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NOTATION

ADAPT Atmospheric Data Assimilation and Parameterization Tools (NARAC)
ADPIC Advection Diffusion Particle in Cell

ALOHA Areal Locations of Hazardous Atmospheres (CAMEQ®)

ANATEX Across-North-America Tracer Experiment

ARAC Atmospheric Release Advisory Capability (now NARAC)

ARL Air Resources Laboratory (NOAA)

CAPARS Computer Assisted Protective Action Recommendation System (RARC)
CAMEQ® Computer-aided management of emergency operations

CFD Computational Fluid Dynamics

COAMPS Coupled Ocean-Atmosphere Mesoscale Prediction System (US Navy)
CP “Concentration Probability,” probability of exceeding a specified concentration
DOE US Department of Energy

DP26 Dipole Pride Experiment 26 (Nevada Test Site)

DSTL Defence Scientific and Technical Laboratory (UK)

DTRA Defense Threat Reduction Agency (USA)

ECMWF European Centre for Medium-Range Weather Forecasting

EPA US Environmental Protection Agency

FDDA Four-Dimensional Data Assimilation

FOM Figure of Merit

GIS Geographical Information System

GUI Graphical User Interface

HOTMAC Higher-Order Turbulence Model for Atmospheric Circulation (YSA)
HPAC Hazard Prediction and Assessment Capability

HVAC Heating, Ventilating, and Air Cooling

HYSPLIT Hybrid Single-particle Lagrangian Integrated Trajectory

IEM Innovative Emergency Management, Inc.

LES Large-Eddy Simulation

LODI Lagrangian Operational Dispersion Integrator (NARAC)

LPM Lagrangian Particle Model

MC-SCIPUFF | Mass-Consistent (wind model) for SCIPUFF

MM5 Fifth generation PSU/NCAR Mesoscale Model

MOE Measure of Effectiveness

MRF Medium-Range Forecast (an NCEP boundary-layer scheme)

NARAC National Atmospheric Release Advisory Center (DOE)

NCAR National Center for Atmospheric Research

NCEP National Center for Environmental Prediction (NOAA)

NOAA National Oceanic and Atmospheric Administration (USA)

NORAPS Naval Operational Regional Atmospheric Prediction System

NWS National Weather Service (NOAA)

OMEGA Operational Multiscale Environmental Model with Grid Adaptivity (SAIC)
PE Probability of Exceeding (a concentration or dose)

PIC Particle in Cell :

PSU Pennsylvania State University




RAMS Regional Atmospheric Modeling System
RANS Reynolds-Averaged Navier-Stokes

RARC Regional Atmospheric Response Center

RHC Robust Highest Concentration

SAIC Science Applications International Corporation
SCIPUFF Second-order Closure Integrated Puff (HPAC)
SWIFT Stationary Wind Fit and Turbulence (HPAC)
TKE Turbulent Kinetic Energy

TRAC Terrain-Responsive Atmospheric Code (CAPARS)
UDM Urban Dispersion Model (DSTL)

VLSTRACK Vapor, Liquid, and Solid Tracking (US Navy)
YSA Yamada Science and Art Inc.
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WHERE WILL IT GO: ATMOSPHERIC DISPERSION MODELING OUT TO 30 KM
TO GUIDE RESPONDERS DURING ACCIDENTAL OR HOSTILE RELEASE OF
HAZADOUS MATERIALS

Ronald Dobosy

ABSTRACT.
This report presents a critical survey of the state of dispersion modeling for
emergency response to atmospheric release of hazardous materials. The focus is
primarily on scales from 0 km to 30 km. Major advances in sensors and
computing power over the past two decades have enabled impressive advances in
the whole system of guidance for emergency responders. Tools available include
both databases and, models. Friendly user interfaces guide the process from
initial discovery, through evacuation or shelter, to medical treatment and cleanup.
Transport and dispersion models have grown in sophistication along with the rest
of the tools. Distributions of contaminants’ concentration and dose can now be
forecast, in principle, in the most complex situations of weather, terrain, and
urban geometry. Estimates of uncertainty can be provided with these forecasts.
The store of increasingly sophisticated datasets for testing and further
development of models continues to grow. Tradeoffs between model complexity
and run speed, and between measurement detail and affordable cost continue to
loosen through increased power of computing and communication.

