray tube area to the inverse square of
the amplitude. This invariant was used in the ARAP program and it is also used in the TRAPS
program.

The definition of precisely what is the area of a ray tube differs significantly between the two
programs, however. Because the ARAP program utilizes height as the independent variable along the
ray, and because of certain computational advantages, the ARAP program defines ray tube area as the
area of a horizontal section of the tube. This is larger than the area of a cross-section of the tube.
Indeed, when the ray tube is at a reversal level, and is itself horizontal, the horizontal section is
parallel to the tube axis and is infinitely greater than the cross-sectional area. Accordingly, the ARAP
ray tube area is infinite here, even though the cross-sectional area is not.

By contrast, the TRAPS program defines the ray tube area as neither a horizontal section nor a
cross-section, but as a section cut by the wave phase surfaces, i.e. a section normal to the wave
normals.

Defined in this way, the ray tube area is always finite, but this definition of ray tube area has the
additional benefit, not shared by either of the other two sections, of being a Galilean invariant. That is,
it is a quantity whose value does not change when measured by an observer moving at any constant
velocity. Since the amplitude of the sonic boom is clearly a Galilean invariant, as are the pressures,
temperatures, densities, sound speeds and other physical quantities in the Blokhintzev invariant, it
would seem that this definition is the most appropriate. This is reflected in the form of Blokhintzev
invariant used in the two programs; the ARAP program requires an additional term designated c0
which cancels the Galilean variance of their ray tube area. This term also becomes zero as the ray
becomes horizontal so that the sonic boom amplitude takes on the indefinite form of 0 times infinity.
The TRAPS program requires no such additional term and encounters no such form.

Both the ARAP and TRAPS program compute the area as a determinant (called a Jacobian) formed
from partial derivatives of coordinates with respect to the ray parameters φ and te These partial
derivatives are found by integrating equations similar to the ones used to track the rays, and in fact
derived from them.

13

 This technique is superior to the alternative of actually tracking neighboring rays and
computing the area of the figure formed by the endpoints, since over the distances with which we are
concerned, even rays which are initially very close can spread over considerable distances, and
furthermore area computations of that type are so sensitive to round-off errors in position that the
error may be many times the actual area.

 The Jacobian technique leads to a ray tube area that varies in a continuous manner as the ray
is traced, and even the rate of change of area with position along the ray is continuous so long as the
gradients of wind and sound speed are continuous in the atmosphere model. Where the gradients are
discontinuous (and this occurs at each height at which either temperature or wind is input or taken
from the Standard Atmosphere), the rate of change of area (but not the area) undergoes a jump. The
amount of this jump is a continuous function of the ray normals, which are themselves continuous.

 The result of this is that for the G carpet, the ray tube areas on the ground and the amplitudes
are continuous functions of the ray parameters. Except when the ray tube area is zero, or at the edge
of the carpet, they are also continuous functions of position on the ground.

 For the other carpets, there may arise discontinuities in the ray tube area between rays where
the reversal layer of a ray is also a surface of discontinuity of temperature or wind gradients. In such a
case, a jump in areal rate of change occurs for some nearby rays which pass through the surface in
both directions, but not for other neighbors which do not. Subsequently, the ray tube area becomes
discontinuous between rays, but remains continuous along each individual ray.

 Consequently, for carpets other than the G, there will be jumps in the ray tube area and the
sonic boom amplitude. This fact is clearly due to the choice of atmospheric model, but it is arguable
whether it is artificial, in that rapid changes in temperature gradients and in wind shear do occur in
the atmosphere. It does suggest the sensitivity of the sonic boom model to variabilities in the
atmosphere that are difficult to determine precisely.

7. Folding Surfaces and Caustics

 A noteworthy feature of ray tube analysis is that ray tube areas calculated in the above manner
may be either positive or negative. This apparently surprising result is understood by considering the
paths of neighboring rays, as shown in the diagram in Figure 4.

 In this figure, assume the airplane is flying at supersonic speed directly into the paper,
and follow the progress of four neighboring rays from its ray cone. The rays indicated
depart the aircraft toward the right and upward, the uppermost being labelled U and the

14

Figure 4
Sections of a Ray Tube

lowermost L. The other two rays have the same φ angle, intermediate between the U and the L; one
(F) leaving from the forward part of the aircraft, the other (R) from the rearward part. Since these
two have the same φ angle, they project into the same curve (dashed in Figure 4).

Early in the tracing of these rays, at the site where section 1 is taken, the TRAPS program
calculates a positive ray tube area. Later, at the section 3 site, it finds a negative ray tube area. Still
later, after reflection from the ground, where section 4 is located, the ray tube area is again
positive.

On examining section 3, it appears that the labeled rays are positioned in a mirror image
fashion from that of sections 1 or 4. This occurs because the U ray traveled to a higher reversal
layer with a slower horizontal velocity than F and R, which in turn went higher and more slowly
than L, so that at section 3, the U ray is lowermost and the L ray uppermost.

15

 In general, a negative ray tube area indicates that the section being used to
define the ray tube area is a mirror image (apart from scaling considerations) of the
section of the same tube when emitted from the aircraft. This mirror transformation can
occur either by rays crossing over each other or through reflection from the ground.

 Suppose two adjoining ray tubes with a common interface leave the aircraft, and
subsequently one but not the other acquires a negative area. The section of the one will
be a mirror image of the other, but their interface will remain in common; perforce the
section of the one will overlay the section of the other as if the common interface were
the mirror in question. Alternatively, it is as if a sheet of gridded paper were folded over
itself where the area changed sign, so that one side was covered twice with rays and the
other not at all (c.f. section 2 from Figure 4). For this reason, a surface where the ray tube
area changes sign between neighboring rays, or neighboring points of the same ray, is
called a "folding surface".

 This folding is clear in the case of reflection, since the region above ground is
covered by two sets of rays (incident and reflected) while that below ground is covered
by none; it also takes place in areas above ground determined by refraction patterns and
aircraft maneuvers.

 In reflection, the change from positive to negative (or vice versa) is
accomplished by changing sign of a non-zero quantity. But on the ray itself, ray tube area
is continuous; between any two points with area of opposite sign must lie a point where
the area is zero. Such a point is called a caustic* point since the sonic boom amplitude
(inversely proportional to the square root of the area) is nominally infinite. Strictly, the
amplitude is not infinite, of course, since ray theory is an approximation to a more
general theory. At folding and caustic surfaces, that theory takes precedence and governs
the amplitude. See the discussion in "The Caustic Passage" below.

 Because it is possible for the ray tube area under certain circumstances to be
discontinuous across a ray, it is possible for folding surfaces to exist which are not
caustics. They still separate a doubly covered region of air or ground from an uncovered
region, and are prominent aspects of the carpet or footprint. But the computed amplitudes
are not infinite, and any attempt to "locate the caustic" by looking for the zero of the ray
tube area is likely to fail.

 The finite amplitudes are no more "real" than the infinite
amplitudes which they replace, however. The ray theory is based on

* The term "caustic" in ray theory derives from the Latin causticus (burning) and the fact
that a burning glass concentrates solar energy at such points of focusing.

16

an assumption that the variability of amplitude is small over distances of the order of a wavelength, an
assumption that fails at a folding surface. Although the amplitudes computed for this region are
indicative of the concentration of acoustic energy here, exact forecasts must await a more
sophisticated theory than either TRAPS or ARAP supplies, as well as more precise upper air data.

Another region where the results of the programs are problematic is at the margin of the carpet,
where the reversal layer for a ray and the ground coincide. Beyond that point is a shadow zone to
which rays do not penetrate, either because they are not admitted at ground level or because they were
reflected from the ground short of the zone. A diffraction theory is required for a fully satisfactory
treatment of wave phenomena within a few wavelengths of a shadow zone, and neither ARAP nor
TRAPS provides it.

The width of these regions of doubt can be calculated in terms of the curvature of the rays and of the
appropriate surface (caustic, folding, or shadow), together with the wavelength of the boom at this
point. The curvature of caustic surfaces cannot be calculated by either TRAPS or ARAP, but the
widths can be estimated as a few wavelengths. The wavelength in question is the length of the
signature as printed out by the program and depends on the aging of the waveform (see below); it is
initially a few aircraft lengths, for M-type carpets may be tens and for H-type carpets may be
hundreds of aircraft lengths.

8. Aging of Signatures

In the linearized acoustic theory, the wave form of the pressure travels along the ray unchanged
except for amplitude changes governed by the Blokhintzev invariant. At least below the mesopause,
effects of viscosity and heat conduction are too small to seriously affect this concept.

But pressure waves of this amplitude are governed by a non-linear theory, and although the

non-linear effects are small over any given region up to some tens of wavelengths in size, they do
accumulate and are responsible for the typical N-wave profile of the direct sonic booms and the bulk
of dissipation of acoustic energy between the aircraft and ground.

In terms of supersonic flow, the sonic boom is "weak", and both the ARAP and TRAPS programs

apply a weak shock tube theory due to G.B. Whitham [Whitham:1956] to the propagation of the sonic
boom in ray tubes. The details may be found in the ARAP report; in general an overpressure at a
given point in the wave form so increases the air speed and sound speed at its location that it seems
to overtake a lesser overpressure located ahead of it (see Figure 5). The amount of the
overtaking is governed by a quantity termed the age, which increases along a ray at a rate
proportional to the amplitude, and inversely proportional, among other terms, to the square
root of

17

Figure 5
Signature Aging Process

Adapted from [Hayes et al:1969]

the ambient air density.

When a section of the waveform actually overtakes one ahead of it, the choice among the three or
more possible values of overpressure is resolved by fitting a shock (pressure jump), thereby cutting
off the lobes of the overtaking and overtaken portions. To conserve mass, the shocks are so placed
as to balance the area within the cutoff lobes using the so-called "equal area rule" .

Both the APAP and TRAPS routines perform the computations of age and the slanting of wave
forms and area terms. The difference between them is that the TPAPS program actually carries out
the process of locating the position of the shocks, cutting off the lobes, and determining the
overpressures on both sides of the jump, while the ARAP program was content to leave this process
up to the user to perform manually.

18

9. The Caustic Passage

A review of Figure 4 will suggest that any ray tube which is reversed at an M or H layer
(comprising all carpets but the G) must pass through a folding surface, and hence the individual rays
must pass through a caustic surface. While this is not strictly true, in that certain maneuvers and
atmospheres can combine to prevent this, it is true for the bulk of these rays. By contrast, the bulk of
rays in the G carpet do not pass through caustics except during special maneuvers.

As noted above, ray theory does not apply in the immediate vicinity of a caustic, even though

rays may be traced through the caustic and ray tube areas computed without difficulty. For this
reason, the ARAP program discontinues calculation whenever a caustic surface is encountered.

In fields other than acoustics, such as water wave theory or optics to which ray theory applies, a

more general theory known as Uniform Asymptotic theory may be applied [Ludwig:1956]. Indeed,
this more general theory holds for linearized acoustics as well, and can be used to determine the
shape of the wave departing the caustic, given the shape of the wave approaching the caustic. After
passage through the caustic, ordinary ray theory holds once again and the program may resume, now
propagating the new signature. It is this technique which the TRAPS program uses to continue the
evolution of the sonic boom.

It is a nearly invariable conclusion of the Uniform Asymptotic theory, to whichever physical

process it has been applied, that the Fourier components of the outgoing signal are the same as they
would be expected to be from the naive ray theory, except that each one has been shifted forward one
quarter wavelength. Since the shorter wavelength components advance less than the longer
components, the shape of any complex waveform such as ours can change significantly.

This transformation is commonly known by the name of "90 degree phase shift" (since there are

360 degrees in a full wave cycle) and there is a temptation to perform it by actually taking a finite
Fourier transform, changing the coefficients, and inverting. However, even with the Fast Fourier
Transform, this is an extremely inefficient procedure.

The reason lies in the shape of our input signal, which by the time of caustic passage has

usually aged into a nearly N-wave form. As shown in Figure 6, the transform of the N-wave has
two very thin peaks (logarithmic discontinuities) located where the jumps were. To resolve these
peaks requires a number of very closely spaced points in their immediate vicinity. Elsewhere, the
waveforms are smooth and such close spacing is extremely wasteful of computer resources. In
particular, a much wider spacing should be used far ahead of and far behind the original
waveform. But finite Fourier transforms require a uniform spacing of points, forcing a choice

19

between inadequate resolution and waste of resources.

TRAPS uses an alternative to the above Fourier techniques, called the Hilbert
Transform [Erdelyi et al:1954]. This is an integral transform with a singular kernel whose
Fourier equivalent happens to be the 90 degree phase shift; it has the advantage that it may
be evaluated at an arbitrary selection of points whose spacing may be chosen with the
above principles in mind.

In the TRAPS program, the sonic boom signature is taken through the following

evolutionary steps:
(i) Compute the age until the ground or a caustic is encountered;
(ii) Age the signature and fit shocks as appropriate;
(iii) If at a caustic, perform the Hilbert Transform and create a new

signature;
(iv) Continue with step (i) until final ground contact.

 Despi te the aegis of the Uniform Asymptot ic theory, there are
potent ia l doubts in our procedure, in that the shocks of the N-wave

20

 Figure 6
 Caustic transformation of F-function

indicate the operation of non-linear effects and the theory applies to linear systems. This doubt is
reinforced by the appearance of infinities in the Hilbert transform of the N-wave. In reality, however,
the N-wave with the shocks is an approximation to the actual signature. Since the sonic boom is
weak, in the sense of supersonic flow theory, the shocks are not strong, well established features.
Measurements often show [Herbert & Hass:1971] a "rise time" for the shocks of between 1/30 and
1/10 of the length of the N-wave, presumably due to some form of turbulent dispersion. With such a
"thick shock", the infinities in the wave form all disappear, and the Uniform Asymptotic theory, if
carried out, would lead to finite overpressures up to and past the caustic surface. This result places
the validation of the Uniform Asymptotic theory on the same level as ray theory, as an approximation
to the linear acoustic equations, and the validation of the linear theory as an approximation to the
non-linear theory on the same level near the caustic as elsewhere.

10. Summary

The TRAPS program extends the capabilities of the earlier ARAP program to the handling of
waves that have passed through a caustic surface, and to waves that have risen to high altitudes and
returned to the ground. The theoretical background is on a level with the ARAP program, with the
added feature of accomodating caustic passage, the validity of which is felt to be on a level with ray
theory. The program is easier to use in that data entry requirements are closer to the available
sources of data, and the post-processing burdens are also eased.

The user should be cautious when interpreting the results of either program. Amplitudes and

waveforms sampled too near to a caustic or folding surface, or to a shadow zone, must be taken with
a grain of salt. "Too near" is a concept which depends on the relation of the wave length to the
relative curvature of the ray and the caustic. Neither the ARAP nor the TRAPS program can measure
the curvature of the caustic surface, but in general a few wavelengths from that surface will suffice,
and the size of a wavelength will be approximately that of the wave form the program supplies (on
the order of one to hundreds of aircraft lengths, depending on aging and carpet type).

Away from these surfaces, the results are on a firm theoretical foundation and may be expected

to be as good as the input data. When investigating the MG and GMG carpets, it is important to
secure good atmospheric data up to around 55km; this calls for rocketsondes, which may not be
available closer than hundreds of kilometers in distance and days in time. In view of the fact that the
atmosphere can easily change over such an interval, one must allow for possible shifts in the location
of the MG and GMG carpets and some changes in the amplitudes.

21

11. References

Ahlberg, J.H., E.N. Nilson & J.L. Walsh, "The Theory of Splines and Their Applications", Chapter

II, Academic Press 1967

Balachandran, N.K., W.L. Donn and D.H. Rind, "Concorde Sonic Booms as an Atmospheric

Probe" Science v 197 (July, 1977), pp 47-49

Blokhintzev, D.I., "The Propagation of Sound in an Inhomogeneous and Moving Medium Part I",

J.Acoust. Soc. Am., vol 18, (1946) pp 322-334

Carlson, H.W.,"Correlation of Sonic-Boom Theory with Wind-Tunnel and Flight Measurements"

NASA TR R-213, NTIS, Springfield, VA (1964)

COESA, "The U.S. Standard Atmosphere, 1962", U.S. Govt. Printing Office, Washington, D.C.

(1962)

COESA, "The U.S. Standard Atmosphere, 1976", U.S. Govt. Printing Office, Washington, D.C.

(1976)

DOT, "Concorde Monitoring at John F. Kennedy International Airport, April 1978" Dept. of

Transportation unpublished report 1978

Erdelyi et al, "Tables of Integral Transforms", Vol II, Chapt. XV McGraw-Hill 1954 (Bateman

Manuscript Project)

Gardner, J.H. & P.H. Rogers, "Thermospheric Propagation of Sonic Booms from the Concorde

Supersonic Transport" J. Acoustic Soc. America v 67, (1980) pp 78-91

George, A.R. & Y.N. Kim, "High-Altitude Long-Range Sonic Boom Propagation" Journal of

:Aircraft, v 16, n 9 (1979) pp637-639

Haglund, G.T. & E.J. Kane, "Analysis of Sonic Boom Measurements Near Shock Wave Extremities

for Flight Near Mach 1.0 and for Airplane Accelerations" NASA CR-2417, NTIS,
Springfield, VA (1974)

Hayes, W.D., R.C. Haefeli & H.E. Kulsrud, "Sonic Boom Propagation in a Stratified Atmosphere,

with Computer Program" NASA CR-1299, NTIS, Springfield, VA (1969)

Herbert, G. & W. Hass, "The Pendleton Project A Study of the Atmospheric Effect on Weak Shock

Waves Traversing Long Ray Paths" NOAA TR ERL 220-ARL 1, U.S. Govt. Printing
Office, Washington, D.C. (1971)

22

Ludwig, D., "Uniform Asymptotic Expansions at a Caustic", Comm. Pure & Appl. Math. v 19, (1956)
pp 215-250

Maglieri, D.J., V. Huckel, & H.R. Henderson, "Sonic Boom Measurements for SR-71 Aircraft

Operating at Mach Numbers to 3.0 and Altitudes to 24384 Meters" NASA TN D-6823,
NTIS, Springfield, VA (1972)

NRL, "NRL Investigations of East Coast Acoustics Events 2 December 1977 - 15 February 1978"

Naval Research Laboratory unpublished report, March, 1978

Whitham, G.B., "On the Propagation of Weak Shock Waves", J. Fluid Mech. v 1, (1956) pp 290-318

23

Appendix A - Structure of TRAPS

Environment of the Program

The TRAPS program was written for use on the IBM 360/195 computer system at the NOAA
computer site in Suitland, Maryland. It was written in the FORTRAN H+ EXT language, a superset of
the ANSI (1966) FORTRAN language and a subset of the ANSI (1976) language. To enhance
portability to other computers, care was taken to remain within the 1966 standard as far as practicable,
but several machine and installation dependent features were either necessary or so convenient as to
justify their inclusion. Installation on other machines requires consideration of these variations from
standard, which all involve practices that have counterparts on most other large computers.

Specifically, we have used the following:

(1) TYPE REAL*8 and TYPE LOGICAL*l for the manipulation of character strings
and individual characters. These may be replaced in any language which
provides for explicit character string manipulation.

(2) Type REAL*8 for double-precision calculations. This was important for ray

calculations very near a reversal layer.

(3) INTEGER*2 for half-word storage of integers. These may be replaced by

ordinary INTEGER type statements with no effect on results.

(4) Special subroutines DREAD, FFA2I, and FFA2F called by the FREAD

subroutine. These subroutines are available only at the NOAA site. Subroutines
FFA2I and FFA2F convert character strings to binary integer or floating point
numbers and may be replaced by similar calls to FFA2N, which is supplied on
the fiche. Subroutine DREAD is part of a direct-access read-write package, and
many other installations have similar software. If necessary, the entire FREAD
subroutine may be replaced by a routine which backspaces or rewinds the file,
searching for the correct card, but direct access is far preferable.

(5) A call to FFF2A in SUBROUTINE PTDHIN. FFF2A converts binary floating

point numbers to character strings, and was used to facilitate output in which
missing values would ideally be represented by blanks. It may be replaced by
equivalent routines on other systems, or by allowing missing values to be
represented by special numeric codes.

(6) A special subroutine DATIM2, called by SUBROUTINE SETUP. It supplies

the calendar date and time in character string form. The date is merged with
the

A-1

user-supplied title to assist in documentation of the computer output. Similar
routines are available at many computer sites, or if not, the entire reference may
be withdrawn.

Program Listings

A source listing of each of the subroutines in TRAPS is provided on the attached microfiche. A
cross-reference listing of variables, SUBROUTINE calls, and COMMON blocks is provided for each
subroutine, along with the source code itself.

The first item provided is actually a utility program for preparing the F-FUNCTION File (see

Appendix B), and is not properly a part of TRAPS per se. When TRAPS is executed, this utility
program should already be finished with its task.

The second item provided, listed in the fiche index as SONBOM, is the MAIN program for

TRAPS and exercises control over all other subroutines. The remaining subroutines used in TRAPS
are listed in alphabetic order and are all present, except for standard library routines and the
exceptions cited in (4) through (6) above.

Organization of the Program

Traps has been written in a modular form, in which each distinct function to be performed is

assigned to a distinct subroutine. This method of programming simplifies future modifications to the
program, e.g. something required by a future source of aircraft tracking data. Such changes need only
be made in the one or two routines directly affected, and the rest of the program can remain
untouched.

The logical interconnections among the various subroutines are diagrammed in Figures Al

through A6. In these diagrams, a higher subroutine or group of subroutines may call a lower
subroutine or group through any downward going connecting path, but control passes upward only as
a return to a calling program.

The individual subroutines fall into classes as given in Figure Al. Under control of the MAIN

program SONBOM, TRAPS first calls the Input Reader Routines to read the information from the
physical data sets RAOB, WINDS, and TRACK and the first part of the CONTROL data set (see
Appendix B). The Input Reader Routines are responsible for some checking of the data, converting
the physical units into the units internal to the program (S.I. metric units), and performing other
pre-processing tasks.

The Ray Tracing Routines are then called to emit acoustic rays from the aircraft track and to

trace them, guided by the atmosphere data and the ray parameter cards from the CONTROL File
(see Appendix B). On encountering the ground at the selected carpets, these routines write pertinent
information (location, ray tube area, age(s), phase normal directions, etc.) on temporary files for
further processing.

A-2

When all rays have been traced, the Signature Calculation Routines are called to analyze the
information on the temporary files, together with the information on the F_FUNCTION File (see
Appendix B) and compute and print the pressure "signature" (over pressure as a function of time or
distance along the ground, as seen at the position or instant of ground contact). If desired only the
location and over-pressures of any shocks, or the minimum and maximum overpressures will be
printed.

The General Utility and Physical Utility Routines are subprograms which perform specific

services which are used at several different parts of the program, so that it would be impractical to
show explicitly the lines of control to them. Those that perform a service related to computer
functions rather than to the physics of the problem are in the General Utility class; those which
perform a service which is related to the physics fall in the Physical Utility class.

Input Reader Routines

The Input Reader function is performed by the following routines:

SETUP -performs overall control of the input reading routines. Reads and interprets the aircraft
identification and ray type requests from the CONTROL File.

A-3

ATMSIN-performs overall control of the routines written to input atmospheric data. Merges the
results of PTDHIN and WINDIN and a pre-selected set of altitudes at which ray-trace
output is wanted. Uses the above to create a single overall data table for use by
subroutines AIR and RAYTRK.

PTDHIN-reads the RAOB File. Converts all data into S.I. units, interpolates dewpoint data as

needed and calculates virtual or molecular scale temperatures* from the temperature and
dewpoint data. Supplies hydrostatically valid height or pressure data, as appropriate,
returns a table of virtual temperatures, pressures, and heights. Prints out all input data,
together with the calculated pressure and height information in original units for
comparison with other sources.

* The virtual or molecular-scale temperature is the temperature at which dry air of mean tropospheric
chemical composition would have the same pressure-density relationship as the actual air. It is the
appropriate temperature for calculating both thicknesses and sound speeds.

A-4

RAOBWK-called by PTDHIN to "work up a RAOB"; i.e., to calculate from the given temperatures
and pressures the "thicknesses" (i.e. height of the column of air between each pair of
pressure levels) and then, by keeping a running total of "thicknesses", calculate heights.
Conversely, given thickness, calculate pressure drop.

WINDIN-called by ATMSIN to read the WINDS File and convert to SI units. Produces an internal

table of wind speeds, directions, and "turning rates"; i.e. the rate of direction change with
height between the levels in the WINDS File. The turning rate is provided to assist AIR in
linear interpolation of wind direction; it has the sign and magnitude to cause the smallest
rate of direction change meeting the given directions. Where the wind speed is zero on one
side of a layer, the turning rate is taken to be the same as that of an adjacent layer. The
routine also prints out the speed and direction data in the original units for documentation.

TXYZIN-called by SETUP to read the TRACK File, convert to internal units, and smooth. TXYZIN

smoothes by a process of computing accelerations appropriate to a cubic spline fit through
the initial data, applying a smoothing filter to the accelerations, and adjusting the original
points to conform to a spline with those accelerations. The subroutine prints out the
original coordinates and the altered coordinates, both in the original units, and the
accelerations in units of g’s.

SPLINA-called by TXYZIN to compute accelerations, given coordinates, of a cubic spline. Follows

procedure in [Ahlberg et al:1967], assuming accelerations at first and last points are zero.

SPLINV-called by TXYZIN to compute coordinates, given accelerations, of a cubic spline. Inverts

procedure in [Ahlberg et al:1967], assuming coordinates of first and last points are as
originally read in.

Ray Tracing Routines

The function of emitting and tracking rays from aircraft to ground is performed by the Ray
Tracing routines, under control of the MAIN program SONBOM. The operation of these routines is
as follows:

TIMPHI-reads the next card from the CONTROL File and interprets it as a sequence of emission
times and a sequence of φ angles. When CONTROL File is empty, makes non-standard
return to SONBOM.

A-5

ACMOVE-interpolates aircraft track spline to current value of emission time. Computes and stores
in COMMON block the position and velocity of the aircraft, the local sound speed and
wind, the airspeed and its rate of change, the Mach number and its rate of change, the
climb and bank angle and the wing loading, the direction cosines of a "ray cone
coordinate system" and their rates of change. Prints out the information on the aircraft
position and motion, both in an airborne reference frame and a ground reference frame.

FILIMS-given the information from the ACMOVE subroutine, and the wind velocity and sound

speed at the ground, computes the limits of φ angle at the admittance ellipse (see text) for
the ground level. Prints out the limiting φ angles for the arcs inside the admittance ellipse,
if any.

RAYORG-for each emission time and for each value of φ lying within the admittance ellipse,

computes the initial values of position, ray normals, "frequencies", and their rates of
change. Sets current time equal to emission time. The rates of change are with respect to
not only current time, but also the ray parameters of φ angle and of emission time. If ray
trace printing is selected, prints out the initial ray trace values.

A-6

RAYTRK-from the initial values supplied from RAYORG, traces the ray to the ground level and

reflects as many times as necessary. Controls the computation of the change in not only the
position of the ray, but associated terms such as the ray normals, the ray tube area terms,
and the age(s). If ray trace printing is selected, also prints a record of position, ray tube
area, and time at selected altitudes.

RATES -computes the local rate of change of the ray position, the ray normals, and the associated

derivatives with respect to the ray parameters φ and emission time.

ADVANS-utilizes information from RATES to compute advance in current time, and the change in

ray position and associated variables corresponding to it.

RCRVIT-when a tentative advance brings ray beyond a reversal layer, will locate the exact position of

the reversal layer.

RECORD-when the ray has been traced to ground in a selected carpet, will record the location and all

the associated variables required to compute signatures on a temporary file (FORTRAN
unit 9).

ARTUBE-computes the Jacobian, defining the ray tube area.

RCSPCL-records on a temporary file (FORTRAN unit 11) the positions and times for each "special

point" in the ray's path. "Special points" include reversal layer encounters, ground
encounters, and the encounters with the caustic surfaces.

Signature Aging Routines

After all rays have been traced, it is the task of the Signature Aging Routines to perform the

final calculations and determine the actual overpressures to be expected. They operate as follows:

RDSPCL-This routine is actually between the ray tracing routines and the signature calculations per

se. It lists all the special points recorded by RCSPCL.

SIGNUR-has overall control of the aging and printout process. For each ray terminus recorded by

RECORD, it reads, interprets and prints out the information on ray type, Mach number of
aircraft, initiation time and φ angle, location, elevation and azimuth of the ray normals, and
the conversion factors from F-function normalized coordinates to time (TFACT) and
pressure (PFACT). It combines the F-functions according to this information and controls
the evolution of the signature.

A-7

FREAD -determines whether the necessary F-function tables are in main memory, and if not, reads
them into main memory.

AGING -shifts the abscissa values (phase) of the F-functions according to the age value, determines

the total area of the resulting figure, and fits jump discontinuities as appropriate. Replaces
the input F-function with the result.

HILBRT-has overall responsibility for calculating the Hilbert Transform. Replaces the input

F-function, as modified by AGING and possibly containing shocks, by its Hilbert
transform. Computes the transform at a selection of points determined by the overall
structure of the function. This includes a set of points exponentially converging to each
shock (terminating within a distance of the shock equal to 6*10-7 times the overall scale of
the input F-function). it also includes a set of points which are centered on the mean
abscissa value of the input F-function and which are spaced at increasing increments to
cover an interval several times the abscissa scale of the input F-function.

CPVAL -computes the value of the integral defining the Hilbert Transform, as a Cauchy Principal

Value, at each point directed by HILBRT.

SORTEM-sorts the values calculated by HILBRT and CPVAL into ascending order of abscissa

values, as required by AGING.

A-8

SIGPRT-prints out the final signature, as directed on the CONTROL File cards.

Physical Utility Routines

The Physical Utility Routines are called from many of the subroutines listed above to perform tasks

related to the physics of the problem. These routines are:

AIR -called to produce, at a specified altitude within a specified layer, the values of the sound speed

and wind velocity, the first and second derivatives of those quantities with respect to
height, and the density of the atmosphere. Uses linear interpolation of wind speed, wind
direction, virtual temperature, and γ with respect to geopotential height; the other
quantities are derived from algebra and a hydrostatic assumption.

PHELEV-given the components of the wave-number vector, calculates the elevation angle of the

normals to the phase surfaces of the wave.

PHAZIM-given the components of the wave-number vector, calculates the azimuth angle of the

normals to the phase surfaces of the wave.

EAMENU-given the elevation angle, azimuth angle, and magnitude of a vector, calculates the east-,

north, and upward components of that vector.

General Utility Routines

The General Utility Routines are called from many of the subroutines listed above to perform
tasks related to character string manipulation, list searches, and unit conversions. These routines are:

A-9

LJUST -given a character string(s) of specified length, eliminates all special characters other than
digits or letters, left-justifies the result, and places it into new string(s).

FFA2N -given a character string(s) of specified length, determines if string is numeric characters,

blank, or other. if numeric, converts character string to floating point binary number. If
blank, selects default value from table. If other, returns error code.

LOOKUP-given a left-justified character string and a pre-sorted table of such strings, determines if

character string matches a table entry or is a non-ambiguous abbreviation for such an
entry. Returns index of table entry if a match exists, otherwise returns one code for
ambiguous abbreviation and another for no match.

UNITIS-given a character string for unit type, a table of possible unit names, a default unit index,

and a character string, determines the appropriate unit index or prints appropriate error
message. Uses LOOKUP.

TIMCVR-if TRACK File chose HHMMSS units, converts hhmmss time units to seconds and

vice-versa. Otherwise, leaves time units unchanged.

GETLYR-given a numeric value and a pre-sorted table of numeric values, performs a binary table

search to determine between which two table entries the given value is located. If given
numeric value not covered by the table, performs non-standard return.

FNDLYR-defines location of layer in atmosphere in which a given altitude is located. Sets numeric

variables to top and bottom of layer. Called just prior to calling AIR by all routines except
RAYTRK, which manages layer definition for itself. Uses GETLYR.

A-10

Appendix B - Data Preparation for TRAPS

Data Preparation for the TRAPS Program

The program for Tracing of Rays and Aging of Pressure Signatures (TRAPS) requires five input
data sets. These are:

(1) COMMAND File - specifies which type of output is required and for which

sets of rays.
(2) RAOB File - Pressures, Temperature, and Dewpoint as a function of Height
(3) WINDS File Wind profile as a function of Height
(4) TRACK File Aircraft position and height as a function of time
(5) F-FUNCTION File - normalized pressure signatures as experienced by an

observer near the aircraft. They serve as initial conditions for the calculation
of overpressures at ground level.

Since each of these types of data represents a distinct class and source of data, each is read on a

separate FORTRAN 1/0 "unit".

The F-FUNCTION data set represents a special case. Since it depends principally on the

geometry of the aircraft and only slightly, if at all on ambient atmospheric conditions or aircraft
speed (within the speed range we are concerned with), it is the least likely to change from one run to
another. As a result, it is given a distinct data format and is intended to be a permanent data set,
residing as a direct access file on a disk pack. We will deal with it in greater detail later.

The remaining data sets are expected to be in the form of cards or card images of 80 character

records, of which only the first 72 represent data. Columns 73 through 80 are free for other uses,
such as comments or sequence numbers. In all cases, the first card or two is used as title information,
and the remainder is expected to be in column format.

In column format, each card is divided into fields or columns of 8 characters width each. Data

entered into these columns are either numeric values or keywords. Whether an item is a keyword or
numeric, interspersed blanks are ignored as long as the entire datum lies within its 8-character field.
A completely blank field will be interpreted as a missing datum, rather than a zero. Treatment of
missing data will depend on the type of datum.

Numeric data will consist of an optional sign (+ or -) and one or more digits, with decimal

point. If no decimal point is included, the value will be assumed to be an integer. "E" and "D”
formats are not supported.

In keyword entries, all special characters, such as periods and hyphens are ignored; only letters

and digits are considered.

B-1

The data sets for physical data (RAOB, WINDS, and TRACK) each have the following general
format:

Card 1-- Title card
 contains 72 characters of titling information.
Card 2 -- Units card
 for each data field in the data set, provides the physical units in which that

datum is expressed. Entry may be keyword or unique abbreviation thereof,
appropriate to the physical quantity, as taken from Table B.1.

Card 3 - Card nn -- value cards
 contains numeric values for each level or time and for each field.

cf. Figures B.2, B.4, and B.6.

B-3

RAOB File - Pressure,/Temperature./Heiqht Profile

At many points in the program, values are required for temperature, pressure and density at
various heights, as well as their first and second derivatives with respect to height. This information is
provided through a hydrostatically consistent form of interpolation within an internal table. The
information in this table is supplied from the U. S. Standard Atmosphere Table, 1976
([COESA:1976], referred to below as SAT76), or from user-supplied data, or both, and is controlled
by the data set linked to FORTRAN unit 10. On IBM 360/370 computer systems using OS, this is the
data set defined by DDNAME FT10F001.

If this data set is empty or if the first card contains the keyword "STANDARD" in columns 1-8,

then the SAT76 table will be used. Otherwise, the user may provide data from rawinsonde
observations or from rocketsondes using the format in Figure B.1:

The keyword parameters for units in card 2 may be selected from Table B.1. If omitted (blank),
default units will be assumed as follows:

Pressure --- MB

Height --- Geopotential Meters
 (Heights assumed Geopotential unless specified Geometric)

Temperature/Dewpoint--- if a unit is provided for only one of these, the same unit will also

be used for the other. If both are missing, Celsius will be assumed.

Numeric data from the rawinsonde or rocketsonde observations must be entered according to the
following rules:

(1) Data must be entered in increasing order of altitude.
(2) At all levels, temperature must be supplied, and either pressure or height.

B-4

Dewpoint is optional, but should be entered if available.
(3) For at least one level, both pressure and height must be supplied.
(4) The input reader will not read beyond the optional end statement;

subsequent cards may be used for documentation if desired.
(5) There is an upper limit of 79 levels allowed for RAOB input.
(6) Dewpoint must never be greater than Temperature.

B-5

The above rules are designed to follow as closely as possible the nature of actual measurements
made in practice. For radiosondes, these are pressure, temperature, and dewpoint; height is not
measured but separately calculated. By contrast, rocketsondes normally report only height and
temperature. One of each type of sounding may be combined to form a single data set, using
pressures from one and heights from the other.

Action taken by Input Reader Routine

The input reader routine handles the data in essentially* the same way that a RAOB is "worked

up". First, a virtual temperature is calculated from the temperature and dewpoint information at each
level. This is the temperature at which dry air would have the same pressure-density dependence as
the actual air. Starting from the lowest level at which both temperature and pressure are provided, the
routine proceeds to calculate heights of adjacent levels where pressures are known, or pressures of
those levels where only heights were given. Except for the starting level, if both pressure and height
are given for a level, the height is ignored but will be printed out with the calculated height for
purposes of comparison. When differences of more than 100 meters are found, the input data should
be rechecked.

If all dewpoints are missing at and above a certain level, then the air will be considered dry at

and above that level. Otherwise, if there are dewpoints supplied above and below but not at a given
level, dewpoint information will be interpolated. If there is dewpoint information above but not below
or at a given level, the lowest available dewpoint will be used.

For altitudes above those for which the user has supplied data, heights and temperatures will be

provided from SAT76. Pressures are then calculated from the nearest user-supplied datum level in the
same manner as if these were user-supplied height/temperature data. The top limit to this interpolated
data is 130,247 gpm. Instead of switching to a smooth profile above 86km as in SAT76, we continue
to apply the conventions in force at lower altitudes; namely, linear temperature dependence on
geopotential height within each layer. We have approximated the curved profile above 86km in
SAT76 by a sequence of closely spaced height/temperature values.

Below the user supplied data, we have inserted an extra pressure-temperature point from SAT76,

corresponding to the entry at 5000gpm below sea level. This will provide automatic interpolation
below the user-supplied data if needed.

* There is a slight difference in that we use an interpolation algorithm for temperature which is linear
with geopotential height rather than pressure. Although this agrees with SAT76, it is not general
practice. Usually data points are chosen so closely that the difference is small.

B-6

WINDS File - Height/Direction/Speed Profile

Wind speeds and their derivatives with respect to height have a considerable effect on the ray
trajectories and the resulting overpressures. Although winds are usually determined on the same
balloon flights as the information given in the RAOB section, they are not generally reported at the
same levels or in the same terms. Accordingly, the wind data, if any, will be supplied by the user on a
separate data set linked to FORTRAN unit 15. On IBM 360/370 computer systems using OS, this is
the data set defined by DDNAME FT15F001.

If this data set is empty or if the first card contains the keyword "NOWINDS" in columns 1-8,

then the air will be assumed to be calm; a wind speed of zero will be used throughout. Otherwise, the
user may provide data from rawinsonde observations or from rocketsondes using the format in Figure
B.3:

The keyword parameters for units in card 2 may be selected from Table B.1. If omitted (blank),
default units will be assumed as follows:

Height -- Geopotential Meters
 (Heights assumed Geopotential unless specified Geometric)

Direction -- Degrees (Note- units keyword will be ignored since the only unit

allowed is degrees from which the wind is blowing).
Speed—Knots

The following rules hold for numeric data entry in this data set:
(1) Data must be entered in increasing order of altitude.
(2) Missing data will be assumed to be zero. Thus, Height data should never

be missing.

B-7

(3) The input reader will not read beyond the optional "END" statement;
subsequent cards may be used for documentation if desired.

(4) There is an upper limit of 79 levels allowed for WINDS input.
(5) There is no need for the heights of levels in the WINDS File to be the same

as in the RAOB File.

B-8

Action taken by Input Reader Routine

The input reader routine reads the user-supplied data and converts them to internal units. In
addition, it adds extra levels at geopotential altitudes of 5000 meters below sea level and 130,274
meters above, at which the winds are zero.

The program will interpolate the wind speeds and directions linearly with respect to geopotential

height. This was considered more realistic than the alternative of interpolating the wind components,
although the interpolation of wind directions poses special programming problems. In each layer
between two levels for which the wind speed is non-zero, so there exists a definite wind direction at
both ends, a rate of direction change with height is chosen for which the total direction change over
the layer is no more than 180 degrees. If a layer is bounded by a level at which the speed is zero, so
there is no definite direction at that end, no turn rate can be calculated. In such a case, there may be
an adjacent layer for which a turn rate does exist; if so then that turn rate will be used. If not, then a
turn rate of zero will be used.

After the input reader has processed the RAOB and WINDS files, it combines them into a single

table, using all the levels from each file. This table is used to supply meteorological data to the main
program on demand.

B-9

TRACK File - Aircraft Position/Height vs Time

The program requires data on the aircraft position and speed as a function of time for initial
conditions for the ray tracing. In addition, information on accelerations is important for the
computation of ray tube areas and hence overpressures. The program requires the user to supply
horizontal coordinates x and y and altitude z, either from radar readouts or aircraft navigation system
records, at closely spaced points in time. From this, and the meteorological data, it can calculate
ground and air speeds, Mach numbers, azimuth and climb angles, and if perfectly coordinated turns
are assumed, bank angles. Because accelerations are computed and used, it is important for the user
to use data that are as accurate and precise as practicable. The TRACK File is linked to FORTRAN
unit 20. On IBM 360/370 computer systems using OS, this is the data set defined by DDNAME
FT20F001.

The keyword parameters for units in card 2 may be selected from Table B.1. If omitted
(blank), default units will be assumed as follows:

Time --- HHMMSS
 Note: this unit allows data entry according to 24-hour clock time. Thus 32.7

seconds after 3:09PM is entered as 150932.7.
X,Y coords---If a unit is provided for only one of these, the same unit will also be

used for the other. If units are not provided for either, NMI will be assumed.
Height--GMFT
 Note: Geometric heights assumed unless user specifies otherwise.

B-10

The following rules hold for numeric data entry in this data set:

(1) Data must be entered in chronological order. For HHMMSS input, chronological
order is forced by adding 24 hours; thus 000130. following 235845. is interpreted
as 240130. i.e. 2 min, 45 sec later.

(2) Missing data will be assumed to be zero. Normally, data should never be missing.
(3) The input reader will not read beyond the optional "END" statement; subsequent

cards may be used for documentation if desired.
(4) A minimum of 2 and a maximum of 100 position fixes are allowed for TRACK

input.

B-11

Action taken by Input Reader Routine

The input reader routine reads the user-supplied data and converts them to internal units. In
addition, it smoothes the data so that reasonable values of speed and acceleration can be provided to
the main program.

The cubic spline algorithm which yields the interpolated positions, speeds and accelerations to

the main program requires an internal table of accelerations especially calculated to fit all cubic
polynomial segments smoothly together. However, the uncertainties in position (0.1 NMI in Figure
B.6) at close time intervals (6 sec in Figure B.6) leads to acceleration uncertainties of as much as 1 g.
To avoid these oscillations, a digital filter is applied to the accelerations from the cubic spline
algorithm. Then, since the smoothed accelerations do not yield a spline fit through the original
points, a new set of positions is calculated for which the smoothed accelerations do yield a spline fit.
This is done by fixing the original end points and then reversing the usual cubic spline process.

This smoothing process minimizes the possibility of understating real accelerations as a digital

filter applied to the original data might do, as well as ensuring consistent terms for the spline
interpolations in the main program. The input reader prints out both the original and smoothed
coordinates for comparison purposes. If the smoothed coordinates differ sharply (more than a few
times the uncertainty in the original coordinates) from the input data, the original data should be
carefully checked.

B-12

COMMAND File - Specifying Rays and Output

Control of the TRAPS program is provided through ray tracing requests included in the
COMMAND data set. These requests are provided in the form of card images on the data set linked
to FORTRAN unit 5. On IBM 360/370 computer systems under OS, this is the data set defined by
DDNAME FT05F001.

The format for COMMAND data is given in Figure B.7:

The aircraft identification in card 3 should match the identification of one of the F-Functions in
the F-Function data set. In comparing identifications, interspersed blanks and hyphens may be
introduced for legibility; they will be ignored.

Weight and height units in cards 3 and 4 should be selected from Table B.1; if not supplied they

will default to LB and GMM, respectively. Aircraft weight in card 3 must be supplied; ground height
and reflection factor in card 4 will default to zero and one, respectively.

Cards 5.1 through 5.N specify to the program the types of ray that are to be tracked, and how

many reflections to be followed (RAY CLASS), as well as the amount

B-13

and type of print-out. The codes allowed are specified in Table B.2.

To interpret the ray class codes, note that in general the ray may reflect from the ground (G), or
an upward moving ray may refract downwards after reaching a height near the stratopause (M - app.
50km) or the thermosphere (H - app. 100km). The G, M and H codes are concatenated to indicate the
order in which the ray encounters each level. Thus, a GHG ray would leave the aircraft moving
downward, reflect from the ground, refract from the thermosphere and impact the ground again, at
which point the pressure signature and position are recorded. An MG ray would leave the aircraft in
an upward direction, refract from the middle level and impact the ground, at which point its signature
and position are recorded.

B-14

Note that the stratification assumptions ensure that if a ray refracts from the H layer, neither it
nor its reflections can refract from the M laver, or vice versa, so that mixed rays of type GHGMG or
HGMG can never occur and are not valid codes.

Print codes for cards 5.1 - 5.N refer to the amount of detail desired for the signature listings.

FULL (the default) causes the entire signature (overpressure as a function of time) to be listed for the
terminus of each ray being examined. SHOCKS causes only the overpressure before and after each
shock, and the relative time of each shock, to be listed. SUMMARY causes only the maximum and
minimum overpressure of the signature to be listed, in a summary listing of the positions of the
termini. NO causes no printout of overpressure signature information.

As many ray class and print codes as are required may he supplied, at 9 fields to a card, until

either a blank field or a field containing the code END is encountered, at which point processing of
code requests will cease.

Cards 6.1 - 6.n specify the desired origins of the rays to he traced. There are two available

formats, which may be intermingled. In each format, the program is requested to initiate rays at the
aircraft at discrete times, starting at BEGIN TIME, and continuing at equal time increments given by
TIME INCR until END TIME, is attained. BEGIN TIME and END TIME are to be in the same time
units as specified for the TRACK File, whereas TIME INCR will be in seconds.

For each originate time, the program will examine the sound speed and wind speed at the

aircraft and ground heights and determine the range of PHI angles for which Snell's law prevents a
ray from reaching the ground. There will be, in general, two ranges of allowable PHI angles; one for
upward moving rays and one for rays initially moving downward.

In the 6.1-6.N cards, the rays to be traced are specified using fields 4 through 6. Using the first

format, the program will consider rays at PHI angle values beginning with BEGIN PHI and
increment by the amount PHI INCR, until the value END PHI is attained. If the PHI angle falls in
one of the admitted ranges, the ray will. be traced, but if not, the ray will be dropped in order to
conserve computer time.

The margins of the admitted PHI angle regions, and hence of the sonic boom carpet, may be

explored through the second format. By selecting any of the margin codes in Table B.2, the
program will consider rays with PHI angles beginning at either the right or left limit of the upper
or the lower allowed region, and increment by an amount PHI INCR toward the interior of the
region until a range of TOTAL PHI is covered. By selecting more than one code, a combination
of edges may be explored. If the code NO is selected, PHI INCR and TOTAL PHI will be ignored
and no rays will be traced. In this case, only the limits on allowable PHI angles would be

B-15

output. Note that units on PHI angles will always he in degrees.

The trace code (field 7) specifies whether the program is to print out a full tracking of the
position and age of the ray, and the area of the ray tube associated with it, on its progress through the
atmosphere. If NOPRINT is selected, the full tracing will not be output, but only the values at the
ground level. If PRINT is selected (or defaulted) a full tracing will be printed.

Figure B.8 contains a sample of cards for the COMMAND File for one run of TRAPS. The first
two cards are title cards; they identify the run as dealing with British Airways flight 171 on June 20,
1979 bound for Kennedy International Airport. The contents of these cards will be printed at the top
of all main sections of printout, together with the date of the computer run.

The third card identifies the aircraft type for matching against the F-FUNCTION File; it also

gives the weight of the aircraft at this point in its flight (considering the load and the amount of fuel
burned) as 108,300 kg. The fourth card identifies the signatures as wanted at sea level. It also puts
the reflection factor at one, signifying the amplitude of the reflected boom to be the same as that of
the incident boom; this is appropriate for booms incident on water.

The fifth card instructs the program to cover the direct or primary (G) carpet, as well as both

single-M secondary carpets (MG and GMG), but that double bounces (GMGMG, etc.) and high level
or thermospheric rays (HG, etc.) are not needed. In addition, the output routines are instructed that the
entire pressure signature will not be needed on this run; but the positions of each shock wave and the
pressure before and after the shock wave will be wanted.

Cards 1 through 5 are read during the initial setup of the program. The remaining cards are

read by the ray tracing routines one at a time and acted upon. In this case, it is assumed that a

B-16

TRACK data set has been provided giving times in a HHMMSS format. The first of the ray parameter
cards tells the program that rays are wanted every 30 seconds, starting at 09:22:30 GMT until 09:28
GMT. The rays will be tested every 15 degrees in phi angle, starting with 90 degrees (9 o'clock, from
the pilot's viewpoint) and continuing clockwise until 450 degrees (9 o'clock, again). If the ray lies
inside the admittance ellipse for the ground, it will be traced. The complete course of each ray will be
printed out, giving the time and position as it crosses each of a set of pre-selected altitudes, as well as
the ground level. Furthermore, the values of ray tube area and age will be printed out.

The next card requests a closer look at a portion of the track, asking for rays to be traced every 10
seconds from 09:26:30 to 09:27. Further, it asks only for rays beginning at the lower right edge of the
rays in the admittance ellipse, tracing every degree in phi angle up to 25 degrees. This time, the ray
traces will not be printed out.

The final card asks for an even closer look. The zero for time separation indicates that rays are

only wanted from the aircraft at one time, namely 09:27 GMT. Rays are to be traced with phi angles
every tenth of a degree, from -28.03 to -26.03; i.e. around 5 o'clock from the pilot's viewpoint. Ray
tracings will not be printed.

This mixture of resolutions is presented only for purposes of illustration. In fact, a more likely

procedure in analyzing a flight would be to make one run with a coarse resolution (30 sec. time, 10
deg phi angle), determine from the output what portions require closer examination, and then make a
second run with finer resolution in the region of interest.

B-17

The F-FUNCTION File

The F-FUNCTION File provides the program with a means of specifying the pressure signatures
of the sonic boom, as seen by an observer near the aircraft and at rest relative to the ambient air. This
initial form is then aged by the program according to the history of the acoustic ray being traced.

The program constructs this initial signature as a linear combination of two components; one

corresponding to the area distribution of the aircraft (A) and one due to the lift distribution (L). Both
are recorded in the F-FUNCTION File as normalized functions of a normalized time variable; each
must be subjected to rescaling by different scales depending on the Mach number, aircraft weight and
maneuver, and the relative orientation of the ray to the wing. Only after scaling may they be
superimposed.

F-functions for a particular aircraft may be developed theoretically (see the discussion in [Hayes

et al:1969]) or by actual measurement in a wind tunnel (c.f. [Carlson: 1964]) . In the latter case,
separate sets of F-functions may be available at different Mach numbers for the same aircraft.

Operationally, it is desirable to have the F-functions for all the aircraft and all the Mach numbers

with which we are concerned on a common data base. When the aircraft maneuvers cause it to move
through various Mach number regimes, it is important to be able to change F-function tables quickly,
and this is facilitated by using a direct access data set.

In its present version, the TRAPS program expects its F-function data on 80-character EBCDIC

card images on a direct access file. The individual records are "addressed" by their position in the file,
so that the program can read a specific numbered record without reading or backspacing over
intervening records. This file is linked to the FORTRAN unit 90. On IBM 360/370 computer systems
using OS, this is the data set defined by DDNAME FT90F001.

The F-FUNCTION File is subdivided into Aircraft Record Sets, one for each aircraft type under

consideration. Each Aircraft Record Set is in turn subdivided into as many as 10 Mach Number
Record Sets, one for each Mach number represented by an F-function table for that aircraft.

The first card in each Aircraft Record Set is the Header record. It contains

(a) the type of aircraft
(b) a relative address pointer to the next Aircraft Record Set
(c) a table of the Mach numbers represented in this Aircraft Record set, and the

relative addresses of the Record Set for each.

B-18

The relative address refers to the difference in address between the Header record and the record
being pointed to. To obtain the actual address, the relative address must be added to the address of the
Header record. The use of this addressing technique allows the relocation of the entire Aircraft
Record Set, without modification, in the event that at some future time a new Aircraft Record set is
inserted in front of this one, or an existing one is modified by adding new Mach Number Record Sets.

Information in the Header record for an Aircraft Record Set is formatted as in Figure B.9:

The Aircraft Identification must be from 1 through 8 characters, left justified with blank fill. No
embedded blanks, periods, commas, hyphens, or special characters other than letters and digits are
allowed. The TRAPS program will match this identifier against that read in from the CONTROL data
set.

If the relative address is zero, then this is the last Aircraft Record Set in the F-FUNCTION File.

Otherwise, this is the total number of cards in the Aircraft Record Set, and hence a pointer to the card
immediately following.

Beginning at column 28, in a repeated (F5.2,I5) FORMAT, appear the Mach numbers of the

individual Mach Number Record Sets, and the relative address of the first card of each set. Since
columns 73-80 are reserved for possible sequence numbers or comments, only four Mach number
pointers can appear on the Header card. Up to two secondary Header records can appear for
continuing the Mach number table information; continuation begins at column 28.

B-19

The format of the individual data records is given in Figure B.10:

Aircraft identification and Mach number should match that on the Header card, and can be used
for a consistency check. The aircraft length participates in the normalization for the F-functions, both
area and lift, although in different manners. The variable increment in the independent variable tau
allows for F-functions to be of differing resolutions, depending on sources of data or complexity of
aircraft structure.