For all this, dispersion remains a stochastic problem with large irreducible
variance, especially within the time and resource constraints imposed by real-
world emergency response. Responders must apply the guidance with judgment
based on experience and training, preferably supported by direct, any-time access
to people expert in dispersion modeling and interpretation of its results. Though
no specific recommendations are given here, this document is intended as a
resource from which such recommendations can come.

1. INTRODUCTION

The increased risk of hostile activity in the United States has revived general interest in tools to
guide responders in emergencies involving atmospheric release of hazardous materials. A full
suite of such tools includes databases, models, and a user interface. The data describe properties
of potential contaminants, configurations of potential sources, current weather conditions, and
the like. Models give guidance on the wind and turbulence, the transport and dispersion through
the environment, and the level of harm to people and assets. User interfaces provide rapidly
grasped graphical representation of the guidance provided by the system.

This report presents a detailed survey of the state of atmospheric dispersion modeling for
emergency response on scales from 0 km to 30 km. Such modeling is useful in three modes:
pre-event planning, response to an event, and post-event assessment and recovery. Though some




methods surveyed here apply more readily to pre- and post-event activities, the viewpoint taken
for this survey is primarily that of real-time response to an actual emergency. A survey of model
validation techniques is also presented with some results from validation studies. Major
advances in dispersion modeling, supported by similar advances in modeling of the atmospheric
environment have accompanied the explosion in computing power over the last twenty years.

2. THE EMERGENCY RESPONSE MODELING ENVIRONMENT

It is important from the start to recognize these tools as guides, not as black boxes that give the
answer. The model consists of a chain of forecasts of stochastic processes, each of high
variability. It can best hope to estimate the ensemble mean, along with the variance due to
natural variation and to error. The actual outcome will be an individual realization, subject to the
high variability characteristic of the natural system being simulated. Furthermore, the
contamination will follow myriad complex pathways on scales too fine to be resolved in the
limited time available. Intuition must be built from experience comparing real and simulated
sitnations. Judgment remains necessary.

The requirements for emergency response modeling on 10 km scales are severe. The short travel
times over such limited distances in ordinary winds demand rapid deployment. Flexibility is also
vital since it is impossible to foresee when and where an emergency will strike. The model must
use whatever information is immediately available for the site. If the release is small and the
terrain simple, a model such as ALOHA (USEPA, 1998) provides the fastest response. Beyond
several kilometers, however, wind patterns and surface conditions are likely to be heterogeneous.
Terrain influence is likely to be strong. A model must account for these complexities, including
the change of relevant physical processes as the dispersion progresses to larger and larger scales.

The importance of such a modeling capability has long been recognized. Numerous private
companies have high-quality response systems available by license or subscription.
(http://www.ieminc.com/, http://www.ssesco.cony, and http://www.rarc.org/, among others)
Science Applications International Corporation (SAIC) has the Operational Multiscale
Environmental Model with Grid Adaptivity (OMEGA). Government agencies also participate.
The Department of Energy has its National Atmospheric Release Advisory Center (NARAC),
which has developed over the past 25 years a system that has responded to many of the
celebrated releases, beginning with the accident at Three-Mile Island. The Defense Threat
Reduction Agency (DTRA) maintains a similar capability for military and related US
Government applications. They use the Hazard Prediction and Assessment Capability (HPAC),
which features the SCIPUFF dispersion model. A list of some primary groups making dispersion
estimates for emergency response is given in Table 1.
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Table 1: Emergency-Response Modeling Activities
Organization Atmosphere Model | Dispersion Reference
Model
NARAC ADAPT, NORAPS, | LODI Lee et al. (1998); Leone et al. (1997)
COAMPS
DTRA SWIFT, MC- SCIPUFF Sykes et al. (1998); Sykes and Gabruk
SCIPUFF (1997)
NAVY COAMPS VLSTRACK | Bauer and Gibbs (1998)
IEM D2-Puff™ Innovative Emergency Management, Inc
(2000).
NWS ETA ALOHA USEPA (1998)
HYSPLIT Draxler and Hess (1998)
RARC NUATMOS TRAC Ciolek and Magtutu (1998).
CAPARS AlphaTRAC (2002).
Earth Tech Inc. CALMET CALPUFF Scire et al. (2000a,b)
SAIC OMEGA OMEGA Bacon et al. (2000)

These groups maintain aggressive research efforts that have evolved sophisticated simulations of
contaminant spread in the atmosphere. Generally such sophistication requires prior commitment
of major computing and sensing resources. Organizations having valuable assets at significant
risk to accident or attack will normally have relations in place with such a group as listed above.
However, an incident somewhere among the great number of “ordinary” places is also likely.
Responders in such places need ready access to whatever can be brought rapidly to their support.