The FREAD subroutine, on first being called, searches the Aircraft Header records to locate the

Aircraft Record Set corresponding to the aircraft called for on the CONTROL File. If a match is
found, FREAD then proceeds to construct an internal table of available Mach numbers and their
absolute locations within the F-FUNCTION File. On subsequent calls, FREAD is notified of the Mach
number of the aircraft at the time the ray was emitted, and constructs an internal table of τ values, area
F-function components and lift F-function components. (This step is skipped if the table is already in
memory from a previous call). Supplied with information on, among other items, the difference
between the φ angle and the angle of bank, the density of the air and the weight of the aircraft at the
time the ray was emitted, the TRAPS program can then combine the two terms to form a single
F-function.

A deck of cards may be punched in this format for each aircraft type and for each Mach
number, and these decks may be stacked together. The result is a sequential data set, since
the computer must read all the cards until it reaches the desired one. To obtain a direct
access data set for the TRAPS program to use, the card deck must be converted through the
use of a utility routine which can read the cards and write them out using Direct-Access
software. An example of such a utility routine is the first program listed on the enclosed

B-20

fiche of the TRAPS program, although it properly is not a part of that program. It should be regarded
only as a prototype of such a utility, since it uses Direct-Access subroutines (DWRITE and DCLOSE)
that are available only at the NOAA IBM 360/195 computer site. Comparable software is available at
many other sites, however, and modifying the example to fit the local software is not difficult.

In Figure B.11 is a sample listing of an Aircraft Record Set in the F-FUNCTION File:

This sample of the F-FUNCTION File does not actually contain data for the Concorde aircraft,
as it purports to. During the entire project, despite repeated requests, neither the F-function data nor
the aircraft dimension data to compute them were made available. The F-functions which were used
were actually from a different aircraft (SR-71), scaled to fit the length, width, and height of the
Concorde.

B-21

B-22

C./ ADD NAME=DREAD
 SUBROUTINE DREAD(KUNIT,KRECD,BUFFER,*)
 DIMENSION BUFFER(20)
 LOGICAL OPEN
 DATA OPEN/.FALSE./
 IF(OPEN) GO TO 5
 KRET=1
 GO TO 20
 5 READ(20'KRECD,ERR=7) BUFFER
 RETURN
 7 RETURN 1
 ENTRY DWRITE(KUNIT,KRECD,BUFFER)
 IF(OPEN) GO TO 10
 KRET=2
 GO TO 20
 10 WRITE(20'KRECD) BUFFER
 RETURN
 ENTRY DCLOSE
 RETURN
 20 CONTINUE
 DEFINE FILE 90(520,80,L,NEXT)
 OPEN=.TRUE.
 GO TO (5,10),KRET
 STOP
 END
C./ ADD NAME=SEQ2DA
 DIMENSION BUFFER(20)
 K=0
 5 READ (10,20,END=100) BUFFER
 20 FORMAT(20A4)
 K=K+1
 CALL DWRITE(90,K,BUFFER)
 GO TO 5
 100 WRITE(6,110) K
 110 FORMAT(1X,I5,' RECORDS COPIED')
 CALL DCLOSE(90)
 STOP
 END

C./ ADD NAME=SONICBOM
C **
C **** T.R.A.P.S. - SONIC BOM MODELING PROGRAM ***
C *** T.RACING R.AYS AND A.GING P.RESSURE S.IGNATURES ***
C *** (SEE NOAA TECHNICAL MEMORANDUM ERL ARL-87) ***
C **
C ***
C *** DR. ALBION D. TAYLOR, ***
C *** NOAA/AIR RESOURCES LABORATORIES R/E/AR ***
C *** RM. 921, GRAMAX BUILDING ***
C *** 8060 13TH STREET ***
C *** SILVER SPRING, MD 20910 ***
C ***
C *** JULY, 1980 ***
C ***
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /RAYLIM/ NLIMS,BEG(2),END(2)
 DIMENSION BEGEND(2,2)
 EQUIVALENCE (BEGEND(1),BEG(1))
 COMMON /ACIDNT/ IDENT,ACWT
 REAL*8 IDENT
 COMMON /RYCTRL/NORAYS,STND,UL,UR,LL,LR,PRTRAY,TIMBEG,DELTIM,NTIMS,
 APHIBEG,DELPHI,NPHIS
 LOGICAL*1 NORAYS,STND,UL,UR,LL,LR,PRTRAY,LOGIC(2,2)
 EQUIVALENCE (LOGIC(1),UL)
 REAL PHIB(8),DPHI(8),SGN(2)/1.,-1./
 INTEGER MDEX(2,2)/1,2,2,1/
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 LOGICAL BETWEN
 BETWEN(A,B,C)=AMOD(AMOD(B-A,360.)+360.,360.) .LE.
 A AMOD(AMOD(C-A,360.)+360.,360.)
 CALL SETUP
 REWIND 11
 REWIND 9
 WRITE(9) IDENT
 5 CONTINUE
 CALL TIMPHI(&900)
 DO 75 NTIM=1,NTIMS
 T0=TIMBEG+(NTIM-1)*DELTIM
 CALL ACMOVE(T0)
 CALL FILIMS
 IF(NORAYS.OR.(NLIMS.EQ.0))GO TO 75
 IF(.NOT.STND) GO TO 10
 NSETS=1
 PHIB(1)=PHIBEG
 DPHI(1)=DELPHI
 GO TO 40
 10 NSETS=0
 DO 35 N=1,NLIMS
 DO 30 M=1,2
 LUPDWN=1
 IF(BETWEN(-90.,BEGEND(N,M),90.)) LUPDWN=2
 LEFR=MDEX(LUPDWN,M)
 IF(.NOT.LOGIC(LEFR,LUPDWN)) GO TO 30
 NSETS=NSETS+1
 PHIB(NSETS)=BEGEND(N,M)
 DPHI(NSETS)=SIGN(DELPHI,SGN(M))

 30 CONTINUE
 DO 32 LEFR=1,2
 ANG=SIGN(90.,SGN(LEFR))
 IF(.NOT.BETWEN(BEG(N),ANG,END(N))) GO TO 32
 DO 31 LUPDWN=1,2
 IF(.NOT.LOGIC(LEFR,LUPDWN)) GO TO 31
 NSETS=NSETS+1
 PHIB(NSETS)=ANG
 DPHI(NSETS)=SIGN(DELPHI,SGN(MDEX(LUPDWN,LEFR)))
 31 CONTINUE
 32 CONTINUE
 35 CONTINUE
 IF(NSETS.EQ.0) GO TO 75
 40 DO 70 NSET=1,NSETS
 DO 65 NPHI=1,NPHIS
 PHI0=PHIB(NSET)+(NPHI-1)*DPHI(NSET)
 DO 45 L=1,NLIMS
 IF(BETWEN(BEG(L),PHI0,END(L))) GO TO 60
 45 CONTINUE
 GO TO 65
 60 CALL RAYORG(&65)
 CALL RAYTRK
 65 CONTINUE
 70 CONTINUE
 75 CONTINUE
 GO TO 5
 900 CALL RDSPCL
 CALL SIGNUR
 STOP
 END
C./ ADD NAME=BLKDATA
 BLOCK DATA
 COMMON /PUNITS/ PTABL,CPTABL,TTABL,CTTABL,HTABL,CHTABL,
 1 ATMPOT,ACPOT,STABL,CSTABL,TIMTAB,LTABL,CLTABL,FTABL,CFTABL
 REAL*8 PTABL(6),TTABL(4),HTABL(6),STABL(9),TIMTAB(2),LTABL(6)
 REAL CPTABL(6),CTTABL(2,4),CHTABL(6),CSTABL(9),CLTABL(6)
 REAL*8 FTABL(5)
 REAL CFTABL(5)
 LOGICAL*1 ATMPOT(6),ACPOT(6)
C DEFAULT ON HEIGHT = GEOPOTENTIAL(ATMOSPHERE), GEOMETRIC(AIRCRAFT)
C INTERNAL PROGRAM UNITS HEIGHT GEOPOTENTIAL METERS(ATMOSPHERE),
C GEOMETRIC METERS ALL OTHER HEIGHTS AND LENGTHS, TEMPERATURE
C DEGREES KELVIN, PRESSURE KILOPASCALS (KPA), SPEED METERS PER SECOND.
 DATA PTABL/'KPA','MB','NSM','PA','PSF','PSI'/
 DATA CPTABL/1.,0.1,1.E3,1.E3,4.78803E-2,6.89476/
 DATA TTABL/'C','F','K','R'/
 DATA CTTABL/ 1.,273.150, 1.80,459.670, 1.,0., 1.80,0./
 DATA HTABL/'FT','GMFT','GMM','GPFT','GPM','METERS'/
 DATA CHTABL/.3048,.3048,1.,.3048,1.,1./
 DATA ATMPOT/.TRUE.,2*.FALSE.,3*.TRUE./
 DATA ACPOT/3*.FALSE.,2*.TRUE.,.FALSE./
 DATA STABL/'FPS','FTPS','KNOTS','KT','KPH','MPH','MPS','NMPH',
 A 'SMPH'/
 DATA CSTABL/2*.3048,2*.5144444,.2777778,.4470400,1.,.5144444,
 A .4470400/
 DATA TIMTAB/'HHMMSS','SSSSSSSS'/
 DATA LTABL/'FT','KM','METERS','MILES','NMI','SMI'/
 DATA CLTABL/.3048,1E3,1.,1609.344,1852.,1609.344/
 DATA FTABL/'GM','GRAMS','KG','LB','POUNDS'/
 DATA CFTABL/2*1E-3,1.,2*.45359237/
C KNOTS AND NAUTICAL MILE CONVERSIONS BASED ON THE INTERNATIONAL
C NAUTICAL MILE OF 1852. METERS EXACTLY (6076.1155FT), AS ADOPTED
C BY THE U.S. IN 1954, RATHER THAN THE BRITISH ADMIRALTY NAUTICAL
C MILE OF 6080 FT. (1853.184METERS) OR THE U.S. NAUTICAL MILE PRIOR
C TO 1954 OF 6080.21 FT. (1853.250METERS)
C ***
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
C REARTH=RADIUS OF EARTH FOR CONVERSION GEOMETRIC TO GEOPOTENTIAL
C METERS. R0M0=RSTAR/M0 AND R0G0M0=RSTAR/(G0*M0)
C WHERE RSTAR=UNIVERSAL GAS CONSTANT=8.31432E3 JOULES / (KMOL-DEGK),
C G0=9.80665M/SEC**2, AND M0=MEAN MOLECULAR WEIGHT OF STANDARD DRY
C AIR (28.9644 KG/KMOL) (SEE U.S. STANDARD ATMOSPHERE 1976)
 DATA REARTH/6.35677E6/,R0G0M0/29.27127/,RSTAR/8.31432E3/
 DATA G0/9.80665/,R0M0/287.0531/
C ***
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
C RAY CLASSES. G=GROUND, M=MID HEIGHT (ABOUT 50KM) H=EXTREME
C HEIGHT (100KM OR MORE). RAY CLASSES DEFINED IN THE ORDER IN WHICH
C A RAY TOUCHES AND RETURNS FROM ANY OF THESE LAYERS. THUS, A GMG
C RAY HAS REFLECTED FROM THE GROUND, RECURVED FROM THE MID LEVEL, AND
C TOUCHED THE GROUND AGAIN. A MG (OR M) RAY ROSE DIRECTLY FROM
C AIRCRAFT TO MID LAYER AND RECURVED TO TOUCH GROUND.
 DATA CNAMES/'ENDCLASS','FULL','G','GH','GHG','GHGH','GHGHG',
 A'GHGHGH','GHGHGHG','GM','GMG','GMGM','GMGMG','GMGMGM','GMGMGMG',
 B'H','HG','HGH','HGHG','HGHGH','HGHGHG','M','MG','MGM','MGMG',
 C'MGMGM','MGMGMG','NOPRINT','SHOCKS','SUMMARY'/
 END
C./ ADD NAME=SETUP
C ***
C *** INPUT ROUTINES - SETUP,ATMSIN,PTDHIN,RAOBWK,WINDIN,TXYZIN ***
C *** SPLINA,SPLINV (DATIM2,FFF2A) ***
C ***
 SUBROUTINE SETUP
 COMMON /ACIDNT/ IDENT,ACWT
 REAL*8 IDENT
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /GROUND/ ZGRND,CGRND,UGRND,VGRND,REFLFC
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 COMMON /PUNITS/ PTABL,CPTABL,TTABL,CTTABL,HTABL,CHTABL,

 1 ATMPOT,ACPOT,STABL,CSTABL,TIMTAB,LTABL,CLTABL,FTABL,CFTABL
 REAL*8 PTABL(6),TTABL(4),HTABL(6),STABL(9),TIMTAB(2),LTABL(6)
 REAL CPTABL(6),CTTABL(2,4),CHTABL(6),CSTABL(9),CLTABL(6)
 REAL*8 FTABL(5)
 REAL CFTABL(5)
 LOGICAL*1 ATMPOT(6),ACPOT(6)
C DEFAULT ON HEIGHT = GEOPOTENTIAL(ATMOSPHERE), GEOMETRIC(AIRCRAFT)
C INTERNAL PROGRAM UNITS HEIGHT GEOPOTENTIAL METERS(ATMOSPHERE),
C GEOMETRIC METERS ALL OTHER HEIGHTS AND LENGTHS, TEMPERATURE
C DEGREES KELVIN, PRESSURE KILOPASCALS (KPA), SPEED METERS PER SECOND.
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
C RAY CLASSES. G=GROUND, M=MID HEIGHT (ABOUT 50KM) H=EXTREME
C HEIGHT (100KM OR MORE). RAY CLASSES DEFINED IN THE ORDER IN WHICH
C A RAY TOUCHES AND RETURNS FROM ANY OF THESE LAYERS. THUS, A GMG
C RAY HAS REFLECTED FROM THE GROUND, RECURVED FROM THE MID LEVEL, AND
C TOUCHED THE GROUND AGAIN. A MG (OR M) RAY ROSE DIRECTLY FROM
C AIRCRAFT TO MID LAYER AND RECURVED TO TOUCH GROUND.
 INTEGER KTRNS(29)/4,0,24*-1,1,3,2/
 REAL*8 PRTYP(4)/' NO','SUMMARY',' SHOCKS',' FULL'/
 REAL*8 KARD(9),BUF(9),TPUNIT(3)/'WEIGHT','HEIGHT','RAYCLASS'/
 REAL SBUF(18)
 EQUIVALENCE(BUF(1),SBUF(1))
C READ 2 TITLE CARDS (1-72 ON FIRST CARD, 1-24 ON 2ND)
 READ(5,10) TITLE
 10 FORMAT(18A4)
 CALL DATIM2(SBUF)
 DO 7 K=1,6
 TITLE(K+24)=SBUF(K)
 7 CONTINUE
 WRITE(6,15) TITLE
 15 FORMAT('1',30A4)
C
C READ AIRCRAFT I/D, AIRCRAFT WEIGHT & WEIGHT UNITS.
C 1-8 ACID 9-16 AC WEIGHT 17-24 WEIGHT UNITS
 READ(5,20) KARD
 20 FORMAT(9A8)
 CALL LJUST(8,3,KARD,BUF)
 CALL UNITIS(BUF(3),FTABL,5,IMUNIT,TPUNIT(1),4)
 IDENT=BUF(1)
 CALL FFA2N(KARD,9,8,1,ACWT,0.,KERR)
 ACWT=ACWT*CFTABL(IMUNIT)
 BUF(9)=ACWT/CFTABL(IMUNIT)
 WRITE(6,35) IDENT,BUF(9),FTABL(IMUNIT)
 35 FORMAT(' AIRCRAFT TYPE= ',A8,', WEIGHT=',F8.0,1X,A8)
C
C READ GROUND HEIGHT AND UNITS. READ REFLECTION FACTOR.
C 1-8 HEIGHT 9-16 HEIGHT UNITS 17-24 REFLECTION FACTOR.
 READ(5,20) KARD
 CALL LJUST(8,2,KARD,BUF)
 CALL UNITIS(BUF(2),HTABL,6,IGUNIT,TPUNIT(2),6)
 CALL FFA2N(BUF,1,8,1,HEIGHT,0.,KERR)
 CALL FFA2N(BUF,17,8,1,REFLFC,1.,KERR)
 HEIGHT=HEIGHT/CHTABL(IGUNIT)
 IF(ACPOT(IGUNIT)) HEIGHT=HEIGHT/(1.-HEIGHT/REARTH)
 ZGRND=HEIGHT
 IF(ACPOT(IGUNIT)) HEIGHT=HEIGHT/(1.+HEIGHT/REARTH)
 HEIGHT=HEIGHT*CHTABL(IGUNIT)
 WRITE(6,40) HEIGHT,HTABL(IGUNIT),REFLFC
 40 FORMAT(' HEIGHT OF GROUND=',F5.0,1X,A8,' REFLECTION FACTOR=',
 AF5.3)
C
C READ RAY TYPES TO BE RECORDED.
 DO 42 K=1,2
 DO 42 L=1,2
 DO 41 M=1,3
 TYPRAY(M,K,L)=.FALSE.
 41 CONTINUE
 NRCURV(K,L)=-1
 42 CONTINUE
 KTPSIG=-1
 UP=.FALSE.
 DOWN=.FALSE.
 DIRECT=.FALSE.
 LOFT=.FALSE.
 43 READ(5,20) KARD
 CALL LJUST(8,9,KARD,BUF)
 DO 55 K=1,9
 CALL UNITIS(BUF(K),CNAMES,30,LCUNIT,TPUNIT(3),1)
 IF(LCUNIT.LE.1) GO TO 60
 IF(KTRNS(LCUNIT-1)) 47,45,50
 45 DIRECT=.TRUE.
 DOWN=.TRUE.
 GO TO 55
 47 IF(LCUNIT.GE.28) GO TO 50
 LOFT=LOFT.OR.(LCUNIT.LE.14)
 LCUNIT=(LCUNIT-4)/2
 KDWNUP=LCUNIT/6
 KHM=LCUNIT/3-KDWNUP*2
 KMH=2-KHM
 KRCRV=LCUNIT-3*KHM-6*KDWNUP
 TYPRAY(KRCRV+1,KDWNUP+1,KMH)=.TRUE.
 NRCURV(KDWNUP+1,KMH)=MAX0(NRCURV(KDWNUP+1,KMH),KRCRV+1)
 UP=UP.OR.(KDWNUP.NE.0)
 DOWN=DOWN.OR.(KDWNUP.EQ.0)
 GO TO 55
 50 KTPSIG=MAX0(KTPSIG,KTRNS(LCUNIT-1)-1)
 55 CONTINUE
 GO TO 43
 60 WRITE(6,65)
 65 FORMAT('0',T10,'PROCESS FOLLOWING CLASSES OF RAYS:')
 IF(DIRECT) WRITE(6,70) CNAMES(3)

 70 FORMAT(T20,A8)
 DO 75 K=1,2
 DO 75 L=1,2
 DO 75 M=1,3
 IF(.NOT.TYPRAY(M,K,L)) GO TO 75
 KTABL=12*(K-1)+6*(2-L)+2*M+3
 WRITE(6,70)CNAMES(KTABL)
 75 CONTINUE
 IF(KTPSIG.EQ.-1) KTPSIG=3
 WRITE(6,78) PRTYP(KTPSIG+1)
 78 FORMAT('0',T10,'PERFORM ',A7,' LISTING FROM SIGNATURES.')
 CALL ATMSIN
 CALL TXYZIN
 CALL FNDLYR(ZGRND,&80)
 80 CALL AIR(DBLE(ZGRND))
 CGRND=C
 UGRND=U
 VGRND=V
 RETURN
 END
C./ ADD NAME=ATMSIN
 SUBROUTINE ATMSIN
 COMMON /PTH/ NPTH,PRESS(97),TMPMOL(97),GPHC(97),GAMMA(97)
 COMMON /WINDS/ NWINDS,GPHW(80),DIR(80),TURN(79),SPEED(80)
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
 COMMON /GROUND/ ZGRND,CGRND,UGRND,VGRND,REFLFC
 COMMON /LYRDEF/NLAYER,GMZA(200),INDPTH(200),INDWND(200),
 ALYRPRT(200),KLAYER,ZTOP,ZBOT
 INTEGER*2 INDPTH,INDWND
 LOGICAL*1 LYRPRT
 REAL PRINTL(24)/-5.E3,0.,2.E3,4.E3,6.E3,8.E3,10.E3,15.E3,20.E3,
 A25.E3,30.E3,35.E3,40.E3,45.E3,5.E4,6.E4,7.E4,8.E4,9.E4,10.E4,11.E4
 B,12.E4,13.E4,1.E7/
 ZFROMH(H)=H/(1.-H/REARTH)
 CALL PTDHIN
 CALL WINDIN
 ZPTH=ZFROMH(GPHC(1))
 ZWIND=ZFROMH(GPHW(1))
 NLAYER=1
 GMZA(NLAYER)=AMAX1(ZGRND,ZPTH,ZWIND)
 DO 2 KPRT=1,24
 IF(PRINTL(KPRT).GT.GMZA(1)) GO TO 3
 LPRT=MIN0(KPRT,23)
 2 CONTINUE
 3 DO 4 KPTH=1,NPTH
 ZPTH=ZFROMH(GPHC(KPTH))
 IF(ZPTH.GT.GMZA(1)) GO TO 5
 LPTH=MIN0(KPTH,NPTH-1)
 4 CONTINUE
 5 INDPTH(NLAYER)=LPTH
 DO 6 KWIND=1,NWINDS
 ZWIND=ZFROMH(GPHW(KWIND))
 IF(ZWIND.GT.GMZA(1)) GO TO 7
 LWIND=MIN0(KWIND,NWINDS-1)
 6 CONTINUE
 7 INDWND(NLAYER)=LWIND
 10 KPRT=MIN0(LPRT+1,24)
 KPTH=MIN0(LPTH+1,NPTH)
 KWIND=MIN0(LWIND+1,NWINDS)
 ZPRT=PRINTL(KPRT)
 ZPTH=ZFROMH(GPHC(KPTH))
 ZWIND=ZFROMH(GPHW(KWIND))
 ZLEVEL=AMIN1(ZPRT,ZWIND,ZPTH)
 IF(ZLEVEL.LE.GMZA(NLAYER).OR.(NLAYER.GE.200)) GO TO 200
 NLAYER=NLAYER+1
 GMZA(NLAYER)=ZLEVEL
 LYRPRT(NLAYER)=.FALSE.
 IF(GMZA(NLAYER).LT.ZPRT) GO TO 30
 LYRPRT(NLAYER)=.TRUE.
 LPRT=MIN0(KPRT,23)
 30 IF(GMZA(NLAYER).EQ.ZPTH) LPTH=MIN0(KPTH,NPTH-1)
 INDPTH(NLAYER)=LPTH
 IF(GMZA(NLAYER).EQ.ZWIND) LWIND=MIN0(KWIND,NWINDS-1)
 INDWND(NLAYER)=LWIND
 GO TO 10
 200 LYRPRT(1)=.TRUE.
 LYRPRT(NLAYER)=.TRUE.
 RETURN
 END
C./ ADD NAME=PTDHIN
 SUBROUTINE PTDHIN
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /PTH/ NPTH,PRESS(97),TMPMOL(97),GPHC(97),GAMMA(97)
C -- TMPMOL= 'MOLECULAR SCALE TEMPERATURE' = VIRTUAL TEMPERATURE
C -- GPH = GEOPOTENTIAL HEIGHT
 REAL GPH(80),TEMPK(80),DEWPNT(80)
 REAL STANHT(21)/-5E3,11E3,20E3,32E3,47E3,51E3,71E3,84852.,89716.,
 A 94572.,97482.,99420.,102326.,104261.,106196.,107162.,108129.,
 B 117777.,121627.,125473.,130274./
 REAL STANTP(21)/320.65,216.65,216.65,228.65,270.65,270.65,214.65,
 A 186.95,187.16,189.35,194.28,204.63,213.22,221.65,234.19,242.86,
 B 254.27,397.09,453.89,508.05,571.42/
 REAL STANGM(21)/7*1.401,2*1.402,1.404,1.406,1.408,1.411,1.413,
 A 1.416,1.417,1.419,1.432,1.436,1.441,1.446/
 COMMON /PUNITS/ PTABL,CPTABL,TTABL,CTTABL,HTABL,CHTABL,
 1 ATMPOT,ACPOT,STABL,CSTABL,TIMTAB,LTABL,CLTABL,FTABL,CFTABL
 REAL*8 PTABL(6),TTABL(4),HTABL(6),STABL(9),TIMTAB(2),LTABL(6)
 REAL CPTABL(6),CTTABL(2,4),CHTABL(6),CSTABL(9),CLTABL(6)
 REAL*8 FTABL(5)
 REAL CFTABL(5)
 LOGICAL*1 ATMPOT(6),ACPOT(6)
C DEFAULT ON HEIGHT = GEOPOTENTIAL(ATMOSPHERE), GEOMETRIC(AIRCRAFT)
C INTERNAL PROGRAM UNITS HEIGHT GEOPOTENTIAL METERS(ATMOSPHERE),