3. ISSUES IN EMERGENCY RESPONSE MODELING

A DTRA workshop (Beriwal and Merkle, 2001) discussed the range of issues involved with
response to hostile or accidental atmospheric releases. They viewed the problem in multiple
parts:

Source specification: Successful specification of the source of the contaminants is difficult in an
emergency, particularly under hostile intent. Clearly the consequences will differ depending on
the type of material released. Compare accidental release of CO; to hostile release of aerosolized
pneumonic plague. Less obvious, but also serious is the effective height of the source, especially
in complex terrain, where the wind direction may vary strongly with height. There have been
celebrated cases where the forecast plume's path was directed 90° from the actual path. Even
given a perfectly specified wind field, the forecast can be spectacularly wrong through errors in
source height.

Transport and fate in atmosphere: Successful forecast of the dispersion of a cloud of
contaminants requires detailed and accurate representation of the transporting wind and the
diffusing turbulence. A simple assumption of constant wind direction and speed along the
contaminant cloud’s path is inadequate beyond the first few kilometers in most real cases. The
fate of contaminants in the atmosphere is influenced by the full range of phenomena found there:




rain, surface deposition, resuspension, secondary circulations, thunderstorms and other
mesoscale weather patterns, landforms, vegetation, and many more.

Dose Response: Given a forecast dose of a specified contaminant, the response of the population
adds a further level of complexity involving invasion pathways and physiological response.
Invasion pathways can be simple, such as direct inhalation, or complex, such as through a food
chain. Since the current scope is dispersion modeling, there will be no further discussion of this
topic. Its importance is however recognized here.

Epidemiology: When a bio-pathogen is involved, the mechanism of propagation expands
beyond meteorology to include human behavior. This area of active development is also beyond
the scope of the present discussion, but important to keep in mind. The initial dispersion of
pathogens may be a meteorological problem, but the primary difficulty is likely to be the travel
and behavior of human carriers.

Agriculture and biota: This category was included in the DTRA workshop to consider attack
against crops. As with the other events, responders depend on a good dose forecast.

Recognizing the large uncertainties inherent in emergency-response modeling, we believe
nevertheless that it can be intelligently applied to yield useful assessments of risk. In the
remainder of this report we will discuss the state of modeling to produce a good dose forecast.
“Good” in this context includes at least timeliness, ease in interpreting results, physical
defensibility, and provision for uncertainty.

4. COMPUTING AN ESTIMATED DOSE
4.1 Source Specification

Emergency response model systems normally include a library of source configurations,
covering stationary or moving sources of multiple shapes, sizes, and directions of release.
Submodels covering initial plume rise, explosive spread, and downwash (from a stack or the roof
of a building), are available for application as required by the situation (e.g. Lee et al., 1997,
Leone et al., 1997, Sykes et al., 1998). Important details, however, will usually be missing.
Such information as exit velocity (including direction) ambient and effluent temperature,
chemical constitution, atmospheric stability, wind, and turbulence may only be rough estimates.
A Monte Carlo approach is commonly used to assess the significance of this uncertainty, but its
full implementation is time-consuming in an actual emergency. Generally something is known
about the source, even if only as bounds on conditions. If the model framework provides access
to rapid execution of several test scenarios the knowledge can be applied. The risk of some
undesirable outcome can then be usefully assessed in the time available.

Source specification can be critical when the wind changes strongly with height. In such a case
the primary transport direction and perhaps the nature of the cloud’s spread can depend strongly
on the effective release height. If there is significant puff rise due to buoyancy, explosion, or




high exit velocity, the effective release height may be uncertain. It is likewise important in such
situations to have good knowledge of the wind field.