C GEOMETRIC METERS ALL OTHER HEIGHTS AND LENGTHS, TEMPERATURE
C DEGREES KELVIN, PRESSURE KILOPASCALS (KPA), SPEED METERS PER SECOND.
 REAL*8 STANRD/'STANDARD'/,FINISH/'END'/,BLANK/' '/
 REAL*8 TPUNIT(4)/'PRESSURE',' TEMP',' DEW PT.',' HEIGHT'/
 REAL*8 KARD(9),BUF(4),KARD7(7)
 REAL DUMMY(7),DEFARY(4)/4*-1.E6/
 COMMON /WKRAOB/ HMISS(97),PMISS(97)
 LOGICAL*1 HMISS,PMISS
 LOGICAL*1 DMISS(80),GEOMET,GEOPOT,SOMEHT,TRUE/.TRUE./
 LOGICAL*1 FALSE/.FALSE./
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
C REARTH=RADIUS OF EARTH FOR CONVERSION GEOMETRIC TO GEOPOTENTIAL
C METERS.
 VAPRS(DWPT)=.6105*EXP(25.22*(1.-273./DWPT)-5.31*ALOG(DWPT/273.))
 RATMIX(PRS,DWPT)=0.622/((PRS/VAPRS(DWPT))-1.)
 VIRTMP(TMP,RTMIX)=TMP*(1.+0.61653*RTMIX)
 GMW(RTMIX)=1.401*(1.+1.899*RTMIX)/(1.+2.016*RTMIX)
 PRESS(1)=177.68
 PMISS(1)=FALSE
 TMPMOL(1)=STANTP(1)
C
C READ TITLE/STANDARD CARD AND INTERPRET
C
 READ(10,5,END=200) KARD
 5 FORMAT(9A8)
 CALL LJUST(8,4,KARD,BUF)
 CALL LOOKUP(8,1,STANRD,BUF(1),ISTND,&6,&7)
 6 IF(BUF(1).EQ.BLANK) GO TO 7
 GO TO 200
 7 WRITE(6,8) TITLE
 WRITE(6,9) KARD
 8 FORMAT('1',30A4)
 9 FORMAT('0',9A8)
C
C READ UNITS CARD AND INTERPRET
C
 READ(10,5,END=200) KARD
 CALL LJUST(8,4,KARD,BUF)
 CALL UNITIS(BUF(1),PTABL,6,IPUNIT,TPUNIT(1),2)
 CALL UNITIS(BUF(2),TTABL,4,ITUNIT,TPUNIT(2),0)
 CALL UNITIS(BUF(3),TTABL,4,IDUNIT,TPUNIT(3),ITUNIT)
 IF(ITUNIT.EQ.0) ITUNIT=IDUNIT
 IF(ITUNIT.NE.0) GO TO 30
 ITUNIT=1
 IDUNIT=1
 30 CALL UNITIS(BUF(4),HTABL,6,IHUNIT,TPUNIT(4),5)
 GEOMET=.NOT.ATMPOT(IHUNIT)
C
C READ IN DATA VALUES P-T-D-H. CONVERT TO INTERNAL UNITS.
C CHECK FOR MISSING VALUES OF DEWPOINT AND HEIGHT.
C
 TEMPK(1)=STANTP(1)
 HMISS(1)=TRUE
 DMISS(1)=TRUE
 SOMEHT=FALSE
 DO 50 N=2,80
 READ(10,5,END=55) KARD
 CALL LJUST(8,4,KARD,BUF)
 IF(BUF(1).EQ.FINISH) GO TO 55
 CALL FFA2N(KARD,1,8,4,DUMMY,DEFARY,KERR)
 PRESS(N)=DUMMY(1)*CPTABL(IPUNIT)
 TEMPK(N)=(DUMMY(2)+CTTABL(2,ITUNIT))/CTTABL(1,ITUNIT)
 DEWPNT(N)=(DUMMY(3)+CTTABL(2,IDUNIT))/CTTABL(1,IDUNIT)
 GPH(N)=DUMMY(4)*CHTABL(IHUNIT)
 IF(GEOMET) GPH(N)=GPH(N)/(1.+GPH(N)/REARTH)
 TMPMOL(N)=TEMPK(N)
 GPHC(N)=GPH(N)
 DMISS(N)=DEWPNT(N).LT.0.
 PMISS(N)=PRESS(N).LE.0.
 HMISS(N)=GPH(N).LT.-1.E4
 IF(TEMPK(N).LT.0..OR.(PMISS(N).AND.HMISS(N))) GO TO 65
 IF(HMISS(N).OR.PMISS(N)) GO TO 50
 IF(SOMEHT) GO TO 50
 SOMEHT=TRUE
 IPTHT=N
 50 CONTINUE
 N=81
 WRITE(6,51)
 51 FORMAT(' P-T-D-H READING TERMINATED AFTER 79 ITEMS.')
 55 NPTH=N-1
 IF(SOMEHT) GO TO 70
 WRITE(6,60)
 60 FORMAT(' AT NO LEVEL IS BOTH HEIGHT AND PRESSURE GIVEN. CANNOT EVA
 ALUATE ATMOSPHERIC PROFILE. RUN ABORTED.')
 STOP 650
 65 WRITE(6,67) KARD
 67 FORMAT(' INSUFFICIENT DATA ON CARD:''',9A8,''''/' RUN ABORTED.')
 STOP 650
 70 CALL RAOBWK(1,IPTHT,-1)
 CALL RAOBWK(IPTHT,NPTH,1)
C
C WORK DOWN TO OBTAIN VIRTUAL TEMPERATURES. BEFORE TOPMOST DEW POINT,
C MIXING RATIO IS ZERO. DEW POINT INTERPOLATED LINEARLY ACROSS GAPS
C W.R.T. DRY GPH, CONSTANT BELOW LOWEST INPUT DEW POINT.
C
 DO 71 NN=1,NPTH
 N=NPTH-NN+1
 IF (.NOT.DMISS(N)) GO TO 72
 GAMMA(N)=1.401
 71 CONTINUE
 GO TO 80
 72 N2=N
 DOLD=DEWPNT(N2)
 HOLD=GPHC(N2)
 DO 77 NN=2,N2

 N=N2-NN+2
 DO 73 N3=2,N
 N4=N-N3+1
 IF (.NOT.DMISS(N4)) GO TO 74
 73 CONTINUE
 DNEW=DOLD
 GO TO 75
 74 DNEW=DEWPNT(N4)
 75 HNEW=GPHC(N4)
 N4=N4+1
 DO 76 N5=N4,N
 D=((GPHC(N5)-HOLD)*DNEW+(HNEW-GPHC(N5))*DOLD)/(HNEW-HOLD)
 RTMIX=RATMIX(PRESS(N5),D)
 GAMMA(N5)=GMW(RTMIX)
 TMPMOL(N5)=VIRTMP(TEMPK(N5),RTMIX)
 76 CONTINUE
 DOLD=DNEW
 HOLD=HNEW
 77 CONTINUE
 RTMIX=RATMIX(PRESS(1),DOLD)
 GAMMA(1)=GMW(RTMIX)
 TMPMOL(1)=VIRTMP(TEMPK(1),RTMIX)
 80 CALL RAOBWK(1,IPTHT,-1)
 CALL RAOBWK(IPTHT,NPTH,1)
C
C PRINT OUT WORKED UP VALUES IN ORIGINAL UNITS
C
 WRITE(6,100) PTABL(IPUNIT),TTABL(ITUNIT),TTABL(IDUNIT),
 AHTABL(IHUNIT),HTABL(IHUNIT),TTABL(ITUNIT)
 100 FORMAT('0',T17,'TEMPERATURE',T35,'HEIGHT',T49,'VIRTUAL',T60,
 A 'SOUND'/2X,'PRESSURE',T13,'KINETIC',T21,'DEW POINT',T32,'INPUT',
 B T39,'COMPUTED',T50,'TEMP.',T60,'SPEED'/5X,6A9,T62,'MPS')
 GEOPOT=.NOT.GEOMET
 DO 110 N=2,NPTH
 DUMMY(1)=PRESS(N)/CPTABL(IPUNIT)
 DUMMY(2)=TEMPK(N)*CTTABL(1,ITUNIT)-CTTABL(2,ITUNIT)
 DUMMY(3)=DEWPNT(N)*CTTABL(1,IDUNIT)-CTTABL(2,IDUNIT)
 H1PRNT=GPH(N)
 H2PRNT=GPHC(N)
 IF(GEOPOT) GO TO 105
 H1PRNT=H1PRNT/(1.-H1PRNT/REARTH)
 H2PRNT=H2PRNT/(1.-H2PRNT/REARTH)
 105 DUMMY(4)=H1PRNT/CHTABL(IHUNIT)
 DUMMY(5)=H2PRNT/CHTABL(IHUNIT)
 DUMMY(6)=TMPMOL(N)*CTTABL(1,ITUNIT)-CTTABL(2,ITUNIT)
 DUMMY(7)=SQRT(R0M0*GAMMA(N)*TMPMOL(N))
 CALL FFN2A(KARD7,1,-8,4,7,DUMMY)
 IF(HMISS(N)) KARD7(4)=BLANK
 IF (DMISS(N)) KARD7(3)=BLANK
 WRITE(6,107) KARD7
 107 FORMAT(1X,7A9)
 110 CONTINUE
 GO TO 300
C
C STANDARD ATMOSPHERE BASIS PREPARATION
C
 200 GPHC(1)=STANHT(1)
 HMISS(1)=FALSE
 GAMMA(1)=STANGM(1)
 NPTH=1
 WRITE(6,210)
 210 FORMAT('0STANDARD ATMOSPHERE TABLE SELECTED.')
C
C MERGE IN STANDARD ATMOSPHERE (1976)
C
 300 STANLO=GPHC(NPTH)+1000.
 IF(GPHC(NPTH).GT.STANHT(21)) RETURN
 DO 310 K=2,21
 IF(STANLO.LE.STANHT(K)) GO TO 320
 310 CONTINUE
 K=21
 320 L2=MIN0(22-K,97-NPTH)
 IF(L2.LT.1) RETURN
 DO 350 L=1,L2
 NL=NPTH+L
 LK=L+K-1
 GPHC(NL)=STANHT(LK)
 TMPMOL(NL)=STANTP(LK)
 GAMMA(NL)=STANGM(LK)
 PMISS(NL)=TRUE
 HMISS(NL)=FALSE
 350 CONTINUE
 CALL RAOBWK(NPTH,NPTH+L2,1)
 NPTH=NPTH+L2
 RETURN
 END
C./ ADD NAME=RAOBWK
 SUBROUTINE RAOBWK(ILOW,IHIGH,IDIR)
 COMMON /PTH/ NPTH,PRESS(97),TMPMOL(97),GPHC(97),GAMMA(97)
C -- TMPMOL= 'MOLECULAR SCALE TEMPERATURE' = VIRTUAL TEMPERATURE
C -- GPH = GEOPOTENTIAL HEIGHT
 COMMON /WKRAOB/ HMISS(97),PMISS(97)
 LOGICAL*1 HMISS,PMISS
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
C R0M0=RSTAR/M0 AND R0G0M0=RSTAR/(G0*M0)
C WHERE RSTAR=UNIVERSAL GAS CONSTANT=8.31432E3 JOULES / (KMOL-DEGK),
C G0=9.80665M/SEC**2, AND M0=MEAN MOLECULAR WEIGHT OF STANDARD DRY
C AIR (28.9644 KG/KMOL) (SEE U.S. STANDARD ATMOSPHERE 1976)
 F1S(TAU)=(((TAU/5.+1.)*TAU/4.+1.)*TAU/3.+1.)*TAU/2.+1.
 F1A(TAU)=(EXP(TAU)-1.)/TAU
 IF(ILOW.GE.IHIGH) RETURN
 IDIR=ISIGN(1,IDIR)
 IF (IDIR.EQ.0) RETURN
 KOFSET=0
 IF(IDIR.LT.0) KOFSET=ILOW+IHIGH

 ISTOP=IHIGH-1
 DO 9 NN=ILOW,ISTOP
 N=KOFSET+ISIGN(NN,IDIR)
 TAU=ALOG(TMPMOL(N)/TMPMOL(N+IDIR))
 IF(ABS(TAU).GT..1) GO TO 2
 FACTOR=TMPMOL(N)*F1S(TAU)
 GO TO 3
 2 FACTOR=TMPMOL(N)*F1A(TAU)
 3 IF(PMISS(N+IDIR)) GO TO 5
 THICK=ALOG(PRESS(N)/PRESS(N+IDIR))*FACTOR*R0G0M0
 GPHC(N+IDIR)=GPHC(N)+THICK
 GO TO 9
 5 PRESS(N+IDIR)=PRESS(N)*EXP((GPHC(N)-GPHC(N+IDIR))/(FACTOR*R0G0M0))
 9 CONTINUE
 RETURN
 END
C./ ADD NAME=WINDIN
 SUBROUTINE WINDIN
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /WINDS/ NWINDS,GPHW(80),DIR(80),TURN(79),SPEED(80)
 COMMON /PUNITS/ PTABL,CPTABL,TTABL,CTTABL,HTABL,CHTABL,
 1 ATMPOT,ACPOT,STABL,CSTABL,TIMTAB,LTABL,CLTABL,FTABL,CFTABL
 REAL*8 PTABL(6),TTABL(4),HTABL(6),STABL(9),TIMTAB(2),LTABL(6)
 REAL CPTABL(6),CTTABL(2,4),CHTABL(6),CSTABL(9),CLTABL(6)
 REAL*8 FTABL(5)
 REAL CFTABL(5)
 LOGICAL*1 ATMPOT(6),ACPOT(6)
C DEFAULT ON HEIGHT = GEOPOTENTIAL(ATMOSPHERE), GEOMETRIC(AIRCRAFT)
C INTERNAL PROGRAM UNITS HEIGHT GEOPOTENTIAL METERS(ATMOSPHERE),
C GEOMETRIC METERS ALL OTHER HEIGHTS AND LENGTHS, TEMPERATURE
C DEGREES KELVIN, PRESSURE KILOPASCALS (KPA), SPEED METERS PER SECOND.
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
C REARTH=RADIUS OF EARTH FOR CONVERSION GEOMETRIC TO GEOPOTENTIAL
C METERS. R0M0=RSTAR/M0 AND R0G0M0=RSTAR/(G0*M0)
C WHERE RSTAR=UNIVERSAL GAS CONSTANT=8.31432E3 JOULES / (KMOL-DEGK),
C G0=9.80665M/SEC**2, AND M0=MEAN MOLECULAR WEIGHT OF STANDARD DRY
C AIR (28.9644 KG/KMOL) (SEE U.S. STANDARD ATMOSPHERE 1976)
 REAL*8 NOWIND/'NOWINDS'/,FINISH/'END'/
 REAL*8 TPUNIT(3)/'HEIGHT','DIRECT','SPEED'/
 REAL*8 KARD(9),BUF(4),BLANK/' '/
 REAL DUMMY(3),DEFARY(3)/3*0./
 LOGICAL*1 GEOMET,NOCAP,TRUE/.TRUE./,FALSE/.FALSE./
 GPHW(1)=-5E3
 DIR(1)=0.
 SPEED(1)=0.
C
C READ TITLE/NOWINDS CARD AND INTERPRET
C
 READ(15,5,END=200) KARD
 5 FORMAT(9A8)
 CALL LJUST(8,3,KARD,BUF)
 CALL LOOKUP(8,1,NOWIND,BUF(1),ISTND,&6,&7)
 6 IF(BUF(1).EQ.BLANK) GO TO 7
 GO TO 200
 7 WRITE(6,8) TITLE
 WRITE(6,9) KARD
 8 FORMAT('1',30A4)
 9 FORMAT('0',5X,9A8)
C
C READ UNITS CARD AND INTERPRET
C
 READ(15,5,END=200) KARD
 CALL LJUST(8,3,KARD,BUF)
 CALL UNITIS(BUF(1),HTABL,6,IHUNIT,TPUNIT(1),5)
 CALL UNITIS(BUF(3),STABL,9,ISUNIT,TPUNIT(3),3)
 GEOMET=.NOT.ATMPOT(IHUNIT)
C
C READ IN DATA VALUES H-DIR-SPD. CONVERT TO INTERNAL UNITS.
C COMPUTE TURN (RATE OF DIRECTION CHANGE PER METER)
C
 OLDTRN=0.
 NOCAP=FALSE
 DO 40 N=2,80
 READ(15,5,END=45) KARD
 CALL LJUST(8,3,KARD,BUF)
 IF(BUF(1).EQ.FINISH) GO TO 45
 CALL FFA2N(KARD,1,8,3,DUMMY,DEFARY,KERR)
 GPHW(N)=DUMMY(1)*CHTABL(IHUNIT)
 DIR(N)=DUMMY(2)
 SPEED(N)=DUMMY(3)*CSTABL(ISUNIT)
 IF(GEOMET) GPHW(N)=GPHW(N)/(1.+GPHW(N)/REARTH)
 IF(SPEED(N).EQ.0.) GO TO 35
 OLDTRN=(AMOD(AMOD(DIR(N)-DIR(N-1),360.)+540.,360.)-180.)/
 1 (GPHW(N)-GPHW(N-1))
 TURN(N-1)=OLDTRN
 GO TO 40
 35 TURN(N-1)=OLDTRN
 OLDTRN=0.
 40 CONTINUE
 N=81
 NOCAP=TRUE
 WRITE(6,41)
 41 FORMAT(' H-DIR-SPD READING TERMINATED AFTER 79 ITEMS.')
 45 NWINDS=N-1
 IF(NWINDS.EQ.80) GO TO 50
 NWINDS=NWINDS+1
 GPHW(NWINDS)=130274.
 SPEED(NWINDS)=0.
 DIR(NWINDS)=0.
 TURN(NWINDS-1)=OLDTRN
C
C WORK DOWN TURN AND DIR FOR THE CASE SPEED=0.
C

 50 DO 60 NN=2,NWINDS
 N=NWINDS-NN+2
 IF(SPEED(N).EQ.0.) GO TO 60
 IF(SPEED(N-1).EQ.0.) GO TO 55
 OLDTRN=TURN(N-1)
 GO TO 60
 55 TURN(N-1)=OLDTRN
 DIR(N-1)=DIR(N)-OLDTRN*(GPHW(N)-GPHW(N-1))
 OLDTRN=0.
 60 CONTINUE
C
C PRINT OUT IN ORIGINAL UNITS
C
 WRITE(6,90) HTABL(IHUNIT),STABL(ISUNIT)
 90 FORMAT('0',T4,'HEIGHT',T16,'DIR',T23,'SPEED'/5X,A9,T16,'DEG',T25,
 A A9)
 NPRNT=NWINDS-1
 IF(NOCAP) NPRNT=NPRNT+1
 DO 100 N=2,NPRNT
 HPRNT=GPHW(N)
 IF(GEOMET) HPRNT=HPRNT/(1.-HPRNT/REARTH)
 HPRNT=HPRNT/CHTABL(IHUNIT)
 SPRNT=SPEED(N)/CSTABL(ISUNIT)
 WRITE (6,95) HPRNT,DIR(N),SPRNT
 95 FORMAT(1X,3F9.0)
 100 CONTINUE
 RETURN
C
C NOWINDS SELECTED
C
 200 NWINDS=2
 GPHW(2)=130274.
 SPEED(2)=0.
 DIR(2)=0.
 TURN(1)=0.
 WRITE (6,210)
 210 FORMAT('0NOWINDS SELECTED.')
 RETURN
 END
C./ ADD NAME=TXYZIN
 SUBROUTINE TXYZIN
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL,TIMCVR
 LOGICAL CVRTIM
 COMMON /FLIGHT/NFIXES,TIMEAC(100),XAC(100),YAC(100),ZAC(100),
 A XPPAC(100),YPPAC(100),ZPPAC(100)
 DIMENSION TMARK(100),X0AC(100),Y0AC(100),Z0AC(100),DUMMY(10)
 REAL DEFARY(4)/4*0./
 COMMON /PUNITS/ PTABL,CPTABL,TTABL,CTTABL,HTABL,CHTABL,
 1 ATMPOT,ACPOT,STABL,CSTABL,TIMTAB,LTABL,CLTABL
 REAL*8 PTABL(6),TTABL(4),HTABL(6),STABL(9),TIMTAB(2),LTABL(6)
 REAL CPTABL(6),CTTABL(2,4),CHTABL(6),CSTABL(9),CLTABL(6)
 LOGICAL*1 ATMPOT(6),ACPOT(6)
C DEFAULT ON HEIGHT = GEOPOTENTIAL(ATMOSPHERE), GEOMETRIC(AIRCRAFT)
C INTERNAL PROGRAM UNITS HEIGHT GEOPOTENTIAL METERS(ATMOSPHERE),
C GEOMETRIC METERS ALL OTHER HEIGHTS AND LENGTHS, TEMPERATURE
C DEGREES KELVIN, PRESSURE KILOPASCALS (KPA), SPEED METERS PER SECOND.
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
C REARTH=RADIUS OF EARTH FOR CONVERSION GEOMETRIC TO GEOPOTENTIAL
C METERS. R0M0=RSTAR/M0 AND R0G0M0=RSTAR/(G0*M0)
C WHERE RSTAR=UNIVERSAL GAS CONSTANT=8.31432E3 JOULES / (KMOL-DEGK),
C G0=9.80665M/SEC**2, AND M0=MEAN MOLECULAR WEIGHT OF STANDARD DRY
C AIR (28.9644 KG/KMOL) (SEE U.S. STANDARD ATMOSPHERE 1976)
 REAL*8 KARD(9),BUF(4),FINISH/'END'/
 REAL*8 TPUNIT(4)/'TIME','XPOINT','YPOINT','HEIGHT'/
 LOGICAL*1 GEOPOT,TRUE/.TRUE./,FALSE/.FALSE./
 DIMENSION R0AC(100,3),RPPAC(100,3),RAC(100,3)
 DIMENSION RPPO(3),RPPN(3)
 EQUIVALENCE (R0AC(1,1),X0AC(1)),(R0AC(1,2),Y0AC(1)),
 A (R0AC(1,3),Z0AC(1)),(RAC(1,1),XAC(1)),(RPPAC(1,1),XPPAC(1))
C
C READ SUBTITLE CARD
C
 READ(20,5,END=200) KARD
 WRITE (6,3) TITLE
 3 FORMAT('1',30A4)
 WRITE(6,4) KARD
 4 FORMAT('0',5X,9A8)
C
C READ UNITS CARD AND INTERPRET
C
 READ(20,5,END=200) KARD
 5 FORMAT(9A8)
 CALL LJUST(8,4,KARD,BUF)
 CALL UNITIS(BUF(1),TIMTAB,2,ITIMZ,TPUNIT(1),1)
 TIMLBL=TIMTAB(ITIMZ)
 CVRTIM=ITIMZ.EQ.1
 CALL UNITIS(BUF(2),LTABL,6,IXUNIT,TPUNIT(2),0)
 CALL UNITIS(BUF(3),LTABL,6,IYUNIT,TPUNIT(3),IXUNIT)
 IF(IXUNIT.EQ.0) IXUNIT=IYUNIT
 IF(IXUNIT.NE.0) GO TO 30
 IXUNIT=5
 IYUNIT=5
 30 CALL UNITIS(BUF(4),HTABL,6,IZUNIT,TPUNIT(4),2)
 40 GEOPOT=ACPOT(IZUNIT)
C
C READ IN DATA VALUES T-X-Y-Z. CONVERT TO INTERNAL UNITS.
C
 DO 50 N=1,100
 READ(20,5,END=55) KARD
 CALL LJUST(8,4,KARD,BUF)
 IF(BUF(1).EQ.FINISH) GO TO 55
 CALL FFA2N(KARD,1,8,4,DUMMY,DEFARY,KERR)
 TIMEAC(N)=TIMCVR(DBLE(DUMMY(1)),1)
 X0AC(N)=DUMMY(2)

 Y0AC(N)=DUMMY(3)
 Z0AC(N)=DUMMY(4)
 IF(N.GT.1) TIMEAC(N)=AMOD(AMOD(TIMEAC(N)-TIMEAC(N-1),86400.)+
 A 86400.,86400.)+TIMEAC(N-1)
 X0AC(N)=X0AC(N)*CLTABL(IXUNIT)
 Y0AC(N)=Y0AC(N)*CLTABL(IYUNIT)
 Z0AC(N)=Z0AC(N)*CHTABL(IZUNIT)
 IF(GEOPOT) Z0AC(N)=Z0AC(N)/(1.-Z0AC(N)/REARTH)
 50 CONTINUE
 N=101
 WRITE (6,51)
 51 FORMAT(' T-X-Y-Z READING TERMINATED AFTER 100 ITEMS.')
 55 NFIXES=N-1
 IF(NFIXES.GT.1) GO TO 57
 WRITE (6,56) NFIXES
 56 FORMAT(1X,I2,' FIXES OF AIRCRAFT POSITION SUPPLIED. MUST HAVE AT L
 AEAST TWO TO RUN. RUN ABORTED.')
 STOP 650
C
C COMPUTE SECOND DERIVATIVES FOR SPLINE FIT
C
 57 CALL SPLINA(TIMEAC,R0AC,RPPAC,100,3,NFIXES,TMARK)
C
C SMOOTH SECOND DERIVATIVES
C
 73 DO 78 MM=1,2
 TN=(TIMEAC(1)+TIMEAC(2))*.5
 DO 74 I=1,3
 RPPN(I)=(RPPAC(1,I)+RPPAC(2,I))*.5
 74 CONTINUE
 DO 78 K=3,NFIXES
 TO=TN
 TN=(TIMEAC(K-1)+TIMEAC(K))*.5
 DTK=TN-TIMEAC(K-1)
 DTKM=TIMEAC(K-1)-TO
 DTT=DTK+DTKM
 DO 78 I=1,3
 RPPO(I)=RPPN(I)
 RPPN(I)=(RPPAC(K-1,I)+RPPAC(K,I))*.5
 RPPAC(K-1,I)=(RPPO(I)*DTK+RPPN(I)*DTKM)/DTT
 78 CONTINUE
C
C ADJUST RAC VALUES FOR SMOOTHED SECOND DERIVATIVES
C
 CALL SPLINV(TIMEAC,R0AC,RPPAC,100,3,NFIXES,RAC,TMARK)
C
C PRINT OUT VALUES IN ORIGINAL UNITS
C
 150 WRITE (6,155) TIMTAB(ITIMZ),LTABL(IXUNIT),LTABL(IXUNIT),
 ALTABL(IYUNIT),LTABL(IYUNIT),HTABL(IZUNIT),HTABL(IZUNIT)
 155 FORMAT('0AIRCRAFT TRAJECTORY'/T6,'TIME',T16,'XIN',T23,'XSMOOTH',
 AT36,'YIN',T43,'YSMOOTH',T56,'ZIN',T63,'ZSMOOTH',T85,'XACC',T95,
 B'YACC',T105,'ZACC'/1X,A10,1X,6A10,T86,'G''S',T96,'G''S',T106,
 C 'G''S')
 DO 170 N=1,NFIXES
 DUMMY(1)=TIMCVR(DMOD(DBLE(TIMEAC(N)),86400.D0),2)
 DUMMY(2)=X0AC(N)/CLTABL(IXUNIT)
 DUMMY(3)=XAC(N)/CLTABL(IXUNIT)
 DUMMY(4)=Y0AC(N)/CLTABL(IYUNIT)
 DUMMY(5)=YAC(N)/CLTABL(IYUNIT)
 DUMMY(6)=Z0AC(N)
 IF(GEOPOT) DUMMY(6)=DUMMY(6)/(1.+DUMMY(6)/REARTH)
 DUMMY(6)=DUMMY(6)/CHTABL(IZUNIT)
 DUMMY(7)=ZAC(N)
 IF(GEOPOT) DUMMY(7)=DUMMY(7)/(1.+DUMMY(7)/REARTH)
 DUMMY(7)=DUMMY(7)/CHTABL(IZUNIT)
 DUMMY(8)=XPPAC(N)/G0
 DUMMY(9)=YPPAC(N)/G0
 DUMMY(10)=ZPPAC(N)/G0
 WRITE (6,160) DUMMY
 160 FORMAT(1X,F8.1,3(F10.1,F10.3),10X,3F10.5)
 170 CONTINUE
 RETURN
 20)0 WRITE (6,210
 210 FORMAT(' FILE 20, GIVING AIRCRAFT POSITION DATA, IS EMPTY. CANNOT
 APROCEED.')
 STOP 650
 END
C./ ADD NAME=SPLINA
 SUBROUTINE SPLINA(ABSC,ORD,ORD2D,NABS,NORDS,NTERMS,WORK)
 DIMENSION ABSC(NABS),ORD(NABS,NORDS),ORD2D(NABS,NORDS),WORK(NABS)
 DO 10 NORD=1,NORDS
 ORD2D(1,NORD)=0.
 ORD2D(NTERMS,NORD)=0.
 10 CONTINUE
 WORK(1)=1.
 WORK(NTERMS)=1.
 IF(NTERMS.LE.2) RETURN
 NTRMN1=NTERMS-1
 DO 20 K=2,NTRMN1
 DTP1=ABSC(K+1)-ABSC(K)
 DTM1=ABSC(K)-ABSC(K-1)
 WORK(K)=2.*(DTP1+DTM1)
 DO 20 NORD=1,NORDS
 ORD2D(K,NORD)=6.*((ORD(K+1,NORD)-ORD(K,NORD))/DTP1
 A -(ORD(K,NORD)-ORD(K-1,NORD))/DTM1)
 20 CONTINUE
 IF(NTERMS.EQ.3) GO TO 70
 DO 60 K=3,NTRMN1
 DTM1=ABSC(K)-ABSC(K-1)
 FACT=DTM1/WORK(K-1)
 WORK(K)=WORK(K)-DTM1*FACT
 DO 60 NORD=1,NORDS
 ORD2D(K,NORD)=ORD2D(K,NORD)-FACT*ORD2D(K-1,NORD)
 60 CONTINUE