For “large enough” sources, if the sources’ location, size, and shape are known, their strength
can be computed to considerable accuracy using backward (or receptor-oriented) dispersion
methods (Flesch et al., 1995; Uliasz, 1993). These methods determine the history of transport
and dispersion that produced the concentration found at the receptor point at the time of
observation. They work best if the sources’ linear dimensions are nontrivial fractions (a few
percent) of the travel distance to the receptor. Such sources include evaporating pools and
airbursts. A “hybrid receptor” model is another option. This is an ordinary source-oriented
model with unit source strength. The actual source strength is then estimated as the ratio
between the observed concentration at a receptor and the concentration forecast for that receptor.

4.2 Wind Fields and Meteorological Environment

A NARAC demonstration at Los Alamos, New Mexico (Bowen et al., 2000) illustrated the
importance of considering the entire wind and turbulence field in computing dispersion of
contaminants. Coastal regions and complex terrain share a propensity for strong changes in wind
direction with height. In this case, wind measurements showed direction sheer greater than 45°
from 12 m to 92 m above ground. To isolate the wind-field’s influences from those of the
release conditions, the authors specified a hypothetical release, only in the model, at a height of
45 m. This altitude maximized the effect of the wind variations. ADPIC, the Advection-
Diffusion Particle-in-Cell model of NARAC simulated the dispersion using the real wind field.
Wind was measured at 12m, 36m, and 45m above ground at each of four towers, one of which
also sampled wind at 92 m AGL. Results using only the wind measured at 12 m were strikingly
different from those using all available winds (Figure 1). In complex terrain, failure to consider
the full three-dimensional structure of the wind can lead to spectacular errors, especially under
stable conditions where vertical mixing is suppressed.

Yet the quality of the wind data and the nature of the release must also be considered. Chang et
al. (2000) tested three emergency-response models against the Dipole Pride 26 (DP26) set of
field data. This experiment of November 1996 was run by DTRA (Watson et al., 1998; Biltoft,
1998). The experiment was in a valley in Nevada, about 40 km wide and 800 m deep. There
were three 10 km sampler lines perpendicular to the valley axis, roughly 7 km apart, having 30
samplers each for the SFs tracer. Release height was 6 m above ground. Samples were taken 1.5
m above ground. Eight meteorological stations reported 15-minute averages of surface
conditions. Upper winds were sampled from two sites, one launching pilot balloons, the other
launching both pilot balloons and rawinsondes. The Hazard Prediction and Assessment
Capability’s (HPAC) model, SCIPUFF, was run with three different wind inputs: a sophisticated
diagnostic model giving wind and turbulence in three dimensions, a mass-
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Figure 1: Dispersion forecast using only surface winds for an elevated release in a sheared
environment can be spectacularly wrong (from Bowen, et al., 2000)

consistent wind model also using the upper wind observations, and the same mass-consistent
model using only surface observations. The investigators unexpectedly found the least-
sophisticated wind input to provide nearly as good a forecast as the most sophisticated. Both the
release and the receptors were near the ground, along with the densest meteorological
measurements in time and space. The upper-air data appear to have been inadequate to give
advantage to the greater sophistication of the highest-level diagnosis scheme. Furthermore, the
controlling winds were probably at the surface.

The two examples, both from stable conditions in complex terrain, are fairly extreme, the one
contrived to maximize the effect of wind sheer aloft, the other apparently having minimal
influence from winds aloft. They illustrate some of the complexities in estimating wind fields.




There are three primary ways in which the wind pattern can be determined: Interpolation,
optimal adjustment, and full four-dimensional modeling (space and time), based on the Navier-
Stokes Equations. The Navier-Stokes computations can further be guided toward observations
made over the computational domain through the simulation period in a process called four-
dimensional data assimilation (FDDA).

In principle, the dispersion environment (wind and turbulence) is best directly measured in
sufficient detail to capture its relevant features. If the data provide all necessary constraints,
interpolation can fill in the remainder. Interpolation uses a weighted average of the
measurements. The weights vary smoothly over the region, summing to unity at any point in the
region. The weight given to observations from each measurement site generally decreases with
distance from that site, often as the inverse square of that distance. Interpolation procedures can
be sophisticated, taking secondary (proxy) information, such as terrain configuration into
account. Such techniques include nonlinear least squares and kriging. They compute
interpolation estimates through some type of optimization, usually minimizing variance and bias
(e.g., see Chiles and Delfiner, 1999). If their assumptions are valid, they can also assess the error
of estimation. Such sophisticated schemes are, however, sensitive to violations of their
assumptions and complex to compute.

Being purely statistical, interpolation depends on the ability of the underlying set of
measurements to represent all the important features of the wind field. Chang et al., (2003)
examined the effect of this requirement in a strongly heterogeneous wind field at night in high-
relief complex terrain. They used the DP26 Experiment, previously described. Depriving the
dense surface network of one site at a time, they computed the dispersion of tracer from the
source at 6 m AGL, comparing the results to samples taken at 1.5 m AGL. Some sites were
highly important, others less so. The important sites tended to be those sensing strong winds,
especially near the source. In some cases, however, a sensor was important for revealing a
strong gradient of wind, not otherwise known to the network. DP26 was markedly horizontal
and well sampled in that plane. Generally the field must be known in three dimensions,
including the three wind components. Since sampling aloft is often inadequate, going beyond
mere interpolation is attractive.

A modicum of physical knowledge can be injected by minimally adjusting the interpolated
values to satisfy some constraint, such as conservation of mass (e.g. Sugiyama and Chan, 1998;
Ross et al., 1988). If temperature profiles are available along with terrain information, the
partitioning of flow over and around hills may be varied as a function of local stability. Airin a
cold pool will then stay in the pool, while less stable air above can flow over the surrounding
elevated terrain. If momentum balance is included in the objective function, such secondary
flow features as air drainage down a valley or slope may be represented. Such adjustment
schemes cross from interpolation into extrapolation, in that they infer features not explicitly
measured in the data. Their inference is based on the assumed physical model from which the
constraints are derived. Like all extrapolations, they can give seriously spurious results if the
physical constraints, necessarily simplified, are imposed blindly. Using minimal adjustment
addresses this limitation, keeping the final result as close as possible to the original data. The
adjustment, however, is minimized only globally (usually least squares). Large changes are
possible in a small subregion if everywhere else the adjustment is minor. Chang et al. (2003)




used the CALMET scheme deliberately inappropriately to drive the SCIPUFF dispersion model.
The appropriate CALPUFF dispersion model, using only the horizontal components of the
CALMET output, routinely produced good dispersion forecasts. In extrapolating surface
observations to blend with upper-air data, however, CALMET’s mass-consistent constraint often
developed strong vertical components. SCIPUFF, using full three-dimensional advection,
underpredicted concentration at the ground when these spurious vertical components lofted its
puffs. Adjustment techniques applied with understanding can overcome some shortcomings of
the original measurement deployment, but resilience to inadequate data remains limited.

Dense measurement deployments are normally found only around major installations such as
military bases and chemical plants that work with hazardous materials in large quantities. In
principle, if mesoscale coverage of a region by measurements is inadequate, a mesoscale model
of atmospheric dynamics can compute the winds and turbulence for the area. This crosses fully
into the realm of extrapolation, developing fine structure not at all present in the meteorological
input. Mesoscale models are at their most useful in situations, such as shorelines or complex
terrain, where fine-scale forcing is significant and knowable. High sophistication is required,
and many well-known models attempt to provide it, including the US Navy’s Coupled Ocean-
Atmosphere Mesoscale Prediction System (COAMPS; Hodur, 1997; Doyle and Bond, 2001), the
Fifth Generation Mesoscale Model (MMS5) of the Pennsylvania State University and the National
Center for Atmospheric Research, (NCAR 1999, Grell et al., 1994), the Regional Atmospheric
Modeling System, (RAMS, 2002), and the Higher-Order Turbulence Model for Atmospheric
Circulation (HOTMAC; YSA, 1998). These models produce detailed representations of
turbulence, precipitation, convection, secondary circulations, and other processes important to
pollutant dispersion. Detailed digital terrain maps are available for the whole US and for much
of the world. The mesoscale mesh can be nested in routine forecast fields coming available at
increasingly fine resolution (12 km, as of Rogers, et al., 2002). Standard techniques also exist
for assimilation of existing data in four dimensions (e.g. Umeda and Martien, 2002)