 70 DO 80 KK=2,NTRMN1
 K=NTERMS-KK+1
 DTP1=ABSC(K+1)-ABSC(K)
 FACT=1./WORK(K)
 DO 80 NORD=1,NORDS
 ORD2D(K,NORD)=(ORD2D(K,NORD)-DTP1*ORD2D(K+1,NORD))*FACT
 80 CONTINUE
 RETURN
 END
C./ ADD NAME=SPLINV
 SUBROUTINE SPLINV(ABSC,ORDIN,ORD2D,NABS,NORDS,NTERMS,ORDOUT,WORK)
 DIMENSION ABSC(NABS),ORDIN(NABS,NORDS),ORD2D(NABS,NORDS)
 DIMENSION WORK(NABS),ORDOUT(NABS,NORDS)
 DO 10 NORD=1,NORDS
 ORDOUT(1,NORD)=ORDIN(1,NORD)
 ORDOUT(NTERMS,NORD)=ORDIN(NTERMS,NORD)
 10 CONTINUE
 WORK(1)=1.
 WORK(NTERMS)=1.
 IF(NTERMS.LE.2) RETURN
 NTRMN1=NTERMS-1
 DO 20 K=2,NTRMN1
 DTP1=ABSC(K+1)-ABSC(K)
 DTM1=ABSC(K)-ABSC(K-1)
 WORK(K)=-(1./DTP1+1./DTM1)
 CENT=2.*(DTP1+DTM1)
 DO 20 NORD=1,NORDS
 ORDOUT(K,NORD)=(DTM1*ORD2D(K-1,NORD)+CENT*ORD2D(K,NORD)
 A +DTP1*ORD2D(K+1,NORD))/6.
 20 CONTINUE
 DTM1=ABSC(2)-ABSC(1)
 DO 30 NORD=1,NORDS
 ORDOUT(2,NORD)=ORDOUT(2,NORD)-ORDOUT(1,NORD)/DTM1
 30 CONTINUE
 IF(NTERMS.EQ.3) GO TO 70
 DO 60 K=3,NTRMN1
 DTM1=ABSC(K)-ABSC(K-1)
 FACT=1./(DTM1*WORK(K-1))
 WORK(K)=WORK(K)-FACT/DTM1
 DO 60 NORD=1,NORDS
 ORDOUT(K,NORD)=ORDOUT(K,NORD)-FACT*ORDOUT(K-1,NORD)
 60 CONTINUE
 70 DO 80 KK=2,NTRMN1
 K=NTERMS-KK+1
 DTP1=ABSC(K+1)-ABSC(K)
 FACT=1./WORK(K)
 DO 80 NORD=1,NORDS
 ORDOUT(K,NORD)=(ORDOUT(K,NORD)-ORDOUT(K+1,NORD)/DTP1)*FACT
 80 CONTINUE
 RETURN
 END
C./ ADD NAME=TIMPHI
C ***
C *** RAY TRACE ROUTINES - TIMPHI,ACMOVE,FILIMS,RAYORG,RAYTRK ***
C *** RATES,ADVANS,ARTUBE,RCRVIT,RECORD,RCSPCL ***
C ***
 SUBROUTINE TIMPHI(*)
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL,TIMCVR
 LOGICAL CVRTIM
 COMMON /RYCTRL/NORAYS,STND,UL,UR,LL,LR,PRTRAY,TIMBEG,DELTIM,NTIMS,
 APHIBEG,DELPHI,NPHIS
 LOGICAL*1 NORAYS,STND,UL,UR,LL,LR,PRTRAY,LOGIC(6)
 EQUIVALENCE (LOGIC(1),NORAYS)
 COMMON /FLIGHT/NFIXES,TIMEAC(100),XAC(100),YAC(100),ZAC(100),
 A XPPAC(100),YPPAC(100),ZPPAC(100)
 REAL DUMMY(6),DEFARY(6)/2*0.,10.,-90.,270.,10./
 REAL*8 KARD(9)
 INTEGER*2 MARGIN(6)/'AL','LL','LR','NO','UL','UR'/,KDUM(4)
 INTEGER MDEX(6)/6,5,6,1,3,4/
 REAL*8 PRTEST,DOPRNT(2)/'NOPRINT','PRINT'/
 READ(5,10,END=900) KARD
 10 FORMAT(9A8)
 WRITE(6,20) TITLE
 20 FORMAT('1',30A4)
 DEFARY(1)=TIMCVR(DBLE(TIMEAC(1)),2)
 DEFARY(2)=TIMCVR(DBLE(TIMEAC(NFIXES)),2)
 CALL FFA2N(KARD,1,8,3,DUMMY,DEFARY,KERR)
 DUMMY(1)=TIMCVR(DBLE(DUMMY(1)),1)
 DUMMY(2)=TIMCVR(DBLE(DUMMY(2)),1)
 TIMBEG=AMAX1(TIMEAC(1),AMIN1(DUMMY(1),DUMMY(2),TIMEAC(NFIXES)))
 TIMEND=AMIN1(TIMEAC(NFIXES),AMAX1(DUMMY(1),DUMMY(2),TIMEAC(1)))
 DELTIM=ABS(DUMMY(3))
 IF(DELTIM.LT.1E-7) GO TO 25
 NTIMS=(TIMEND-TIMBEG)/DELTIM +1.
 GO TO 30
 25 NTIMS=1
 DELTIM=0.
 30 CALL LJUST(8,1,KARD(7),PRTEST)
 PRTRAY=.TRUE.
 CALL LOOKUP(8,2,DOPRNT,PRTEST,KTEST,&33,&33)
 PRTRAY=KTEST.NE.1
 33 DUMMY(1)=TIMCVR(DBLE(TIMBEG),2)
 DUMMY(2)=TIMCVR(DBLE(TIMBEG+(NTIMS-1)*DELTIM),2)
 DUMMY(3)=DELTIM
 CALL FFA2N(KARD,33,8,2,DUMMY(5),DEFARY(5),KERR)
 DO 34 M=1,6
 LOGIC(M)=.FALSE.
 34 CONTINUE
 CALL LJUST(8,1,KARD(4),KDUM)
 STND=.TRUE.
 DO 37 L=1,4
 CALL LOOKUP(2,6,MARGIN,KDUM(L),KTEST,&37,&37)
 STND=.FALSE.
 IF(KTEST.NE.1) GO TO 36

 DO 35 M=3,6
 LOGIC(M)=.TRUE.
 35 CONTINUE
 36 LOGIC(MDEX(KTEST))=.TRUE.
 37 CONTINUE
 IF(NORAYS) GO TO 100
 IF(STND) GO TO 150
 DELPHI=ABS(DUMMY(6))
 NPHIS=1
 IF(DELPHI.EQ.0.) GO TO 40
 NPHIS=1.+ABS(DUMMY(5)/DELPHI)
 40 WRITE(6,45) UL,UR,LL,LR
 45 FORMAT('0INSTRUCTIONS -- PROCESS FOLLOWING MARGINS:'/'0',T30,'UL='
 A,L1,' UR=',L1,' LL=',L1,' LR=',L1)
 WRITE(6,55) DUMMY(1),DUMMY(2),TIMLBL,DUMMY(3)
 55 FORMAT('0ORIGIN TIMES FROM',F12.0,' TO',F12.0,' (',A6,') IN INCREM
 AENTS OF',F5.0,' SECONDS.')
 DUMMY(5)=ABS(DUMMY(5))
 WRITE(6,60) DUMMY(5),DELPHI
 60 FORMAT('0COVER',F7.2,' DEGREES IN INCREMENTS OF',F7.2,' DEGREES.')
 GO TO 200
 100 WRITE(6,105)
 105 FORMAT('0INSTRUCTIONS -- AIRCRAFT MANUVERS ONLY. PROCESS NO RAYS.'
 A)
 WRITE(6,55) DUMMY(1),DUMMY(2),TIMLBL,DUMMY(3)
 GO TO 200
 150 CALL FFA2N(KARD,25,8,1,DUMMY(4),DEFARY(4),KERR)
 PHIBEG=DUMMY(4)
 DELPHI=DUMMY(6)
 IF(ABS(DELPHI).LT.1.E-7) GO TO 160
 S360=SIGN(360.,DELPHI)
 NPHIS=(AMOD(AMOD(DUMMY(5)-DUMMY(4),S360)-S360,S360)+S360)/DELPHI
 A +1.
 GO TO 170
 160 NPHIS=1
 DELPHI=0.
 170 DUMMY(4)=PHIBEG
 DUMMY(5)=PHIBEG+(NPHIS-1)*DELPHI
 DUMMY(6)=DELPHI
 WRITE(6,180)
 180 FORMAT('0INSTRUCTIONS -- PROCESS PENCIL OF RAYS')
 WRITE(6,55)DUMMY(1),DUMMY(2),TIMLBL,DUMMY(3)
 WRITE(6,190)(DUMMY(I),I=4,6)
 190 FORMAT('0ORIGIN PHI-ANGLES FROM',F8.2,' TO',F8.2,' DEGREES IN INCR
 CS OF',F7.2,' DEGREES.')
 200 IF(PRTRAY) WRITE(6,210)
 IF(.NOT.PRTRAY) WRITE(6,220)
 RETURN
 210 FORMAT('0PRINT RAY TRACINGS')
 220 FORMAT('0DO NOT PRINT RAY TRACINGS')
 900 RETURN 1
 END
C./ ADD NAME=ACMOVE
 SUBROUTINE ACMOVE(T)
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL,TIMCVR
 LOGICAL CVRTIM
 COMMON /ACSPOT/TIME,XR0,YR0,ZR0,XDOT,YDOT,ZDOT,AIRSPD,ASPDOT,
 AC0,U0,V0,CDOT,XMACH,XMADOT,XMU,XMUDOT,COSMU,SINMU,EK(3,3),
 B EKDOT(3,3),GLOAD,HEADIN,CLIMB,BANK
 DIMENSION R0(3),RDOT(3),RDDOT(3),RLWDOT(3),OMEGA(3)
 EQUIVALENCE(R0(1),XR0),(XDOT,RDOT(1))
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
 COMMON /FLIGHT/NFIXES,TIMEAC(100),XAC(100),YAC(100),ZAC(100),
 A XPPAC(100),YPPAC(100),ZPPAC(100)
 DIMENSION RAC(100,3),RPPAC(100,3)
 EQUIVALENCE (RAC(1,1),XAC(1)),(RPPAC(1,1),XPPAC(1))
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 INTEGER SKEW(4)/2,3,1,2/
 DATA DGPRAD/57.295780/
 TIME=T
 CALL GETLYR(T,TIMEAC,NFIXES,NODE,&200)
 TAU=T-TIMEAC(NODE)
 CTAU=TIMEAC(NODE+1)-T
 DELTAT=TAU+CTAU
 DT2=DELTAT**2/6.
 TAU2=TAU*TAU/2.
 TAU3=TAU2*TAU/3.
 CTAU2=CTAU*CTAU/2.
 CTAU3=CTAU2*CTAU/3.
 DO 10 I=1,3
 GN=RAC(NODE,I)-RPPAC(NODE,I)*DT2
 GNC=RAC(NODE+1,I)-RPPAC(NODE+1,I)*DT2
 R0(I)=(GN*CTAU+GNC*TAU+RPPAC(NODE+1,I)*TAU3+RPPAC(NODE,I)*CTAU3)
 A /DELTAT
 RDOT(I)=(GNC-GN+RPPAC(NODE+1,I)*TAU2-RPPAC(NODE,I)*CTAU2)/DELTAT
 RDDOT(I)=(RPPAC(NODE+1,I)*TAU+RPPAC(NODE,I)*CTAU)/DELTAT
 10 CONTINUE
 CALL FNDLYR(ZR0,&250)
 CALL AIR(DBLE(ZR0))
 C0=C
 U0=U
 V0=V
 CDOT=DCDZ*ZDOT
 UAS=XDOT-U
 VAS=YDOT-V
 ASPH=UAS**2+VAS**2
 AIRSPD=SQRT(ASPH+ZDOT**2)
 ASPH=SQRT(ASPH)
 RLWDOT(1)=RDDOT(1)-DUDZ*ZDOT
 RLWDOT(2)=RDDOT(2)-DVDZ*ZDOT
 RLWDOT(3)=RDDOT(3)
 ASPDOT=(RLWDOT(1)*UAS+RLWDOT(2)*VAS+ZDOT*RLWDOT(3))/AIRSPD
 XMACH=AIRSPD/C0

 XMADOT=(ASPDOT*C0-AIRSPD*CDOT)/C0**2
 IF(XMACH.GT.1.) GO TO 15
 XMU=90.
 XMUDOT=0.
 SINMU=1.
 COSMU=0.
 GO TO 20
 15 SINMU=1./XMACH
 COSMU=SQRT(1.-SINMU**2)
 XMU=DGPRAD*ASIN(SINMU)
 XMUDOT=-DGPRAD*XMADOT*SINMU**2/COSMU
 20 EK(1,1)=UAS/AIRSPD
 EK(2,1)=VAS/AIRSPD
 EK(3,1)=ZDOT/AIRSPD
 EK(1,2)=VAS/ASPH
 EK(2,2)=-UAS/ASPH
 EK(3,2)=0.
 DO 30 K=1,3
 K1=SKEW(K)
 K2=SKEW(K+1)
 EK(K,3)=EK(K1,2)*EK(K2,1)-EK(K2,2)*EK(K1,1)
 OMEGA(K)=(RLWDOT(K1)*EK(K2,1)-RLWDOT(K2)*EK(K1,1))/AIRSPD
 30 CONTINUE
 FACT=(OMEGA(1)*EK(1,1)+OMEGA(2)*EK(2,1))/(EK(1,1)**2+EK(2,1)**2)
 HLOAD=0.
 VLOAD=G0*EK(3,3)/(1.+ZR0/REARTH)**2
 DO 40 K=1,3
 OMEGA(K)=OMEGA(K)-FACT*EK(K,1)
 HLOAD=HLOAD+RDDOT(K)*EK(K,2)
 VLOAD=VLOAD+RDDOT(K)*EK(K,3)
 40 CONTINUE
 GLOAD=SQRT(HLOAD**2+VLOAD**2)/G0
 BANK=DGPRAD*ATAN2(HLOAD,VLOAD)
 HEADIN=DGPRAD*ATAN2(-EK(1,1),-EK(2,1))+180.
 CLIMB=DGPRAD*ASIN(EK(3,1))
 DO 50 K=1,3
 K1=SKEW(K)
 K2=SKEW(K+1)
 OM1=OMEGA(K1)
 OM2=OMEGA(K2)
 DO 50 L=1,3
 EKDOT(K,L)=EK(K1,L)*OM2-EK(K2,L)*OM1
 50 CONTINUE
 WRITE(6,60) TITLE
 60 FORMAT('1',30A4)
 TPRINT=TIMCVR(DBLE(TIME),2)
 WRITE(6,65)TIMLBL,TPRINT,XR0,YR0,ZR0,XMACH,GLOAD,BANK
 65 FORMAT('0AIRCRAFT MANEUVER DATA'/'0',T4,'TIME',T16,'X',T26,'Y',T36
 A,'Z',T45,'MACH',T54,'LOAD',T64,'BANK'/T4,A8,T15,'MET',T25,'MET'
 B,T35,'MET',T46,'NO.',T55,'G''S',T64,'DEGS.'/1X,4F10.0,2F10.5,F10.1
 C)
 HEADG=DGPRAD*ATAN2(-XDOT,-YDOT)+180.
 GNTSPD=SQRT(XDOT**2+YDOT**2+ZDOT**2)
 GCLMB=DGPRAD*ASIN(ZDOT/GNTSPD)
 WRITE(6,70)AIRSPD,UAS,VAS,ZDOT,CLIMB,HEADIN,GNTSPD,XDOT,YDOT,ZDOT,
 AGCLMB,HEADG
 70 FORMAT('0',T11,10('-'),T25,'SPEED MPS',T41,10('-'),1X,5('-'),2X,'A
 ANGLE',3X,5('-')/T14,'TOTAL',T23,'X-COMP',T33,'Y-COMP',T43,'Z-COMP'
 B,T54,'CLIMB',T64,'HEADING'/' AIR',T11,4F10.0,F10.2,F10.1/' GROUND'
 C,T11,4F10.0,F10.2,F10.1)
 RETURN
 200 WRITE(6,210) T,TIMEAC(1),TIMEAC(NFIXES)
 210 FORMAT(' IN CALL TO ACMOVE, TIME''',F10.1,''' IS OUTSIDE RANGE''',
 AF10.1,''' TO''',F10.1)
 RETURN
 250 WRITE(6,260) T,ZR0
 260 FORMAT(' IN CALL TO ACMOVE AT TIME''',F10.1,''' AIRCRAFT IS AT ALT
 AITUDE Z=''',F10.2,''' METERS AND OUTSIDE ATMOSPHERE TABLE.')
 STOP 600
 END
C./ ADD NAME=FILIMS
 SUBROUTINE FILIMS
 COMMON /ACSPOT/TIME,XR0,YR0,ZR0,XDOT,YDOT,ZDOT,AIRSPD,ASPDOT,
 AC0,U0,V0,CDOT,XMACH,XMADOT,XMU,XMUDOT,COSMU,SINMU,EK(3,3),
 B EKDOT(3,3),GLOAD,HEADIN,CLIMB,BANK
 DATA DGPRAD/57.295780/,TWOPI/6.28318531/
 COMMON /GROUND/ ZGRND,CGRND,UGRND,VGRND,REFLFC
 COMMON /RAYLIM/ NLIMS,BEG(2),END(2)
 DIMENSION ZRO(5),TRND(5)
 EQUIVALENCE (SINGAM,EK(3,1)),(COSGAM,EK(3,3))
 IF(XMACH.LT.1.) GO TO 102
 U0MG=U0-UGRND
 V0MG=V0-VGRND
 ALPHA1=1.+SINMU*(U0MG*EK(1,1)+V0MG*EK(2,1))/C0
 ALPHA2=COSMU*(U0MG*EK(1,2)+V0MG*EK(2,2))/C0
 ALPHA3=COSMU*(U0MG*EK(1,3)+V0MG*EK(2,3))/C0
 A0=ALPHA1**2+.5*(ALPHA2**2+ALPHA3**2)
 A1=-2.*ALPHA1*ALPHA3
 A2=-2.*ALPHA1*ALPHA2
 A3=.5*(ALPHA3**2-ALPHA2**2)
 A4=ALPHA2*ALPHA3
 SINMU2=SINMU**2
 COSMU2=COSMU**2
 CGFACT=(CGRND/C0)**2
 CSGM2=COSGAM**2
 A0=A0-CGFACT*(SINMU2*CSGM2+(1.-.5*CSGM2)*COSMU2)
 A1=A1-CGFACT*2.*SINGAM*COSGAM*SINMU*COSMU
 A3=A3+CGFACT*.5*(CSGM2)*COSMU2
 A34=SQRT(A3**2+A4**2)
 DFULIM=SQRT(A1**2+A2**2)+A34
 CPPMX=DFULIM+3.*A34
 EPS=5E-6*DFULIM
 PHI=-90./DGPRAD
 FO=A0-A2-A3
 PHIO=PHI

 PHIBEG=PHI
 KZRO=1
 IF(DFULIM.LT.ABS(A0).OR.DFULIM.EQ.0.) GO TO 100
 5 IF(PHIO.GT.PHIBEG+TWOPI) GO TO 100
 SINPHI=SIN(PHI)
 COSPHI=COS(PHI)
 TWOPHI=PHI+PHI
 COS2FI=COS(TWOPHI)
 SIN2FI=SIN(TWOPHI)
 F=A0+A1*COSPHI+A2*SINPHI+A3*COS2FI+A4*SIN2FI
 IF(ABS(F).LT.EPS) GO TO 25
 IF(F*FO.LE.0.) GO TO 10
C CASE NO ZERO CROSSING. ADVANCE PHI
 FPR=-A1*SINPHI+A2*COSPHI-2.*(A3*SIN2FI-A4*COS2FI)
 FPPMX=SIGN(CPPMX,F)
 DPHI1=FPR/FPPMX
 DPHI2=SQRT(FPR**2+2.*F*FPPMX)/CPPMX
 DPHI=AMAX1(ABS(DPHI1),DPHI2+DPHI1,1.E-5)
 PHIO=PHI
 FO=F
 PHI=PHI+DPHI
 @Ga TO 5
C CASE ZERO IS CROSSED. LOCATE ZERO BY HALVES.
 10 PHIHI=PHI
 FHI=F
 15 PHI=.5*(PHIHI+PHIO)
 SINPHI=SIN(PHI)
 COSPHI=COS(PHI)
 TWOPHI=PHI+PHI
 COS2FI=COS(TWOPHI)
 SIN2FI=SIN(TWOPHI)
 F=A0+A1*COSPHI+A2*SINPHI+A3*COS2FI+A4*SIN2FI
 IF(ABS(F).LT.EPS) GO TO 25
 IF(F*FHI.GT.0.) GO TO 20
 PHIO=PHI
 FO=F
 GO TO 15
 20 PHIHI=PHI
 FHI=F
 GO TO 15
 25 FPR=-A1*SINPHI+A2*COSPHI-2.*(A3*SIN2FI-A4*COS2FI)
 DPHI=ABS(FPR/CPPMX)
 DF=.5*ABS(FPR)*DPHI
 IF(DF.LT.EPS) GO TO 30
 MULT=1
 SGN=SIGN(1.,FPR)
 GO TO 50
 30 FPPR=-A1*COSPHI-A2*SINPHI-4.*(A3*COS2FI+A4*SIN2FI)
 DPHI=ABS(2.*FPPR)/(CPPMX+4.*A34)
 DF=ABS(FPPR)*DPHI*DPHI/6.
 IF(DF.LT.EPS) GO TO 35
 MULT=2
 SGN=-SIGN(1.,FPPR)
 GO TO 50
 35 FP3R=A1*SINPHI-A2*COSPHI+8.*(A3*SIN2FI-A4*COS2FI)
 DPHI=ABS(3.*FP3R)/(CPPMX+12.*A34)
 DF=ABS(FP3R)*DPHI*DPHI*DPHI/24.
 IF(DF.LT.EPS) GO TO 40
 MULT=3
 SGN=SIGN(1.,FP3R)
 GO TO 50
 40 FP4R=A1*COSPHI+A2*SINPHI+16.*(A3*COS2FI+A4*SIN2FI)
 MULT=4
 SGN=-SIGN(1.,FP4R)
 DPHI=TWOPI
 50 DO 55 K=1,MULT
 ZRO(KZRO)=PHI
 TRND(KZRO)=SGN
 SGN=-SGN
 KZRO=KZRO+1
 IF(KZRO.GT.5) GO TO 100
 55 CONTINUE
 PHIO=PHI+DPHI
 PHI=PHIO
 TWOPHI=PHI+PHI
 FO=A0+A1*COS(PHI)+A2*SIN(PHI)+A3*COS(TWOPHI)+A4*SIN(TWOPHI)
 GO TO 5
 100 IF(KZRO.GT.1) GO TO 110
 IF(FO.GE.0) GO TO 105
 102 NLIMS=0
 GO TO 130
 105 NLIMS=1
 BEG(1)=-90.
 END(1)=270.
 GO TO 130
 110 KZRO=KZRO-1
 IF(MOD(KZRO,2).EQ.1) GO TO 115
 KZRO=KZRO+1
 ZRO(KZRO)=ZRO(1)+TWOPI
 TRND(KZRO)=TRND(1)
 115 NLIMS=(KZRO-1)/2
 L=1
 IF(TRND(1).LT.0.) L=2
 DO 120 N=1,NLIMS
 BEG(N)=ZRO(N*2+L-2)*DGPRAD
 END(N)=ZRO(N*2+L-1)*DGPRAD
 120 CONTINUE
 130 IF(NLIMS.GT.0) GO TO 150
 WRITE(6,145)
 145 FORMAT('0 RAYS WILL NOT TOUCH GROUND OR AIRCRAFT IS SUBSONIC.')
 RETURN
 150 WRITE(6,155) NLIMS
 155 FORMAT('0',T10,I2,' PHI-ANGLE INTERVALS:')
 DO 165 N=1,NLIMS
 BEG1=AMOD(AMOD(BEG(N),360.)+450.,360.)-90.