Recently, adaptive gridding has been introduced into mesoscale modeling for dispersion
application. Highly detailed models (e.g. Cybyk et al., 1999a,b, 2000) have been used to
examine dispersion in urban boundary layers, as will be discussed later. Models such as
OMEGA (Bacon et al., 2000) take advantage of adaptive gridding as an alternative to nested
grids to improve flexibility. Nesting requires multiple overlapping grids. Each of these should
be approximately square in the horizontal for good modeling practice, and each has boundaries
to treat. Adaptive gridding incorporates all mesh refinement into a single grid. Only this grid
need be square. Its areas of fine resolution may take any shape. Transition of resolution is
smooth, eliminating boundaries, though some special requirements remain. Such a grid canin a
natural way provide fine resolution in multiple unconnected subregions of any desired shape.
For example, a complex shoreline may divide a simple water surface from a simple land surface.
If fine resolution is applied only to the serpentine region following the shore, far fewer grid
volumes are required. The grid adaptation can even be employed dynamically at run time in
response to developing strong gradients in the flow field or the contaminant pattern.

Though adaptive regridding shows promise, there are reasons o delay general adoption. The
application is new and only barely explored for assets and liabilities. Existing codes are few and
hard to obtain. The digital approximations are more complex than standard finite differences.




An efficient grid generator is required. For dynamic grid adaptation, the grid generator is part of
the execution, adding overhead. Even for a static grid, finer spatial resolution requires a finer
time step. Furthermore, submodels for turbulence and the like are valid only in a certain range of
scales. Where the mesh resolves finer scales, transition to a different submodel is required. For
the present, adaptive regridding schemes remain mostly the province of research.

Routine use of ordinary mesoscale modeling for emergency response must also contend with
some hurdles. One important issue is the proper balancing of initial conditions to minimize
transients. The balance already available from the outer model mitigates this problem, but does
not eliminate it. The finer model operates under different assumptions, modeling different
physical processes, or the same processes in more detailed ways. The shorter the time available
to adjust, the stronger the transients will be, introducing errors into the transport and dispersion
calculations. Thus, mesoscale modeling for emergency response applies best if the model is
already running at the time of need. With the explosion of computer speed and capacity this has
become increasingly practical. Even in a fully adjusted model, however, there remain
important sources of irreducible variance (Hanna and Yang, 2001). Moreover, being
extrapolations into fine scale, mesoscale models are vulnerable to small variations in
specification. A wide ensemble of outcomes may be derived from the same initial and boundary
conditions. Consider, for example, the interaction between a plume of contaminants and a
thunderstorm. The model may form a thunderstorm in a random location. If its updraft region
acquires the plume, the contaminants may be removed from the boundary-layer air altogether,
though perhaps deposited in the rain. If not, they may be deflected in quite another direction by
downdraft gusts.

One way to treat the uncertainties in the atmospheric environment is to estimate them through
use of an ensemble of forecasts slightly varied according to some protocol. There is some
interest in the adoption by NWS of ensemble forecasting in preference to forecasting single
scenarios at high resolution (Zhu et al., 2002). This benefits estimation of the expected
uncertainty in a dispersion forecast, at the expense of having to extrapolate over a greater ratio to
achieve the necessary fine scales. The manner of selecting members for the ensemble may
furthermore be optimized for some synoptic-scale purpose rather than for mesoscale dispersion
forecasting.

Ultimately there is no simple answer to the question of the best source of meteorological data for
dispersion calculations. Ideally one has wind observations available at sufficient resolution to
describe the wind field in three dimensions and time. That density of observations, if achievable
at all, is prohibitive, especially in complex terrain. Lewellen and Sykes (1989) considered a
five-dimensional space, adding an ensemble dimension to the usual four. They argue for
acceptance of wider spread in the ensemble dimension to relax constraints demanded of
measurements in the physical dimensions. Intensive numerical and field experiments can assess
the range of possible outcomes, given practically obtainable data. As a side benefit to this effort,
some information, such as the variance of horizontal wind, may be found to have particularly
strong influence on the outcome of a dispersion calculation. Such information could then be
measured more carefully. It is impossible to sample any particular scenario adequately to define
which ensemble member is realized in it. For the foreseeable future assessing the hazard from an
unexpected release in a random location will retain a large element of judgment and experience.