 END1=AMOD(AMOD(END(N),360.)+450.,360.)-90.
 WRITE(6,160) N,BEG1,END1
 160 FORMAT('0INTERVAL',I2,' FROM',F7.2,' DEGREES TO',F7.2,' DEGREES.
 A')
 165 CONTINUE
 RETURN
 END
C./ ADD NAME=RAYORG
 SUBROUTINE RAYORG(*)
 COMMON /RYCTRL/NORAYS,STND,UL,UR,LL,LR,PRTRAY,TIMBEG,DELTIM,NTIMS,
 APHIBEG,DELPHI,NPHIS
 LOGICAL*1 NORAYS,STND,UL,UR,LL,LR,PRTRAY
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 COMMON /ACSPOT/TIME,XR0,YR0,ZR0,XDOT,YDOT,ZDOT,AIRSPD,ASPDOT,
 AC0,U0,V0,CDOT,XMACH,XMADOT,XMU,XMUDOT,COSMU,SINMU,EK(3,3),
 B EKDOT(3,3),GLOAD,HEADIN,CLIMB,BANK
 REAL XKR0(3),XKDOT(3)
 EQUIVALENCE(XKR0(1),XR0),(XKDOT(1),XDOT)
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL XK0(3),PK0(3),PKF0(3),XKT0(3),PKT0(3),XKS0(3)
 EQUIVALENCE(XK0(1),X0),(PK0(1),P10),(PKF0(1),P1F0),(XKT0(1),XT0)
 EQUIVALENCE(PKT0(1),P1T0),(XKS0(1),XS0)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 REAL XKS(3),XKFS(2),XKTS(2),XKFTZ(3),XKSS(3),XKSSS(3)
 REAL*8 XK(3),XKF(3),XKT(3)
 EQUIVALENCE (XK(1),X),(XKF(1),XF),(XKT(1),XT),(XKS(1),XS)
 EQUIVALENCE (XKFS(1),XFS),(XKTS(1),XTS),(XKFTZ(1),XFTZ)
 EQUIVALENCE (XKSS(1),XSS),(XKSSS(1),XSSS)
 REAL*8 RENORM
 DATA DGPRAD/57.295780/
 NAGES=1
 DAGE=0.D0
 MEDHI=1
 COSPHI=COS(PHI0/DGPRAD)
 SINPHI=SIN(PHI0/DGPRAD)
 RENORM=0.D0
 DO 10 K=1,3
 XK0(K)=XKR0(K)
 EH=-SINPHI*EK(K,2)-COSPHI*EK(K,3)
 EHDOT=-SINPHI*EKDOT(K,2)-COSPHI*EKDOT(K,3)
 PK0(K)=EK(K,1)+COSMU*EH/SINMU
 PKF0(K)=(COSMU*(-COSPHI*EK(K,2)+SINPHI*EK(K,3)))/SINMU
 PKT0(K)=EKDOT(K,1)+(EHDOT*COSMU-EH*XMUDOT/(DGPRAD*SINMU))/SINMU
 RENORM=RENORM+DBLE(PK0(K))**2
 10 CONTINUE
 RENORM=SINMU*DSQRT(RENORM)
 CALL FNDLYR(Z0,&20)
 20 CALL AIR(DBLE(Z0))
 RHO0=RHO
 PCONST=AIRSPD**2*SQRT(.5*RHO0)
 DELTA0=AIRSPD
 CSQD=C0*SINMU
 DO 25 K=1,3
 PK0(K)=PK0(K)/RENORM
 XKS0(K)=CSQD*PK0(K)
 XKT0(K)=XKDOT(K)-XKS0(K)
 25 CONTINUE
 XS0=XS0+U0
 YS0=YS0+V0
 XT0=XT0-U0
 YT0=YT0-V0
 RTPAA0=SQRT(P10**2+P20**2)
 DELTA0=C*SQRT(P30**2+RTPAA0**2)
 OMEGA=DELTA0+U*P10+V*P20
 OMEGAT=ASPDOT+(DUDZ*P10+DVDZ*P20)*ZDOT+U*P1T0+V*P2T0
 OMEGAF=U*P1F0+V*P2F0
 P3S0=-DCDZ*DELTA0/C0-P10*DUDZ-P20*DVDZ
 P3T0=P3T0-P3S0
 IUPDWN=1
 IF(P30.LT.0.) IUPDWN=2
 IF(IUPDWN.EQ.1.AND..NOT.UP)RETURN 1
 IF(IUPDWN.EQ.2.AND..NOT.DOWN) RETURN 1
 SIGMA=T0
 ZDIR=SIGN(1.,P30)
 DO 50 K=1,3
 XK(K)=XK0(K)
 XKF(K)=0.D0
 XKT(K)=XKT0(K)
 50 CONTINUE
 P3F=P3F0
 P3T=P3T0
 CALL RATES(&100,&100)
 AREA=0.
 ATTEN=1.
 IF(.NOT.PRTRAY) RETURN
 WRITE(6,60) TITLE
 60 FORMAT('1',30A4)
 TPRINT=TIMCVR(DBLE(T0),2)
 FIPRNT=AMOD(AMOD(PHI0,360.)+450.,360.)-90.
 AZIM=PHAZIM(0.)

 WRITE(6,65) TPRINT,TIMLBL,FIPRNT,P10,P20,AZIM
 65 FORMAT('0',T20,'DATA FOR RAY DEPARTING AIRCRAFT TIME=',F10.0,1X,A8
 A,'PHI ANGLE=',F7.2,' DEGREES.'/T15,'P1=',G14.5,',P2=',G14.5,'PHASE
 B NORMAL AZIMUTH=',F6.0,' DEGREES.')
 TPRINT=TIMCVR(SIGMA,2)
 ELEV=PHELEV(0.)
 WRITE(6,70) TIMLBL,TPRINT,X,Y,Z,P3,ELEV,C,ZS,AREA,DAGE
 70 FORMAT('0',T5,'SIGMA',T18,'X',T28,'Y',T39,'Z',T45,'P3',T53,'PHASE'
 A,T65,'C',T73,'DZ/DS',T81,'AREA',T91,'AGE'/T5,A8,T17,'MET',T27,
 B'MET',T38,'MET',T54,'ELEV',T63,'M/SEC',T73,'M/SEC',T79,'M**2/SEC',
 CT89,'MET**.5'/
 D1X,F10.1,3F10.0,G10.3,F6.1,2F10.1,2G10.4)
 RETURN
 100 WRITE(6,101)
 101 FORMAT(' IMPROPER RETURN FROM RATES IN RAYORG')
 RETURN
 END
C./ ADD NAME=RAYTRK
 SUBROUTINE RAYTRK
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
 COMMON /RYCTRL/NORAYS,STND,UL,UR,LL,LR,PRTRAY,TIMBEG,DELTIM,NTIMS,
 APHIBEG,DELPHI,NPHIS
 LOGICAL*1 NORAYS,STND,UL,UR,LL,LR,PRTRAY
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK(2),PKF(2),PKT(2)
 EQUIVALENCE (PK(1),P10),(PKF(1),P1F0),(PKT(1),P1T0)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 REAL XKS(3),XKFS(2),XKTS(2),XKFTZ(3),XKSS(3),XKSSS(3)
 REAL*8 XK(3),XKF(3),XKT(3)
 EQUIVALENCE (XK(1),X),(XKF(1),XF),(XKT(1),XT),(XKS(1),XS)
 EQUIVALENCE (XKFS(1),XFS),(XKTS(1),XTS),(XKFTZ(1),XFTZ)
 EQUIVALENCE (XKSS(1),XSS),(XKSSS(1),XSSS)
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 COMMON /GROUND/ ZGRND,CGRND,UGRND,VGRND,REFLFC
 COMMON /LYRDEF/NLAYER,GMZA(200),INDPTH(200),INDWND(200),
 ALYRPRT(200),KLAYER,ZTOP,ZBOT
 INTEGER*2 INDPTH,INDWND
 LOGICAL*1 LYRPRT
 REAL*8 TIMCVR,TPRINT
 COMMON /RAYHLD/HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT,
 AHXS,HYS,HZS,HXSS,HYSS,HZSS,HXSSS,HYSSS,HZSSS,HP3,HP3F,HP3T,HP3S,
 BHXFS,HYFS,HXTS,HYTS,HZFTP3,HXFTZ,HYFTZ,HZFTZ,HZFA,HZTA,HP3FTZ,
 CHP3FA,HP3TA,HAREA,HDAGDS
 REAL*8 HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT
 REAL HXKS(3),HXKFS(2),HXKTS(2),HXKFTZ(3),HXKSS(3),HXKSSS(3)
 REAL*8 HXK(3),HXKF(3),HXKT(3)
 EQUIVALENCE (HXK(1),HX),(HXKF(1),HXF),(HXKT(1),HXT),(HXKS(1),HXS)
 EQUIVALENCE (HXKFS(1),HXFS),(HXKTS(1),HXTS),(HXKFTZ(1),HXFTZ)
 EQUIVALENCE (HXKSS(1),HXSS),(HXKSSS(1),HXSSS)
 REAL HOLDVR(28),HOLDHD(28)
 REAL*8 H8VR(11),H8HD(11),DELZ
 EQUIVALENCE (HOLDVR(1),XS),(HOLDHD(1),HXS)
 EQUIVALENCE (H8VR(1),SIGMA),(H8HD(1),HSIGMA)
 NDCRVS=0
 NUCRVS=0
 KGMH=1
 1 CONTINUE
 DO 2 L=1,28
 HOLDHD(L)=HOLDVR(L)
 2 CONTINUE
 DO 3 L=1,11
 H8HD(L)=H8VR(L)
 3 CONTINUE
 TDLSIG=.30
 IF(ZDIR.GT.0.) GO TO 10
 IF(ZS+ZSS*TDLSIG.GT.0.) TDLSIG=AMAX1(0.,-ZS/ZSS)
 DELZ=DMAX1(-50.D0,ZBOT-Z,DMIN1(-1.D0,(ZS+.5D0*ZSS*TDLSIG)*TDLSIG))
 IF(DELZ.LT.0.D0) GO TO 15
 LPRNT=KLAYER
 KLAYER=KLAYER-1
 IF(KLAYER.LE.0) GO TO 450
 GO TO 400
 10 IF(ZS+ZSS*TDLSIG.LT.0.) TDLSIG=AMAX1(0.,-ZS/ZSS)
 DELZ=DMIN1(50.D0,ZTOP-Z,DMAX1(1.D0,(ZS+.5D0*ZSS*TDLSIG)*TDLSIG))
 IF(DELZ.GT.0.D0) GO TO 15
 KLAYER=KLAYER+1
 LPRNT=KLAYER
 IF(KLAYER.GE.NLAYER) GO TO 500
 GO TO 400
 15 Z=HZ+DELZ
 CALL RATES(&320,&300)
 CALL ADVANS
 GO TO 1
 300 CALL RCRVIT
 305 CALL RATES(&320,&420)
 320 CALL ADVANS
 IF(.NOT.PRTRAY) GO TO 315
 WRITE(6,310)
 310 FORMAT(' RECURVATURE POINT ATTAINED.')
 TPRINT=TIMCVR(SIGMA,2)
 ELEV=PHELEV(0.)
 WRITE(6,60) TPRINT,X,Y,Z,P3,ELEV,C,ZS,AREA,DAGE
 315 IF(ZDIR.LT.0.) GO TO 350
 ZDIR=-1.

 NDCRVS=NDCRVS+1
 KGMH=2
 IF(Z.GT.70E3) KGMH=3
 CALL RCSPCL('RAY HIGH',SIGMA,XK,P3,XKF,XKT,XKS,AREA)
 IF(NDCRVS.GT.NRCURV(3-IUPDWN,KGMH-1)) RETURN
 GO TO 1
 350 IF(Z.LE.ZGRND) GO TO 450
 NUCRVS=NUCRVS+1
 CALL RCSPCL('RAY LOW ',SIGMA,XK,P3,XKF,XKT,XKS,AREA)
 IF(PRTRAY)WRITE(6,355)
 355 FORMAT(' RAY RECURVING UPWARD; WILL NEVER TOUCH GROUND.')
 IF(Z-ZGRND.GE.1.) RETURN
 GO TO (370,380,380),KGMH
 370 IF(LOFT) GO TO 480
 RETURN
 380 IF(NDCRVS.GE.NRCURV(3-IUPDWN,KGMH-1)) RETURN
 GO TO 480
 400 ZBOT=GMZA(KLAYER)
 ZTOP=GMZA(KLAYER+1)
 CALL RATES(&410,&420)
 FCTJMP=(P3S-HP3S)/ZS
 P3F=HP3F+ZF*FCTJMP
 P3T=HP3T+ZT*FCTJMP
 IF(.NOT.(LYRPRT(LPRNT).AND.PRTRAY)) GO TO 1
 TPRINT=TIMCVR(SIGMA,2)
 ELEV=PHELEV(0.)
 WRITE(6,60) TPRINT,X,Y,Z,P3,ELEV,C,ZS,AREA,DAGE
 60 FORMAT(1X,F10.1,3F10.0,G10.3,F6.1,2F10.1,2G10.4)
 GO TO 1
 410 IF(ZDIR.LT.0.) GO TO 350
 KLAYER=KLAYER-1
 ZBOT=GMZA(KLAYER)
 ZTOP=GMZA(KLAYER+1)
 GO TO 305
 420 WRITE(6,421)
 421 FORMAT(' IMPROPER RETURN FROM RATES IN RAYTRK')
 RETURN
 450 TPRINT=TIMCVR(SIGMA,2)
 ELEV=PHELEV(0.)
 IF(PRTRAY)WRITE(6,60) TPRINT,X,Y,Z,P3,ELEV,C,ZS,AREA,DAGE
 NUCRVS=NUCRVS+1
 CALL RCSPCL(' GROUND ',SIGMA,XK,P3,XKF,XKT,XKS,AREA)
 CALL RECORD(&480)
 RETURN
 480 ZDIR=1.
 KLAYER=1
 IF(ZS.EQ.0.) GO TO 495
 FCTJMP=2.*HP3S/ZS
 P3F=-HP3F+FCTJMP*HZF
 P3T=-HP3T+FCTJMP*HZT
 ZF=-HZF
 ZT=-HZT
 AREA=-HAREA
 ATTEN=ATTEN*REFLFC
 CALL RATES(&495,&420)
 IF(PRTRAY)WRITE(6,490)
 490 FORMAT(' ************** REFLECTING FROM GROUND ***********')
 GO TO 1
 495 IF(PRTRAY)WRITE (6,496)
 496 FORMAT(' ********RAY TANGENT AT GROUND LEVEL*********')
 GO TO 1
 500 IF(PRTRAY)WRITE(6,505)
 505 FORMAT(' STOPPING AT TOP OF ATMOSPHERE.')
 RETURN
 END
C./ ADD NAME=RATES
 SUBROUTINE RATES(*,*)
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK(2),PKF(2),PKT(2)
 EQUIVALENCE (PK(1),P10),(PKF(1),P1F0),(PKT(1),P1T0)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 REAL XKS(3),XKFS(2),XKTS(2),XKFTZ(3),XKSS(3),XKSSS(3)
 REAL*8 XK(3),XKF(3),XKT(3)
 EQUIVALENCE (XK(1),X),(XKF(1),XF),(XKT(1),XT),(XKS(1),XS)
 EQUIVALENCE (XKFS(1),XFS),(XKTS(1),XTS),(XKFTZ(1),XFTZ)
 EQUIVALENCE (XKSS(1),XSS),(XKSSS(1),XSSS)
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 REAL UK*8(2),DUKDZ(2),D2UKDZ(2)
 REAL*8 DDELTA,RTPKK
 EQUIVALENCE (UK(1),U),(DUKDZ(1),DUDZ),(D2UKDZ(1),D2UDZ2)
 CALL AIR(Z)
 DDELTA=DBLE(OMEGA)-U*DBLE(P10)-V*DBLE(P20)
 DELTA=DDELTA
 RTPKK=DDELTA/C
 PKK=RTPKK**2
 IF(RTPKK.LT.RTPAA0) RETURN 2
 CSQOD=C*C/DDELTA
 P3=DSQRT((RTPKK-RTPAA0)*(RTPKK+RTPAA0))
 P3=SIGN(P3,ZDIR)
 ZS=P3*CSQOD
 DO 20 K=1,2
 XKS(K)=CSQOD*PK(K)+UK(K)
 20 CONTINUE
 DELTAF=OMEGAF-U*P1F0-V*P2F0
 DELTAT=OMEGAT-U*P1T0-V*P2T0
 DELTAZ=-(P10*DUDZ+P20*DVDZ)
 DLTAZZ=-(P10*D2UDZ2+P20*D2VDZ2)

 DLNDLZ=DELTAZ/DELTA
 D2LNDL=DLTAZZ/DELTA-DLNDLZ**2
 DLNCDZ=DCDZ/C
 D2LCDZ=D2CDZ2/C-DLNCDZ**2
 CSQODZ=CSQOD*(2.*DLNCDZ-DLNDLZ)
 CSQDZZ=CSQODZ*(2.*DLNCDZ-DLNDLZ)+CSQOD*(2.*D2LCDZ-D2LNDL)
 P3S=DELTA*(DLNDLZ-DLNCDZ)
 P3SZ=-DELTA*D2LCDZ-DELTAZ*DLNCDZ+DLTAZZ
 ZSS=CSQOD*P3S+CSQODZ*P3*ZS
 P3SS=P3SZ*ZS
 ZSSS=CSQOD*P3SS+2.*CSQODZ*P3S*ZS+
 A P3*(CSQDZZ*ZS*ZS+CSQODZ*ZSS)
 P3TA=-(P1T0*DUDZ+P2T0*DVDZ)-DELTAT*DLNCDZ
 P3FA=-(P1F0*DUDZ+P2F0*DVDZ)-DELTAF*DLNCDZ
 P3FTZ=P3SZ
 ZFTP3=CSQOD
 ZFTZ=P3*CSQODZ
 ZFA=-DELTAF*P3/PKK
 ZTA=-DELTAT*P3/PKK
 DO 40 K=1,2
 XKFTZ(K)=DUKDZ(K)+CSQODZ*PK(K)
 XKFS(K)=ZFTP3*PKF(K)-PK(K)*DELTAF/PKK
 XKTS(K)=ZFTP3*PKT(K)-PK(K)*DELTAT/PKK
 XKSS(K)=ZS*(CSQODZ*PK(K)+DUKDZ(K))
 XKSSS(K)=ZSS*(CSQODZ*PK(K)+DUKDZ(K))+
 A ZS*ZS*(CSQDZZ*PK(K)+D2UKDZ(K))
 40 CONTINUE
 DAGDS=PCONST*.5*(1.+GAM)*((SNGL(RTPKK)/DELTA0)**1.5)/SQRT(RHO)
 IF(ZS.EQ.0.) RETURN 1
 RETURN
 END
C./ ADD NAME=ADVANS
 SUBROUTINE ADVANS
 COMMON /RYCTRL/NORAYS,STND,UL,UR,LL,LR,PRTRAY,TIMBEG,DELTIM,NTIMS,
 APHIBEG,DELPHI,NPHIS
 LOGICAL*1 NORAYS,STND,UL,UR,LL,LR,PRTRAY
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK0(2),PKF0(2),PKT0(2)
 EQUIVALENCE (PK0(1),P10),(PKF0(1),P1F0),(PKT0(1),P1T0)
 COMMON /ACSPOT/TIME,XR0,YR0,ZR0,XDOT,YDOT,ZDOT,AIRSPD,ASPDOT,
 AC0,U0,V0,CDOT,XMACH,XMADOT,XMU,XMUDOT,COSMU,SINMU,EK(3,3),
 B EKDOT(3,3),GLOAD,HEADIN,CLIMB,BANK
 REAL XKR0(3),XKDOT(3)
 EQUIVALENCE(XKR0(1),XR0),(XKDOT(1),XDOT)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 REAL XKS(3),XKFS(2),XKTS(2),XKFTZ(3),XKSS(3),XKSSS(3)
 REAL*8 XK(3),XKF(3),XKT(3)
 EQUIVALENCE (XK(1),X),(XKF(1),XF),(XKT(1),XT),(XKS(1),XS)
 EQUIVALENCE (XKFS(1),XFS),(XKTS(1),XTS),(XKFTZ(1),XFTZ)
 EQUIVALENCE (XKSS(1),XSS),(XKSSS(1),XSSS)
 COMMON /RAYHLD/HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT,
 AHXS,HYS,HZS,HXSS,HYSS,HZSS,HXSSS,HYSSS,HZSSS,HP3,HP3F,HP3T,HP3S,
 BHXFS,HYFS,HXTS,HYTS,HZFTP3,HXFTZ,HYFTZ,HZFTZ,HZFA,HZTA,HP3FTZ,
 CHP3FA,HP3TA,HAREA,HDAGDS
 REAL*8 HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT
 REAL HXKS(3),HXKFS(2),HXKTS(2),HXKFTZ(3),HXKSS(3),HXKSSS(3)
 REAL*8 HXK(3),HXKF(3),HXKT(3)
 EQUIVALENCE (HXK(1),HX),(HXKF(1),HXF),(HXKT(1),HXT),(HXKS(1),HXS)
 EQUIVALENCE (HXKFS(1),HXFS),(HXKTS(1),HXTS),(HXKFTZ(1),HXFTZ)
 EQUIVALENCE (HXKSS(1),HXSS),(HXKSSS(1),HXSSS)
 REAL*8 TPRINT,TIMCVR
 REAL*8 RF(3),RT(3),RK(3),SIG
 LOGICAL TONE
 REAL RS(3)
 LOGICAL OPSIGN
 OPSIGN(A,B)=((A.LT.0.).AND.(B.GE.0.)).OR.((A.GT.0.).AND.(B.LT.0.))
 AA=Z-HZ
 BB=.5*(ZS+HZS)
 CC=(ZSS-HZSS)/10.
 DD=(ZSSS+HZSSS)/120.
 IF(AA.EQ.0.) RETURN
 DELSIG=AA/BB
 DO 10 K=1,5
 ENUM=((-DD*DELSIG+CC)*DELSIG-BB)*DELSIG+AA
 DEN=(-3.*DD*DELSIG+2.*CC)*DELSIG-BB
 IF(DEN*AA.GE.0.) GO TO 12
 DELSIG=DELSIG-ENUM/DEN
 10 CONTINUE
 GO TO 15
 12 WRITE(6,14)
 14 FORMAT(' TDLSIG TOO LARGE.')
 15 SIGMA=HSIGMA+DELSIG
 HDLSIG=.5*DELSIG
 DLSIG6=DELSIG/6.
 DO 20 K=1,2
 XK(K)=HXK(K)+(((XKSSS(K)+HXKSSS(K))*DELSIG/12.-(XKSS(K)-HXKSS(K)))
 A*DELSIG*.2+(XKS(K)+HXKS(K)))*HDLSIG
 20 CONTINUE
 EM11=1.-DLSIG6*(2.*ZFTZ+HZFTZ)
 EM12=-DLSIG6*(2.*ZFTP3+HZFTP3)
 EM21=-DLSIG6*(2.*P3FTZ+HP3FTZ)
 EM22=1.
 DET=EM11*EM22-EM12*EM21
 HEM11=1.+DLSIG6*(ZFTZ+2.*HZFTZ)
 HEM12=DLSIG6*(ZFTP3+2.*HZFTP3)
 HEM21=DLSIG6*(P3FTZ+2.*HP3FTZ)
 HEM22=1.
 AZ=HEM11*HZF+HEM12*HP3F+HDLSIG*(ZFA+HZFA)

 BZ=HEM21*HZF+HEM22*HP3F+HDLSIG*(P3FA+HP3FA)
 ZF=(EM22*AZ-EM12*BZ)/DET
 P3F=(-EM21*AZ+EM11*BZ)/DET
 AZ=HEM11*HZT+HEM12*HP3T+HDLSIG*(ZTA+HZTA)
 BZ=HEM21*HZT+HEM22*HP3T+HDLSIG*(P3TA+HP3TA)
 ZT=(EM22*AZ-EM12*BZ)/DET
 P3T=(-EM21*AZ+EM11*BZ)/DET
 DO 40 K=1,2
 XKF(K)=HXKF(K)+HDLSIG*(XKFS(K)+HXKFS(K))+DLSIG6*(ZF*(2.*XKFTZ(K)+
 A HXKFTZ(K))+HZF*(XKFTZ(K)+2.*HXKFTZ(K)))
 XKT(K)=HXKT(K)+HDLSIG*(XKTS(K)+HXKTS(K))+DLSIG6*(ZT*(2.*XKFTZ(K)+
 A HXKFTZ(K))+HZT*(XKFTZ(K)+2.*HXKFTZ(K)))
 40 CONTINUE
 AREA=ARTUBE(P3,XKF,XKT)
C PFACT=PCONST*C*SQRT(RHO*RTPKK/(DELTA0*(ABS(AREA)+1.E-12)))
 ARFCT=SQRT(ABS(AREA)+1.E-12)
 HARFCT=SQRT(ABS(HAREA)+1.E-12)
 IF(OPSIGN(HAREA,AREA)) GO TO 70
 DAGE=HDAGE+ATTEN*DELSIG*(DAGDS*(2.*HARFCT+ARFCT)+HDAGDS*
 A (HARFCT+2.*ARFCT))/(1.5*(ARFCT+HARFCT)**2)
 RETURN
 70 AR1=HAREA
 AR2=AREA
 TONE=AR2.GT.AR1
 TAU1=0.
 TAU2=1.
 100 TAU=.5*(TAU1+TAU2)
 TAUPR=1.-TAU
 DO 110 K=1,3
 RF(K)=HXKF(K)*TAUPR+XKF(K)*TAU
 RT(K)=HXKT(K)*TAUPR+XKT(K)*TAU
 110 CONTINUE
 PZ=TAUPR*HP3+TAU*P3
 IF(TAU2-TAU1.LT.1.E-6) GO TO 160
 ARM=ARTUBE(PZ,RF,RT)
 IF(ARM) 120,160,140
 120 IF(TONE) GO TO 150
 130 TAU2=TAU
 GO TO 100
 140 IF(TONE) GO TO 130
 150 TAU1=TAU
 GO TO 100
 160 SIG=TAUPR*HSIGMA+TAU*SIGMA
 DAGE=HDAGE
 IF(HAREA.NE.0.) DAGE=HDAGE+ATTEN*DLSIG6*8.*(HDAGDS*(1.5-TAU)+
 A DAGDS*TAU)*TAU/HARFCT
 DO 170 K=1,3
 RK(K)=TAU*XK(K)+TAUPR*HXK(K)
 RS(K)=TAU*XKS(K)+TAUPR*HXKS(K)
 170 CONTINUE
 IF(.NOT.PRTRAY) GO TO 200
 WRITE(6,180)
 180 FORMAT(' CAUSTIC POINT CROSSED.')
 TPRINT=TIMCVR(SIGMA,2)
 ELEV=PHELEV(0.)
 WRITE(6,190) TPRINT,X,Y,Z,P3,ELEV,ZS,DAGE
 190 FORMAT(1X,F10.1,3F10.0,G10.3,F6.1,10X,F10.1,2X,'0.',6X,G10.4)
 200 CALL RCSPCL('CAUSTIC ',SIG,RK,PZ,RF,RT,RS,0.)
 AGES(NAGES)=DAGE
 NAGES=NAGES+1
 DAGE=0.D0
 IF(AREA.NE.0.) DAGE=ATTEN*DLSIG6*8.*(DAGDS*(1.5-TAUPR)+
 A HDAGDS*TAUPR)*TAUPR/ARFCT
 RETURN
 END
C./ ADD NAME=RCRVIT
 SUBROUTINE RCRVIT
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 COMMON /RAYHLD/HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT,
 AHXS,HYS,HZS,HXSS,HYSS,HZSS,HXSSS,HYSSS,HZSSS,HP3,HP3F,HP3T,HP3S,
 BHXFS,HYFS,HXTS,HYTS,HZFTP3,HXFTZ,HYFTZ,HZFTZ,HZFA,HZTA,HP3FTZ,
 CHP3FA,HP3TA,HAREA,HDAGDS
 REAL*8 HSIGMA,HX,HY,HZ,HDAGE,HXF,HYF,HZF,HXT,HYT,HZT
 REAL*8 ZA,ZB,ZMID
 REAL*8 DDELTA,RTPKK
 ZA=HZ
 ZB=Z
 5 ZMID=.5D0*(ZB+ZA)
 IF(DMIN1(DABS(ZMID-ZA),DABS(ZB-ZMID)).LT.1.D-4) GO TO 100
 CALL AIR(ZMID)
 DDELTA=DBLE(OMEGA)-U*DBLE(P10)-V*DBLE(P20)
 RTPKK=DDELTA/C
 IF(RTPKK-RTPAA0) 10,90,20
 10 ZB=ZMID
 GO TO 5
 20 ZA=ZMID
 GO TO 5
 90 Z=ZMID
 RETURN
 100 Z=ZA
 RETURN
 END
C./ ADD NAME=RECORD
 SUBROUTINE RECORD(*)
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0