4.3 Pollutant Dispersion

Dispersion of a trace atmospheric constituent is generally modeled in three primary ways: the
Eulerian mass budget, particles in cells (PIC), and Gaussian puffs. The Eulerian mass budget
equation is normally implemented as one of the equations of a dynamic model of atmospheric
flow directly computing the concentration of its constituent (e.g. Uliasz, 1993; Bacon et al.,
2000). Being integral to the overall model, such a form handles chemical interactions and other
complex physical processes directly. Concentration variance can be treated in a straightforward
way through an additional equation. Concentration patterns on scales unresolved by the grid are
not represented, a particularly severe limitation close to a source. Conversely, the Eulerian mass

budget is quite efficient for widely distributed contaminant.

The (Lagrangian) particle-in-cell (PIC) framework tracks a large number of particles. Its ideal
situation is short-range transport from a point source to a volume receptor. It readily handles
multiple sources under complex conditions. Each particle is a point, carrying specified mass,
released sequentially, and transported by mean and turbulent flow. Concentration is determined
by counting the particles in the receptor volume, often a grid volume of the model. Chemical
interactions are difficult to represent. Gravitational settling might appear natural, since the
dispersant is particles. These particles are, however, only carriers of the contaminant’s mass.
They have no intrinsic physical counterpart. Correct representation must be provided of the size
distribution and other characteristics of the actual particles. The primary limit on PIC is the
number of particles required, especially for long-range transport or complex conditions.
Determining concentration fluctuation may require even more particles (but see Thompson,
1990).

The Gaussian puff framework tracks a sequence of overlapping puffs. Each puff carries a
specified mass of contaminant, all hypothetically released at the same known instant. Its spatial
distribution in three dimensions is assumed to match the trivariate Gaussian probability
distribution. Puffs, like PIC use the Lagrangian framework, though far fewer puffs, and
computer resources, are required to represent the same distribution of contaminant. Turbulent
motions on scales small compared to the size of the puff act to disperse (thus enlarge) the puff.
Motions on scales large compared to the puff act to move it bodily. Scales of motion comparable
to the size of the puff deform the puff. Normally, deformation is avoided by splitting the puff
into smaller parts when it gets large enough to be resolved by the wind-field grid. Deformation
can be treated explicitly at the price of additional complexity, as can concentration fluctuations

(Sykes et al., 1998).
The remainder of this section expands on the two Lagrangian dispersion schemes.

The Gaussian puff models track objects that grow and may change shape with time, requiring
appropriate algorithms. These objects (puffs) are generally transported only by the resolved
flow, with the turbulence represented by the puffs’ changes in shape and size. The scale treated
as “turbulence” is thus of puff size or smaller. Empirical relations between travel time and puff
growth may be used to estimate the effect of turbulence. Often the spread is assumed isotropic in
the horizontal, differing only in the vertical. If a puff expands into the resolved scale, it is
customarily split into smaller puffs to retain the explicit influence of the resolved patterns.
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The more sophisticated puff models permit full three-dimensional stretching and rotation. Since
this complexity is beyond the reach of field experiments, the puffs’ growth and deformation are
linked theoretically to local properties of atmospheric turbulence. The theory draws on the
extensive study of natural and engineering turbulence over the past few decades. In principle it
provides automatic applicability to a broad range of conditions. The puffs retain the Gaussian
shape, a limit on the degrees of freedom that markedly reduces complexity, at some expense to
flexibility. The primary operational model using this concept is the Second-moment Closure
Integrated Puff (SCIPUFF) algorithm of Sykes et al., (1998, 1986). This will be discussed at
some length here since the argument used in developing the model contributes generally to
understanding of the dispersion problem.

In the SCIPUFF model each puff has ellipsoidal shape, its contaminant mass distributed
according to the trivariate Gaussian pattern. Ten moments describe this configuration. Angle
brackets indicate integration of the given puff’s mass density over all space. The zeroth moment,
or total mass Q of contaminant in the puff, provides the scale from which to determine the
concentration (mass density) ¢ anywhere in the puff.