 COMMON /ACIDNT/ IDENT,ACWT
 REAL*8 IDENT
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
 COMMON /GROUND/ ZGRND,CGRND,UGRND,VGRND,REFLFC
 COMMON /ACSPOT/TIME,XR0,YR0,ZR0,XDOT,YDOT,ZDOT,AIRSPD,ASPDOT,
 AC0,U0,V0,CDOT,XMACH,XMADOT,XMU,XMUDOT,COSMU,SINMU,EK(3,3),
 B EKDOT(3,3),GLOAD,HEADIN,CLIMB,BANK
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK(2),PKF(2),PKT(2)
 EQUIVALENCE (PK(1),P10),(PKF(1),P1F0),(PKT(1),P1T0)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 REAL XKS(3),XKFS(2),XKTS(2),XKFTZ(3),XKSS(3),XKSSS(3)
 REAL*8 XK(3),XKF(3),XKT(3)
 EQUIVALENCE (XK(1),X),(XKF(1),XF),(XKT(1),XT),(XKS(1),XS)
 EQUIVALENCE (XKFS(1),XFS),(XKTS(1),XTS),(XKFTZ(1),XFTZ)
 EQUIVALENCE (XKSS(1),XSS),(XKSSS(1),XSSS)
 REAL RX(3),RXF(3),RXT(3)
 DATA DGPRAD/57.295780/
 NCLAS=3
 IF(KGMH.EQ.1) GO TO 10
 NCLAS=2*(NDCRVS+3*(3-KGMH+2*(2-IUPDWN)))+3
 IF(.NOT.TYPRAY(NDCRVS,3-IUPDWN,KGMH-1)) GO TO 20
 GO TO 15
 10 IF(.NOT.DIRECT) GO TO 20
 15 RTPKK=SQRT(PKK)
 PFACT=PCONST*C*SQRT(RHO*RTPKK/(DELTA0*(ABS(AREA)+1.E-12)))
 PFACT=PFACT*ATTEN*(1.+REFLFC)
 VLIFT=ACWT*GLOAD*G0*COSMU*COS((PHI0-BANK)/DGPRAD)/
 A (RHO0*SINMU*AIRSPD**2)
 RECPHI=AMOD(AMOD(PHI0,360.)+450.,360.)-90.
 RSIGM=SNGL(SIGMA)
 DO 17 K=1,3
 RX(K)=XK(K)
 RXF(K)=XKF(K)
 RXT(K)=XKT(K)
 17 CONTINUE
 AGES(NAGES)=DAGE
 WRITE(9) CNAMES(NCLAS),KGMH,NDCRVS,IUPDWN,XMACH,VLIFT,T0,RECPHI,
 ARSIGM,RX,OMEGA,PK,P3,XKS,RXT,RXF,PFACT,NAGES,(AGES(K),K=1,NAGES)
 20 IF(KGMH.EQ.1) GO TO 30
 IF(NDCRVS.GE.NRCURV(3-IUPDWN,KGMH-1)) RETURN
 RETURN 1
 30 IF(LOFT) RETURN 1
 RETURN
 END
C./ ADD NAME=ARTUBE
 FUNCTION ARTUBE(PZ,RF,RT)
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK(2),PKF(2),PKT(2)
 EQUIVALENCE (PK(1),P10),(PKF(1),P1F0),(PKT(1),P1T0)
 INTEGER INDET(3)/2,3,1/
 REAL*8 RF(3),RT(3)
 ARTUBE=PZ*(RF(1)*RT(2)-RF(2)*RT(1))
 PKK=PZ**2
 DO 10 K=1,2
 ARTUBE=ARTUBE+PK(K)*(RF(INDET(K))*RT(INDET(K+1))-RF(INDET(K+1))*
 A RT(INDET(K)))
 PKK=PKK+PK(K)**2
 10 CONTINUE
 ARTUBE=ARTUBE/SQRT(PKK)
 RETURN
 END
C./ ADD NAME=RCSPCL
 SUBROUTINE RCSPCL(TYPE,SIG,RK,PZ,RF,RT,RS,AREA)
 LOGICAL*1 TYPE(8)
 REAL*8 RK(3),RF(3),RT(3),SIG
 REAL RS(3),AREA,RF4(3),RT4(3),RK4(3)
 COMMON /CLASES/CNAMES(30),NRCURV(2,2),TYPRAY(3,2,2),DIRECT,LOFT,
 A UP,DOWN
 REAL*8 CNAMES
 LOGICAL *1 TYPRAY,DIRECT,LOFT,UP,DOWN
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 REAL PK(2),PKF(2),PKT(2)
 EQUIVALENCE (PK(1),P10),(PKF(1),P1F0),(PKT(1),P1T0)
 NCLAS=3
 IF(KGMH.EQ.1) GO TO 10
 NCLAS=2*(NDCRVS+3*(3-KGMH+2*(2-IUPDWN)))+3
 10 RECPHI=AMOD(AMOD(PHI0,360.)+450.,360.)-90.
 RSIGM=SNGL(SIG)
 DO 20 K=1,3
 RK4(K)=RK(K)
 RF4(K)=RF(K)
 RT4(K)=RT(K)
 20 CONTINUE
 WRITE(11)TYPE,CNAMES(NCLAS),NDCRVS,NUCRVS,T0,RECPHI,RSIGM,RK4,RF4,
 ART4,AREA,PK,PZ
 RETURN

 END
C./ ADD NAME=RDSPCL
C ***
C *** SIGNATURE CALCULATIONS - RDSPCL,SIGNUR,FREAD,AGING,HILBRT ***
C *** SIGPRT,CPVAL,SORTEM ***
C *** (DREAD,FFA2F,FFA2I) ***
C ***
 SUBROUTINE RDSPCL
 REAL*8 PTTYPE,RYCLAS,SIGPRN,TPRN,TIMCVR
 REAL RK(3),XF(3),XT(3),PK(3)
 INTEGER*2 NHIGH,NLOW
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 REWIND 11
 WRITE(6,5) TITLE
 5 FORMAT('1',30A4)
 WRITE(6,6) TIMLBL,TIMLBL
 6 FORMAT('0 POINT',T11,'#HIGH #LOW',T22,'RAY',T34,'TIME',T44,'PHI',
 AT54,'TIME',T66,'X',T76,'Y',T86,'Z',T93,'RAY NORMAL',T109,'AREA'/
 BT3,'TYPE',T21,'CLASS',T32,'(INITIAL)',T42,'(INITIAL)',T93,'AZIMUTH
 C ELEV'/T33,A8,T53,A8,T65,'MET',T75,'MET',T85,'MET',T93,'DEG',T100,
 D'DEG',T106,'MET**2/SEC')
 10 READ(11,END=100)PTTYPE,RYCLAS,NHIGH,NLOW,TIM0,PHI0,SIGMA,RK,XF,XT,
 AAREA,PK
 TPRN=TIMCVR(DBLE(TIM0),2)
 SIGPRN=TIMCVR(DBLE(SIGMA),2)
 CALL EAMENU(ELEV,AZIM,PMAG,PK(1),PK(2),PK(3))
 WRITE(6,20)PTTYPE,NHIGH,NLOW,RYCLAS,TPRN,PHI0,SIGPRN,RK,AZIM,ELEV,
 A AREA
 20 FORMAT(1X,A8,2I5,T22,A8,T31,F10.1,F8.2,T50,F10.1,2F10.0,F10.1,
 AF7.0,F7.1,G12.4)
 GO TO 10
 100 RETURN
 END
C./ ADD NAME=SIGNUR
 SUBROUTINE SIGNUR
 COMMON /FFTAB/ ACIDNT,KRCAC,NSPDS,SPEEDS(11),LOCSPD(10),KTABL,
 A NTAU,TAU(200),FAC(200),FLC(200)
 REAL*8 ACIDNT
 COMMON /BASEAG/ NTERMS,XILEAD(2),XI(500),XITAIL(502),
 A VLEAD(2),V(500),VTAIL(502)
 DIMENSION XII(1004),VI(1004)
 EQUIVALENCE (XII(1),XILEAD(1)),(VI(1),VLEAD(1))
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL,TIMCVR
 LOGICAL CVRTIM
 REAL*8 SIGD,TD0
 COMMON /SIGPAR/ RAYNAM,KGMH,NRCURV,IUPDWN,IDENT,XMACH,VLIFT,T0,
 APHI0,SIGMA,XK(3),OMEGA,PK(3),XKS(3),XKT(3),XKF(3),PFACT,NAGES,
 B AGES(20)
 REAL*8 IDENT,RAYNAM
 INTEGER*2 KGMH,NRCURV,IUPDWN
 IF(KTPSIG.LE.0) RETURN
 REWIND 9
 READ(9) IDENT
 WRITE(6,15) TITLE
 IF(KTPSIG.GE.2)CALL FREAD
 IF(KTPSIG.GT.1) GO TO 10
 WRITE(6,16) IDENT
 WRITE(6,20) TIMLBL,TIMLBL
 10 CONTINUE
 READ(9,END=500)RAYNAM,KGMH,NRCURV,IUPDWN,XMACH,VLIFT,T0,PHI0,SIGMA
 A,XK,OMEGA,PK,XKS,XKT,XKF,PFACT,NAGES,(AGES(K),K=1,NAGES)
 CALL EAMENU(ELEV,AZIM,PMAG,PK(1),PK(2),PK(3))
 IF(KTPSIG-2) 25,17,11
 11 WRITE(6,15) TITLE
 15 FORMAT('1',30A4)
 WRITE(6,16) IDENT
 16 FORMAT('0A/C IDENT=',A8)
 17 WRITE(6,20) TIMLBL,TIMLBL
 20 FORMAT(' RAY TYPE MACH#',T20,'TINIT',T28,'PHI0',T37,'TIME',T50,'X'
 A,T60,'Y',T67,'Z',T72,'RAY NORMAL',T84,'TFACT',T91,'PFACT',T104,
 B'VLIFT'/T20,A8,T28,'DEG.',T36,A8,T49,'MET',T59,'MET',T66,'MET',
 CT71,'AZIMUTH ELEV',T83,'MS/MET',T90,'PA/MET**.5',T104,'MET**2')
 25 TFACT=1000./OMEGA
 TD0=TIMCVR(DBLE(T0),2)
 SIGD=TIMCVR(DBLE(SIGMA),2)
 WRITE(6,100)RAYNAM,XMACH,TD0,PHI0,SIGD,XK,AZIM,ELEV,TFACT,
 A PFACT,VLIFT,(AGES(K),K=1,NAGES)
 100 FORMAT('0',A8,1X,F5.3,F10.1,F7.2,F10.1,2F10.0,F6.1,F7.0,F7.1,F6.3,
 A 2G11.4,(/T19,'AGES(M**.5)=',9F9.2))
 IF(KTPSIG.EQ.1) GO TO 10
 CALL NEWTAB
 DO 200 K=1,NTAU
 XI(K)=TAU(K)
 V(K)=FAC(K)+VLIFT*FLC(K)
 200 CONTINUE
 NTERMS=NTAU
 CALL AGING(AGES(1))
 IF(NAGES.LE.1) GO TO 215
 DO 210 K=2,NAGES
 CALL HILBRT
 CALL AGING(AGES(K))
 210 CONTINUE
 215 CALL SIGPRT
 GO TO 10
 500 RETURN
 END
C./ ADD NAME=FREAD
 SUBROUTINE FREAD
 COMMON /SIGPAR/ RAYNAM,KGMH,NRCURV,IUPDWN,IDENT,XMACH,VLIFT,T0,
 APHI0,SIGMA,XK(3),OMEGA,PK(3),XKS(3),XKT(3),XKF(3),PFACT,NAGES,
 B AGES(20)
 REAL*8 IDENT,RAYNAM

 INTEGER*2 KGMH,NRCURV,IUPDWN
 COMMON /FFTAB/ ACIDNT,KRCAC,NSPDS,SPEEDS(11),LOCSPD(10),KTABL,
 A NTAU,TAU(200),FAC(200),FLC(200)
 REAL*8 ACIDNT
 REAL*8 BUFFER(10)
 COMMON /FERMSG/MESG(26)
 CALL LJUST(8,1,IDENT,ACIDNT)
 KRCAC=1
 10 CALL DREAD(90,KRCAC,BUFFER,&900)
 IF(ACIDNT.EQ.BUFFER(1)) GO TO 20
 CALL FFA2N(BUFFER,18,5,1,DUMMY,0.,KERR)
 KINCR=DUMMY+.5
 IF(KINCR.EQ.0) GO TO 950
 KRCAC=KRQaA+KINCR
 GO TO 10
 20 CALL FFA2N(BUFFER,26,2,1,DUMMY,1.,KERR)
 NSPDS=DUMMY+.5
 NCARDS=(NSPDS+3)/4
 DO 40 I=1,NCARDS
 K1=1
 K2=MIN0(4,NSPDS-4*(I-1))
 DO 30 K=K1,K2
 KK=K+4*(I-1)
 CALL FFA2N(BUFFER,18+10*K,5,1,SPEEDS(KK),0.,KERR)
 CALL FFA2N(BUFFER,23+10*K,5,1,DUMMY,0.,KERR)
 LOCSPD(KK)=DUMMY+.5
 LOCSPD(KK)=LOCSPD(KK)+KRCAC
 30 CONTINUE
 CALL DREAD(90,KRCAC+I,BUFFER,&900)
 40 CONTINUE
 WRITE(6,50) IDENT,(SPEEDS(K),K=1,NSPDS)
 50 FORMAT('0F-FUNCTION TABLES FOR ',A8,' AIRCRAFT.'/' TABLES FOR MAC
 AH NUMBERS',20F5.2)
 SPEEDS(NSPDS+1)=SPEEDS(NSPDS)
 DO 60 M=1,NSPDS
 SPEEDS(NSPDS-M+2)=.5*(SPEEDS(NSPDS-M+2)+SPEEDS(NSPDS-M+1))
 60 CONTINUE
 SPEEDS(1)=1.
 LTABL=1
 GO TO 150
 ENTRY NEWTAB
 IF(NSPDS.EQ.1) RETURN
 DO 100 K=1,NSPDS
 IF(AMIN1(XMACH-SPEEDS(K),SPEEDS(K+1)-XMACH).GE.0.) GO TO 120
 100 CONTINUE
 IF(XMACH.GT.SPEEDS(NSPDS+1)) WRITE(6,110) XMACH,SPEEDS(NSPDS+1)
 110 FORMAT(' MACH NUMBER ',F5.2,' IS GREATER THAN MAXIMUM IN TABLES '
 A,F5.2,'. SUGGEST EXTENDING TABLES.')
 K=NSPDS
 120 LTABL=K
 IF(LTABL.EQ.KTABL) RETURN
 150 KTABL=LTABL
 MREC=LOCSPD(KTABL)
 CALL DREAD(90,MREC,BUFFER,&900)
 CALL FFA2N(BUFFER,16,6,1,XLAC,0.,KERR)
 CALL FFA2N(BUFFER,22,7,1,STEP,0.,KERR)
 CALL FFA2N(BUFFER,13,3,1,DUMMY,0.,KERR)
 NTAU=DUMMY+.5
 XLR=SQRT(XLAC)
 CONST=1./(XLR*XLAC)
 DO 200 K=1,NTAU
 CALL FFA2N(BUFFER,48,3,1,EXP10,0.,KERR)
 CALL FFA2N(BUFFER,35,12,1,FAC(K),0.,KERR)
 FAC(K)=FAC(K)*XLR*(10.**EXP10)
 CALL FFA2N(BUFFER,67,3,1,EXP10,0.,KERR)
 CALL FFA2N(BUFFER,54,12,1,FLC(K),0.,KERR)
 FLC(K)=FLC(K)*CONST*(10.**EXP10)
 TAU(K)=(K-1)*STEP*XLAC
 CALL DREAD(90,MREC+K,BUFFER,&900)
 200 CONTINUE
 RETURN
 900 WRITE(6,910) MESG
 910 FORMAT(' DA/IO ERROR ON UNIT 90.'/1X,Z8,I6,20A4,4Z9)
 STOP 900
 950 WRITE(6,960) IDENT
 960 FORMAT(' AIRCRAFT ID ',A8,' NOT FOUND. PROGRAM TERMINATED.')
 STOP 960
 END
C./ ADD NAME=AGING
 SUBROUTINE AGING(AGE)
 COMMON /BASEAG/ NTERMS,XILEAD(2),XI(500),XITAIL(502),
 A VLEAD(2),V(500),VTAIL(502)
 DIMENSION XII(1004),VI(1004)
 EQUIVALENCE (XII(1),XILEAD(1)),(VI(1),VLEAD(1))
 REAL*8 SA,SB,SC,SD,SE1,SE2
 LOGICAL JUMP
 DO 2 K=1,2
 XII(K)=XI(1)
 XII(NTERMS+K+2)=XI(NTERMS)
 VI(K)=0.
 VI(NTERMS+K+2)=0.
 2 CONTINUE
 LTERMS=2
 K=2
 XIB=XII(2)
 VB=0.
 SB=0.D0
 L=2
 VD=0.
 SD=0.D0
 XID=XII(2)
 JUMP=.FALSE.
 5 K=K+1
 IF(K.GT.NTERMS+4) GO TO 200
 XIA=XIB

 VA=VB
 SA=SB
 VB=VI(K)
 XIB=XII(K)-AGE*VB
 SB=SA+(.5D0*(XIB-XIA))*(VB+VA)
 XII(1)=AMIN1(XII(1),XIB)
 XII(NTERMS+4)=AMAX1(XII(NTERMS+4),XIB)
 IF(JUMP) GO TO 15
 IF(XIB.LT.XIA) GO TO 10
 LTERMS=LTERMS+1
 XII(LTERMS)=XIB
 VI(LTERMS)=VB
 GO TO 5
 10 JUMP=.TRUE.
 GO TO 5
 15 IF(XIB.LE.XIA) GO TO 5
 17 XIC=XII(L-1)
 VC=VI(L-1)
 SC=SD-(.5D0*(VC+VD))*(XID-XIC)
 IF(XIC.LE.XIA) GO TO 21
 L=L-1
 VD=VC
 XID=XIC
 SD=SC
 GO TO 17
 20 L=L+1
 XIC=XID
 VC=VD
 SC=SD
 XID=XII(L)
 VD=VI(L)
 SD=SC+(.5D0*(VC+VD))*(XID-XIC)
 21 IF(XIB.LE.XIC) GO TO 5
 IF(XID.LE.XIC) GO TO 20
 IF(XIA.GT.XID) GO TO 20
 XIE=AMIN1(XIB,XID)
 VE1=(VB*(XIE-XIA)+VA*(XIB-XIE))/(XIB-XIA)
 VE2=(VD*(XIE-XIC)+VC*(XID-XIE))/(XID-XIC)
 SE1=SA+(.5D0*(VE1+VA))*(XIE-XIA)
 SE2=SC+(.5D0*(VE2+VC))*(XIE-XIC)
 C=SE1-SE2
 IF(C) 25,40,30
 25 IF(XID-XIB) 20,5,5
 30 A=(VB-VA)/(XIB-XIA)-(VD-VC)/(XID-XIC)
 B=VE1-VE2
 XIE=XIE-2.*C/(B+SQRT(B**2-2.*A*C))
 VE1=(VB*(XIE-XIA)+VA*(XIB-XIE))/(XIB-XIA)
 VE2=(VD*(XIE-XIC)+VC*(XID-XIE))/(XID-XIC)
 SE2=SC+(.5D0*(VC+VE2))*(XIE-XIC)
 40 SB=SE2+(.5D0*(VE1+VB))*(XIB-XIE)
 XII(L)=XIE
 VI(L)=VE2
 XII(L+1)=XIE
 VI(L+1)=VE1
 XII(L+2)=XIB
 VI(L+2)=VB
 L=L+2
 SD=SB
 XID=XIB
 VD=VB
 LTERMS=L
 JUMP=.FALSE.
 GO TO 5
 200 LL=1
 DO 220 L=3,LTERMS
 IF(XII(LL).EQ.XII(L)) GO TO 220
 IF(XII(LL).LT.XII(L-1)) GO TO 210
 IF(VI(LL).EQ.VI(L-1)) GO TO 220
 210 XII(LL+1)=XII(L-1)
 VI(LL+1)=VI(L-1)
 LL=LL+1
 220 CONTINUE
 XII(LL+1)=XII(LTERMS)
 VI(LL+1)=VI(LTERMS)
 NTERMS=LL-3
 RETURN
 END
C./ ADD NAME=HILBRT
 SUBROUTINE HILBRT
 COMMON /BASEAG/ NTERMS,XILEAD(2),XI(500),XITAIL(502),
 A VLEAD(2),V(500),VTAIL(502)
 DIMENSION XII(1004),VI(1004)
 EQUIVALENCE (XII(1),XILEAD(1)),(VI(1),VLEAD(1))
 COMMON /XISAVE/ NSTRMS,XIS(502),VS(502)
 WEIGHT=0.
 XIMEAN=0.
 XIVAR=0.
 XIS(1)=XII(2)
 VS(1)=0.
 NSTRMS=NTERMS+2
 DO 10 K=2,NSTRMS
 XIS(K)=XI(K-1)
 VS(K)=V(K-1)
 AWAIT1=VS(K-1)**2
 AWAIT2=VS(K-1)*VS(K)
 AWAIT3=VS(K)**2
 DELXI=XIS(K)-XIS(K-1)
 WAV=DELXI*(AWAIT1+AWAIT2+AWAIT3)/3.
 WAVX=XIS(K-1)*WAV+((AWAIT1+2.*AWAIT2+3.*AWAIT3)*DELXI**2)/12.
 WAVX2=(WAV*XIS(K-1)+2.*WAVX)*XIS(K-1)+(AWAIT1+3.*AWAIT2+6.*AWAIT3)
 A*DELXI*DELXI*DELXI/30.
 WEIGHT=WEIGHT+WAV
 XIMEAN=XIMEAN+WAVX
 XIVAR=XIVAR+WAVX2
 10 CONTINUE

 XIMEAN=XIMEAN/WEIGHT
 XIVAR=XIVAR/WEIGHT-XIMEAN**2
 XILNG=SQRT(XIVAR)
 LTRMHF=40
 LTERMS=LTRMHF*2+1
 NTERMS=0
 DO 100 L=1,LTERMS
 XINEW=XILNG*(LTERMS*(L-LTRMHF)/(L*(LTERMS+1.-L)))+XIMEAN
 CALL CPVAL(XINEW,VV,&100)
 NTERMS=NTERMS+1
 V(NTERMS)=VV
 XI(NTERMS)=XINEW
 100 CONTINUE
 XI(NTERMS+1)=2.*(XI(1)-XIMEAN)+XIMEAN
 XI(NTERMS+2)=2.*(XI(NTERMS)-XIMEAN)+XIMEAN
 V(NTERMS5i&]a9j&x V(NTERMS+2)=0.
 NTERMS=NTERMS+2
 DO 200 K=2,NSTRMS
 IF(XIS(K).GT.XIS(K-1)) GO TO 200
 IF(VS(K).EQ.VS(K-1)) GO TO 200
 DELXI=XILNG
 DO 190 M=1,10
 DELXI=DELXI*.3
 CALL CPVAL(XIS(K)-DELXI,VV,&180)
 NTERMS=NTERMS+1
 XI(NTERMS)=XIS(K)-DELXI
 V(NTERMS)=VV
 180 CALL CPVAL(XIS(K)+DELXI,VV,&190)
 NTERMS=NTERMS+1
 XI(NTERMS)=XIS(K)+DELXI
 V(NTERMS)=VV
 190 CONTINUE
 200 CONTINUE
 CALL SORTEM
 RETURN
 END
C./ ADD NAME=SIGPRT
 SUBROUTINE SIGPRT
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL
 LOGICAL CVRTIM
 COMMON /BASEAG/ NTERMS,XILEAD(2),XI(500),XITAIL(502),
 A VLEAD(2),V(500),VTAIL(502)
 DIMENSION XII(1004),VI(1004)
 EQUIVALENCE (XII(1),XILEAD(1)),(VI(1),VLEAD(1))
 COMMON /SIGPAR/ RAYNAM,KGMH,NRCURV,IUPDWN,IDENT,XMACH,VLIFT,T0,
 APHI0,SIGMA,XK(3),OMEGA,PK(3),XKS(3),XKT(3),XKF(3),PFACT,NAGES,
 B AGES(20)
 REAL*8 IDENT,RAYNAM
 INTEGER*2 KGMH,NRCURV,IUPDWN
 DATA DGPRAD/57.295780/
 IF(KTPSIG.LE.1) RETURN
 TFACT=1000./OMEGA
 PMAX=0.
 PMIN=0.
 DO 220 K=1,NTERMS
 V(K)=V(K)*PFACT
 PMAX=AMAX1(PMAX,V(K))
 PMIN=AMIN1(PMIN,V(K))
 220 CONTINUE
 PSIG=.05*(PMAX-PMIN)
 KMAX=1
 KMIN=NTERMS
 DO 225 K=1,NTERMS
 IF(ABS(V(K)).LT.PSIG) GO TO 225
 KMIN=MIN0(KMIN,K)
 KMAX=MAX0(KMAX,K+2)
 225 CONTINUE
 DIR=DGPRAD*ATAN2(PK(1),PK(2))+180.
 PN=SQRT(PK(1)**2+PK(2)**2)
 WRITE(6,230) DIR
 230 FORMAT(' ********** SHOCK WAVE ANALYSIS *************'/' LENGTHS L
 AAID OUT IN DIRECTION -',F5.0,' DEGREES.'/T8,'TIME',T16,'LENGTH',
 BT29,'P1',T39,'P2'/T9,'MS',T17,'MET.',T25,'PASCALS',T35,'PASCALS')
 NSHOCK=0
 NN=NTERMS+1
 DO 250 K=1,NN
 IF(XII(K+1).LT.XII(K+2)) GO TO 250
 IF(VI(K+1).GE.VI(K+2)) GO TO 250
 NSHOCK=NSHOCK+1
 AXI=XII(K+1)
 TPR=AXI*TFACT
 XPR=AXI/PN
 PONE=VI(K+1)
 PTWO=VI(K+2)
 WRITE(6,235) TPR,XPR,PONE,PTWO
 235 FORMAT(1X,4F10.2)
 KMIN=MIN0(KMIN,K)
 KMAX=MAX0(KMAX,K+1)
 250 CONTINUE
 WRITE(6,260) NSHOCK,PMIN,PMAX
 260 FORMAT(T5,I5,' SHOCKS FOUND. PMIN=',F8.2,' PASCALS, PMAX=',F8.2,
 A' PASCALS')
 IF(KTPSIG.LT.3) GO TO 500
 WRITE(6,300)
 300 FORMAT('0TOTAL SIGNATURE'/T8,'TIME',T16,'LENGTH',T29,'P'/T9,'MS',
 AT17,'MET.',T25,'PASCALS')
 DO 320 K=KMIN,KMAX
 TPR=XII(K+1)*TFACT
 XPR=XII(K+1)/PN
 WRITE(6,330) TPR,XPR,VI(K+1)
 320 CONTINUE
 330 FORMAT(1X,3F10.2)
 500 RETURN
 END

C./ ADD NAME=CPVAL
 SUBROUTINE CPVAL(XIARG,V,*)
 COMMON /XISAVE/ NSTRMS,XIS(502),VS(502)
 REAL*8 SUM,ALPHA,RATIO,VSA,VSB,DIF1,DIF2,DIF3,PI,DIFA,DIFB
 DATA PI/3.14159265358979D+0/
 SUM=0.D0
 DO 50 K=2,NSTRMS
 DIFA=DBLE(XIS(K))-XIARG
 DIFB=DBLE(XIS(K-1))-XIARG
 DIF2=DIFA
 DIF1=DIFB
 IF(DABS(DIF2).GE.DABS(DIF1)) GO TO 5
 DIF3=DIF2
 DIF2=DIF1
 DIF1=DIF3
 5 IF(DIF1.NE.0.) GO TO 15
 IF(DIF2.NE.0.) GO TO 7
 IF(VS(K).EQ.VS(K-1)) GO TO 50
 RETURN 1
 7 ALPHA=-DLOG(DABS(DIF2))/DIF2
 GO TO 30
 15 RATIO=(DIF2-DIF1)/DIF2
 IF(DABS(RATIO).LT..5D-4) GO TO 20
 ALPHA=DLOG(DABS(DIF1/DIF2))/(DIF1-DIF2)
 GO TO 30
 20 ALPHA=(((.25D0*RATIO+1.D0/3.D0)*RATIO+.5D0)*RATIO+
 A 1.D0)/DIF2
 30 VSA=VS(K)
 VSB=VS(K-1)
 SUM=SUM+(-VSA*DIFB+VSB*DIFA)*ALPHA
 50 CONTINUE
 V=SUM/PI
 RETURN
 END
C./ ADD NAME=SORTEM
 SUBROUTINE SORTEM
 COMMON /BASEAG/ NTERMS,XILEAD(2),XI(1000),XITAIL(2),
 A VLEAD(2),V(1000),VTAIL(2)
 LSTRT2=1
 LSIZE=1
 10 LSTRT1=LSTRT2
 LSTOP1=LSTRT1+NTERMS-1
 LSTRT2=NTERMS+2-LSTRT2
 KC=LSTRT2
 KSTOPB=LSTRT1-1
 20 KSTRTA=KSTOPB+1
 KSTOPA=MIN0(KSTRTA+LSIZE-1,LSTOP1)
 KSTRTB=KSTOPA+1
 KSTOPB=MIN0(KSTRTB+LSIZE-1,LSTOP1)
 IF(KSTRTA.GT.KSTOPA) GO TO 90
 30 IF(KSTRTB.GT.KSTOPB) GO TO 70
 IF(KSTRTA.GT.KSTOPA) GO TO 50
 IF(XI(KSTRTA)-XI(KSTRTB)) 36,33,40
 33 IF(V(KSTRTA).GT.V(KSTRTB)) GO TO 40
 36 XI(KC)=XI(KSTRTA)
 V(KC)=V(KSTRTA)
 KC=KC+1
 KSTRTA=KSTRTA+1
 GO TO 30
 40 XI(KC)=XI(KSTRTB)
 V(KC)=V(KSTRTB)
 KC=KC+1
 KSTRTB=KSTRTB+1
 GO TO 30
 50 IF(KSTRTB.GT.KSTOPB) GO TO 20
 DO 60 K=KSTRTB,KSTOPB
 XI(KC)=XI(K)
 V(KC)=V(K)
 KC=KC+1
 60 CONTINUE
 GO TO 20
 70 IF(KSTRTA.GT.KSTOPA) GO TO 20
 DO 80 K=KSTRTA,KSTOPA
 XI(KC)=XI(K)
 V(KC)=V(K)
 KC=KC+1
 80 CONTINUE
 GO TO 20
 90 LSIZE=LSIZE+LSIZE
 IF(LSTRT2.NE.1) GO TO 10
 IF(LSIZE.LT.NTERMS) GO TO 10
 RETURN
 END
C./ ADD NAME=AIR
C ***
C *** PHYSICAL UTILITY ROUTINES - AIR,PHELEV,PHAZIM,EAMENU ***
C ***
 SUBROUTINE AIR(Z)
 REAL*8 Z,H,ZFACT
 REAL*8 DH,H1,H2,T,DHW,H1W,H2W,SPD,THETA,ST,CT,DTHDH
 COMMON /PTH/ NPTH,PRESS(97),TMPMOL(97),GPHC(97),GAMMA(97)
 COMMON /WINDS/ NWINDS,GPHW(80),DIR(80),TURN(79),SPEED(80)
 COMMON /LYRDEF/NLAYER,GMZA(200),INDPTH(200),INDWND(200),
 ALYRPRT(200),KLAYER,ZTOP,ZBOT
 INTEGER*2 INDPTH,INDWND
 LOGICAL*1 LYRPRT
 COMMON /ATMCON/ REARTH,G0,RSTAR,R0M0,R0G0M0
 COMMON /ATMSPH/ GAM,C,U,V,DCDZ,DUDZ,DVDZ,D2CDZ2,D2UDZ2,D2VDZ2,RHO
 REAL*8 GAM,C,U,V
 REAL*8 RADPDG/1.74532925199433D-2/
 F1S(TAU)=(((TAU/5.+1.)*TAU/4.+1.)*TAU/3.+1.)*TAU/2.+1.
 F1A(TAU)=(EXP(TAU)-1.)/TAU
 NLPTH=INDPTH(KLAYER)
 NLWND=INDWND(KLAYER)
 ZFACT=1.D0+Z/REARTH

 H=Z/ZFACT
 DHDZ=1.D0/ZFACT**2
 D2HDZ2=-2.*DHDZ/(REARTH*ZFACT)
 DH=GPHC(NLPTH+1)-GPHC(NLPTH)
 H1=(H-GPHC(NLPTH))/DH
 H2=(GPHC(NLPTH+1)-H)/DH
 T=H1*TMPMOL(NLPTH+1)+H2*TMPMOL(NLPTH)
 DTDH=(TMPMOL(NLPTH+1)-TMPMOL(NLPTH))/DH
 GAM=H1*GAMMA(NLPTH+1)+H2*GAMMA(NLPTH)
 DGAMDH=(GAMMA(NLPTH+1)-GAMMA(NLPTH))/DH
 C=DSQRT(GAM*R0M0*T)
 DCDH=.5*C*(DTDH/T+DGAMDH/GAM)
 D2CDH2=-.25*C*(DGAMDH/GAM-DTDH/T)**2
 DCDZ=DCDH*DHDZ
 D2CDZ2=DCDH*D2HDZ2+D2CDH2*(DHDZ**2)
 TAU=DLOG(T/TMPMOL(NLPTH))
 IF(TAU.GT..1) GO TO 5
 FACTOR=TMPMOL(NLPTH)*F1S(TAU)
 GO TO 10
 5 FACTOR=TMPMOL(NLPTH)*F1A(TAU)
 10 PRS=PRESS(NLPTH)*DEXP(-H1*DH/(R0G0M0*FACTOR))
 RHO=PRS/(T*R0M0)
 DHW=GPHW(NLWND+1)-GPHW(NLWND)
 H1W=(H-GPHW(NLWND))/DHW
 H2W=(GPHW(NLWND+1)-H)/DHW
 SPD=H1W*SPEED(NLWND+1)+H2W*SPEED(NLWND)
 DSDH=(SPEED(NLWND+1)-SPEED(NLWND))/DHW
 DTHDH=TURN(NLWND)*RADPDG
 THETA=DIR(NLWND)*RADPDG+DTHDH*H1W*DHW
 CT=DCOS(THETA)
 ST=DSIN(THETA)
 U=-SPD*ST
 V=-SPD*CT
 DUDH=-SPD*CT*DTHDH-DSDH*ST
 DVDH=SPD*ST*DTHDH-DSDH*CT
 D2UDH2=DTHDH*(SPD*ST*DTHDH-2.*DSDH*CT)
 D2VDH2=DTHDH*(SPD*CT*DTHDH+2.*DSDH*ST)
 DUDZ=DUDH*DHDZ
 DVDZ=DVDH*DHDZ
 D2UDZ2=DUDH*D2HDZ2+D2UDH2*(DHDZ**2)
 D2VDZ2=DVDH*D2HDZ2+D2VDH2*(DHDZ**2)
 RETURN
 END
C./ ADD NAME=PHELEV
 FUNCTION PHELEV(DUMMY)
 COMMON /RAYVAR/ZDIR,PKK,RTPAA0,ATTEN,SIGMA,X,Y,Z,DAGE,XF,YF,ZF,
 AXT,YT,ZT,XS,YS,ZS,XSS,YSS,ZSS,XSSS,YSSS,ZSSS,P3,P3F,P3T,P3S,
 BXFS,YFS,XTS,YTS,ZFTP3,XFTZ,YFTZ,ZFTZ,ZFA,ZTA,P3FTZ,P3FA,P3TA,AREA,
 CDAGDS
 REAL*8 SIGMA,X,Y,Z,DAGE,XF,YF,ZF,XT,YT,ZT
 DATA DGPRAD/57.295780/
 PHELEV=DGPRAD*ATAN2(P3,RTPAA0)
 RETURN
 END
C./ ADD NAME=PHAZIM
 FUNCTION PHAZIM(DUMMY)
 COMMON /RAYNIT/ KGMH,NDCRVS,NUCRVS,IUPDWN,T0,PHI0,X0,Y0,Z0,
 AP10,P20,P30,OMEGA,DELTA0,P1F0,P2F0,P3F0,OMEGAF,XT0,YT0,ZT0,
 BP1T0,P2T0,P3T0,OMEGAT,XS0,YS0,ZS0,P3S0,RHO0,PCONST,NAGES,AGES(20)
 INTEGER*2 KGMH,NDCRVS,NUCRVS,IUPDWN
 DATA DGPRAD/57.295780/
 PHAZIM=DGPRAD*ATAN2(-P10,-P20)+180.
 RETURN
 END
C./ ADD NAME=EAMENU
 SUBROUTINE EAMENU(ELEV,AZIM,MAG,EAST,NORTH,UP)
 REAL MAG,NORTH,DGPRAD/57.295780/
 HSQ=EAST**2+NORTH**2
 IF(HSQ.NE.0.) GO TO 5
 AZIM=0.
 GO TO 10
 5 AZIM=DGPRAD*ATAN2(-EAST,-NORTH)+180.
 IF(AZIM.LE.0.) AZIM=360.
 10 MAG=SQRT(HSQ+UP**2)
 IF(MAG.LE.0.) GO TO 20
 HORIZ=SQRT(HSQ)
 ELEV=DGPRAD*ATAN2(UP,HORIZ)
 RETURN
 20 ELEV=0.
 RETURN
 END
C./ ADD NAME=UNITIS
C ***
C *** GENERAL UTILITY ROUTINES - UNITIS,LOOKUP,FFA2N,LJUST ***
C *** FNDLYR,GETLYR,TIMCVR ***
C ***
 SUBROUTINE UNITIS(GIVEN,TABLE,NTABS,LCUNIT,TYPE,IDEFLT)
 REAL*8 GIVEN,TABLE(NTABS),TYPE,BLANK/' '/
 CALL LOOKUP(8,NTABS,TABLE,GIVEN,LCUNIT,&5,&10)
 RETURN
 5 IF(GIVEN.EQ.BLANK) GO TO 15
 WRITE(6,7) GIVEN,TYPE,TABLE(LCUNIT)
 7 FORMAT(' AMBIGUOUS ABBREVIATION ''',A8,''' FOR ',A8,' UNIT. ''',
 AA8,''' ASSUMED.')
 RETURN
 10 WRITE(6,12) TYPE,GIVEN
 12 FORMAT(' INVALID ',A8,' UNIT SPECIFIED -''',A8,'''.')
 STOP 650
 15 LCUNIT=IDEFLT
 RETURN
 END
C./ ADD NAME=LOOKUP
 SUBROUTINE LOOKUP(NCHAR,NTERMS,KTABL,KTEST,KTERM,*,*)
C SEARCH TABLE OF CHAR STRINGS 'KTABL' FOR MATCH WITH 'KTEST
C RETURN 1 FOR AMBIGUOUS ABBREVIATION

C RETURN 2 FOR NO MATCH FOUND
C NORMAL RETURN OR RETURN 1, MATCH STRING NUMBER IN 'KTERM'
 LOGICAL*1 KTABL(NCHAR,NTERMS), KTEST(NCHAR)
 LOGICAL*1 LCHECK(4),MCHECK(4)
 INTEGER CHECK1/0/,CHECK2/0/
 EQUIVALENCE (CHECK1,LCHECK(1)),(CHECK2,MCHECK(1))
 KPT1=1
 KPT2=NTERMS
 DO 50 L=1,NCHAR
 LCHECK(4)=KTEST(L)
 IF (CHECK1.LE.192) GO TO 55
 DO 20 KPT=KPT1,KPT2
 MCHECK(4)=KTABL(L,KPT)
 IF(CHECK1-CHECK2) 150,25,20
 20 CONTINUE
 GO TO 150
 25 KPT1=KPT
 DO 30 KPT=KPT1,KPT2
 MCHECK(4)=KTABL(L,KPT)
 IF (CHECK1.LT.CHECK2) GO TO 35
 30 CONTINUE
 KPT=KPT2+1
 35 KPT2=KPT-1
 50 CONTINUE
 55 KTERM=KPT1
 IF(KPT1.EQ.KPT2) RETURN
 MCHECK(4)=KTABL(L,KPT1)
 IF(CHECK2.EQ.64) RETURN
 RETURN 1
 150 RETURN 2
 END
C./ ADD NAME=FFA2N
 SUBROUTINE FFA2N(STRING,INDEX,KWIDTH,NTERMS,ARRAY,DEFARY,KERR)
C DECODES ALPHANUMERIC TO REAL*4 VARIABLES IN OUTPUT ARRAY 'ARRAY'.
C ALPHANUMERIC INPUT IN ARRAY 'STRING', BEGINNING AT BYTE 'INDEX' IN
C FIELDS OF LENGTH 'KWIDTH', FOR 'NTERMS' FIELDS. INPUT IS OF THE FORM
C SDDDPDDD WHERE S IS '+' OR '-', DEFAULT TO '+', D IS A DIGIT 0-9,
C AND P IS AN OPTIONAL '.'. IF '.' IS ABSENT, RESULT WILL BE AN
C INTEGER. FOR MISSING FIELD (BLANK, OR ONLY DECIMAL POINT) THEN THE
C CORRESPONDING ARRAY VALUE WILL DEFAULT TO THE DEFARY VALUE.
C RESTRICTIONS: ONLY ONE SIGN S, WHICH MUST PRECEDE DIGITS AND DECIMAL
C POINT. AT MOST ONE DECIMAL POINT. INTERSPERSED BLANKS TREATED AS IF
C NOT PRESENT (RATHER THAN AS IF ZERO). ALL OTHER CHARACTERS WILL BE
C TREATED AS IF NOT THERE, EXCEPT KERR WILL BE SET EQUAL TO 1.
C IF ALL FIELDS VALID DATA OR MISSING FIELDS, THEN KERR IS SET =0.
 REAL ARRAY(NTERMS),DEFARY(NTERMS)
 INTEGER FIELD/0/
 LOGICAL*1 KFLD(4),MISSNG,LSIGN,STRING(INDEX)
 EQUIVALENCE(KFLD(1),FIELD)
 KERR=0
 DO 100 M=1,NTERMS
 FRACT=0.
 XINT=0.
 SIGVAL=1.
 MISSNG=.TRUE.
 LSIGN=.FALSE.
 KPOINT=(M-1)*KWIDTH+INDEX-1
 DO 50 L=1,KWIDTH
 KFLD(4)=STRING(KPOINT+L)
C FIELD -- 64=SPACE 78='+' 96='-' 75='.'
 IF(FIELD.EQ.64) GO TO 50
 IF(FIELD.NE.78) GO TO 10
 IF(LSIGN) GO TO 40
 LSIGN=.TRUE.
 GO TO 50
 10 IF(FIELD.NE.96) GO TO 15
 IF(LSIGN) GO TO 40
 SIGVAL=-1.
 LSIGN=.TRUE.
 GO TO 50
 15 IF(FIELD.EQ.75) GO TO 55
 IF(FIELD.GE.240.AND.FIELD.Ljt250) GO TO 45
 40 KERR=1
 GO TO 50
 45 MISSNG=.FALSE.
 LSIGN=.TRUE.
 XINT=XINT*10.+(FIELD-240)
 50 CONTINUE
 GO TO 75
 55 LPOINT=INDEX+M*KWIDTH
 NPLACE=LPOINT-KPOINT-L-1
 IF(NPLACE.LE.0) GO TO 75
 DO 65 L=1,NPLACE
 KFLD(4)=STRING(LPOINT-L)
 IF(FIELD.EQ.64) GO TO 65
 IF(FIELD.GE.240.AND.FIELD.LT.250) GO TO 60
 KERR=1
 GO TO 65
 60 FRACT=(FRACT+(FIELD-240))/10.
 MISSNG=.FALSE.
 65 CONTINUE
 75 IF(MISSNG) GO TO 80
 ARRAY(M)=SIGN(XINT+FRACT,SIGVAL)
 GO TO 100
 80 ARRAY(M)=DEFARY(M)
 IF(LSIGN) KERR=1
 100 CONTINUE
 RETURN
 END
C./ ADD NAME=FFN2A
 SUBROUTINE FFN2A(STRING,KPOS,NPLACE,NDEC,NTERMS,RNUM)
C CONVERTS NUMERIC VALUES IN REAL*4 ARRAY RNUM(NTERMS)
C TO ALPHANUMERIC CHARACTERS IN CHARACTER STRING "STRING".
C CHARACTERS BEGIN AT CHARACTER NUMBER "KPOS". FORMAT DEFINED
C AS EITHER FIXED, WITH "NPLACE" CHARACTERS FOR WIDTH, "NDEC"

C CHARACTERS AFTER DECIMAL POINT, OR FLOATING -
C BY CHOOSING "NPLACE" NEGATIVE, OF MAGNITUDE EQUAL TO THE NUMBER OF
C CHARACTERS AVAILABLE, WILL TRY TO FIT AN INTEGER, PLUS ENOUGH DECIMAL
C DIGITS TO MAKE "NDEC" SIGNIFICANT DIGITS. IF NECESSARY, WILL TRIM
C DECIMAL PLACES TO FIT IN ABS(NPLACE) SPACES. RESULT WILL BE RIGHT-
C JUSTIFIED, WITH TRAILING ZEROES AND DECIMAL POINT TRIMMED. IF
C INTEGER PORTION TOO LARGE TO FIT, RESULT IS ASTERISKS.
 INTEGER*2 CONVRT/0/,DIGITS(33)
 REAL*4 RNUM(NTERMS)
 LOGICAL*1 STRING(NTERMS),TEMPLT(2),MINUS/'-'/,BLANK/' '/,FLOAT
 LOGICAL*1 POINT/'.'/,STAR/'*'/,UP
 EQUIVALENCE (TEMPLT(1),CONVRT)
 KPLACE=IABS(NPLACE)
 KDEC=MIN0(16,MAX0(NDEC,0))
 FLOAT=NPLACE.LT.0
 DO 100 NN=1,NTERMS
 KSTART=KPOS+KPLACE*(NN-1)
 KSTOP=KSTART+KPLACE-1
 ANUM=ABS(RNUM(NN))
 BINT=AINT(ANUM)
 BFRACT=ANUM-BINT
C************FRACTION PART
 MSIG=17
 DO 10 K=1,17
 LDIG=BFRACT*10
 DIGITS(16+K)=LDIG
 BFRACT=BFRACT*10-LDIG
 IF(LDIG.GT.0) MSIG=MIN0(MSIG,K)
 10 CONTINUE
C*************INTEGER PART
 TEST=1.
 DO 20 K=1,16
 LDIG=AMOD(BINT,TEST*10.)/TEST
 BINT=BINT-LDIG*TEST
 IF(BINT.GE.0.) GO TO 15
 BINT=BINT+TEST
 LDIG=LDIG-1
 15 DIGITS(17-K)=LDIG
 TEST=TEST*10.
 IF(LDIG.GT.0) MSIG=1-K
 20 CONTINUE
 IF(BINT.GE.TEST) GO TO 90
C*****************ROUNDING
 NROUND=16+KDEC
 IF(FLOAT) NROUND=16+MAX0(0,MIN0(MSIG+KDEC-1,KPLACE-3))
 UP=DIGITS(NROUND+1).GE.5
 MAXK=0
 DO 22 K=1,NROUND
 LOOK=NROUND+1-K
 IF(UP) DIGITS(LOOK)=DIGITS(LOOK)+1
 UP=DIGITS(LOOK).GE.10
 IF(UP) DIGITS(LOOK)=DIGITS(LOOK)-10
 IF(DIGITS(LOOK).GT.0) MAXK=K
 22 CONTINUE
 IF(UP) GO TO 90
 MSIG=NROUND-MAXK-16
 INTPL=MAX0(1,-MSIG)
C***************BUILD STRING
 DO 25 K=KSTART,KSTOP
 STRING(K)=BLANK
 25 CONTINUE
 IF(FLOAT) GO TO 70
C******************FIXED FORMAT
 LPLACE=KDEC+2+INTPL
 IF(LPLACE.GT.KPLACE) GO TO 90
 STRING(KSTOP-KDEC)=POINT
 IF(RNUM(NN).LT.0.) STRING(KSTOP-LPLACE+1)=MINUS
 DO 35 K=1,INTPL
 CONVRT=240+DIGITS(17-K)
 STRING(KSTOP-KDEC-K)=TEMPLT(2)
 35 CONTINUE
 IF(KDEC.EQ.0) GO TO 100
 DO 40 K=1,KDEC
 CONVRT=240+DIGITS(16+K)
 STRING(KSTOP-KDEC+K)=TEMPLT(2)
 40 CONTINUE
 GO TO 100
C******************FLOAT FORMAT
 70 IF(INTPL+1.GT.KPLACE) GO TO 90
 IF(RNUM(NN).LT.0) STRING(KSTART)=MINUS
 DO 75 K=1,INTPL
 CONVRT=240+DIGITS(16+K-INTPL)
 STRING(KSTART+K)=TEMPLT(2)
 75 CONTINUE
 KFRCNZ=-1
 IFRCPL=MIN0(16,KPLACE-INTPL-2,MSIG+KDEC)
 IF(IFRCPL.LE.0) GO TO 82
 STRING(KSTART+INTPL+1)=POINT
 DO 80 K=1,IFRCPL
 CONVRT=240+DIGITS(16+K)
 STRING(KSTART+INTPL+K+1)=TEMPLT(2)
 IF(DIGITS(K+16).GT.0) KFRCNZ=K
 80 CONTINUE
C******************RIGHT JUSTIFY
 82 NSIG=INTPL+2+KFRCNZ
 IF(NSIG.EQ.KPLACE) GO TO 100
 DO 85 K=1,NSIG
 STRING(KSTOP-K+1)=STRING(KSTART+NSIG-K)
 85 CONTINUE
 NBLNK=KPLACE-NSIG
 DO 87 K=1,NBLNK
 STRING(KSTART+K-1)=BLANK
 87 CONTINUE
 GO TO 100
C******************NUMBER TOO LARGE FOR FORMAT

 90 DO 95 K=KSTART,KSTOP
 STRING(K)=STAR
 95 CONTINUE
 100 CONTINUE
 RETURN
 END
C./ ADD NAME=LJUST
 SUBROUTINE LJUST(NCHAR,NSTR,STRIN,STROUT)
 LOGICAL*1 STRIN(NCHAR,NSTR),STROUT(NCHAR,NSTR)
 LOGICAL*1 LCHECK(4),BLANK/' '/
 INTEGER CHECK/0/
 EQUIVALENCE (CHECK,LCHECK(1))
 DO 50 KSTR=1,NSTR
 K=1
 DO 10 L=1,NCHAR
 LCHECK(4)=STRIN(L,KSTR)
 IF(CHECK.LE.128) GO TO 10
 CHECK=MOD(CHECK,64)+192
 IF(CHECK.EQ.240) GO TO 5
 ICHK=MOD(CHECK,16)
 IF(ICHK.EQ.0.OR.ICHK.GT.9) GO TO 10
 5 STROUT(K,KSTR)=LCHECK(4)
 K=K+1
 10 CONTINUE
 IF (K.GT.NCHAR) GO TO 50
 DO 20 L=K,NCHAR
 STROUT(L,KSTR)=BLANK
 20 CONTINUE
 50 CONTINUE
 RETURN
 END
C./ ADD NAME=FNDLYR
 SUBROUTINE FNDLYR(Z,*)
 COMMON /LYRDEF/NLAYER,GMZA(200),INDPTH(200),INDWND(200),
 ALYRPRT(200),KLAYER,ZTOP,ZBOT
 INTEGER*2 INDPTH,INDWND
 LOGICAL*1 LYRPRT
 CALL GETLYR(Z,GMZA,NLAYER,KLAYER,&50)
 ZBOT=GMZA(KLAYER)
 ZTOP=GMZA(KLAYER+1)
 RETURN
 50 RETURN 1
 END
C./ ADD NAME=GETLYR
 SUBROUTINE GETLYR(X,XTABL,NITEMS,NLAYR,*)
 DIMENSION XTABL(NITEMS)
 IF(X.LT.XTABL(1)) RETURN 1
 IF(XTABL(NITEMS).LT.X) RETURN 1
 N1=1
 N2=NITEMS-1
 IF(N2.LT.N1) RETURN 1
 2 NLAYR=(N1+N2+1)/2
 IF(N2.EQ.N1) GO TO 40
 IF(XTABL(NLAYR)-X) 5,40,10
 5 N1=NLAYR
 GO TO 2
 10 N2=NLAYR-1
 GO TO 2
 40 RETURN
 END
C./ ADD NAME=TIMCVR
 FUNCTION TIMCVR(T,KDIR)
 REAL*8 T,HMS,SS,SSS,HHMMSS
 COMMON /PRINTS/ TITLE(30),KTPSIG,CVRTIM,TIMLBL
 REAL*8 TIMLBL,TIMCVR
 LOGICAL CVRTIM
 REAL*8 ROUND,X,XNEAR
 SSS(HMS)=-2400.D0*DINT(HMS/1E4)-40.D0*DINT(HMS/100.D0)+HMS
 HHMMSS(SS)=4000.D0*DINT(SS/3600.D0)+40.D0*DINT(SS/60.D0)+SS
 ROUND(X,XNEAR)=DSIGN(XNEAR*DINT(DABS(X/XNEAR)+.5D0),X)
 IF (.NOT.CVRTIM) GO TO 50
 IF (KDIR.LE.1) GO TO 30
 TIMCVR=HHMMSS(ROUND(T,.1D0))
 RETURN
 30 TIMCVR=SSS(T)
 RETURN
 50 TIMCVR=T
 RETURN
 END
C ***
C *** END OF MAIN TRAPS PROGRAMS ***
C ***

	TRAPSpaper.pdf
	TRAPSpaperA1.pdf
	TRAPSpaperB.pdf
	TRAPScode2.pdf