Q0 = {o

The three first moments with components of the location vector x; give the coordinates of the
center of the puff’s mass.

Ox, = {ex) i = 12,3

The six independent second moments, a generalization of the familiar parameters of puff width,
define the spread and orientation of the puff’s ellipsoid shape.

QO'l-j = (c(xi—xi)(xj—xj»; i = 1,2,3; o, = 0;

In terms of the trivariate Gaussian pattern, they form the covariance matrix. The time tendencies
of all ten moments may be derived by integrations involving the budget equation for the
contaminant.

ac 0

— + — () = kViec + S

at dx, (2:0)

These integrations treat each puff in isolation. The ensemble-average concentration over all

puffs is found by superposition (simple addition). Determining the variance of concentration,
however, requires evaluation of nonlinear interactions among puffs.

The budget equation, integrated over all space but considering only the concentration of mass
belonging to the current puff of interest, reduces to the source term for that puff. This controls
the total mass in the puff. Sources include deposition or resuspension at the ground, chemical
transformations, and the like. Multiplying the budget equation by the coordinate variables x;, i =
1,2,3, and integrating as before yields the three tendency equations for the center of mass.
Multiplying the budget equation by the six dissimilar components of x;’x;” and integrating yields
the tendency equations for the covariances, which parameterize the puff’s spread and shape. The
primes indicate displacement from the center of mass.

The complexity of ten equations buys explicit representation of several important physical

relations controlling the spread and deformation of the puffs. In particular the vertical shear of
horizontal wind explicitly stretches and rotates a puff. This is a useful feature in the atmospheric
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boundary layer, especially in complex terrain or on a seacoast. The ten equations, of course,
retain unknown turbulent quantities. These primarily describe the in-puff turbulence that spreads
the puff over time. They are, however, now formulated in terms of covariances between the

turbulent velocity components and concentration fluctuations: u;c”.

These covariances operate on the scale of the puff, intentionally unresolved by the explicit wind
field. They are determined through the long-established technique of second-moment closure.

The moments involved here are the u{u’; and ulc’, not to be confused with the ten moments

introduced above to describe the Gaussian puff. Second-moment closure, in principle, explicitly
represents the case-dependent aspects of turbulence, such as generation, applying empirical
models only to dissipation and other aspects more amenable to universal empirical description.
Second-moment closure provides a theoretical link between measurable atmospheric turbulence
and the motion, spread and deformation of the Gaussian puff. A hurdle remains.

Traditional higher-moment closure considers the various generators of the turbulence, such as
buoyancy and shear, to transfer energy between ensemble-average flow and the departure
therefrom. Such a formulation convolves all the departure (i.e. turbulent) flow’s scales of space
and time. Scale is important, however, to contaminant puffs. Turbulent eddies on scales larger
than the puff will serve to move or rotate it, while those on scales smaller than the puff will serve
to spread it. Using the total measured or modeled atmospheric turbulence will overestimate the
rate of spread of a puff unless the characteristic scale of the turbulence just happens to be
comparable to the size of the puff. Knowledge of the spectral distribution of turbulent energy is
needed. Sykes et al. (1998) have developed ways to treat this problem.

The TRAC (Terrain-Responsive Atmospheric Code; Ciolek and Magtutu, 1998; Alpha TRAC,
2002) uses a different approach. Six points define each puff. These are specified initially
according to the source algorithm and later allowed to travel independently over limited periods.
They travel by mean wind in the resolved field and by turbulent departures, the latter randomly
drawn for each point from a distribution determined by the local turbulence statistics.
Periodically the locations of these points are used to determine the puff’s location, shape, and
size. At such times, the points’ positions are adjusted to maintain a common point of intersection
of the three lines joining pairs of the points. In this way the puffs maintain their regular
ellipsoidal shape on which a Gaussian distribution can be defined. Other realizability conditions
are also enforced on the points, particularly that the puff grow monotonically, whether there is
mean wind or not. This scheme also allows puffs to stretch and rotate in response to mean shears
and differential turbulent fluxes. The algorithm rests more on a phenomenological concept than
does SCIPUFF. Most likely turbulence statistics obtained from the atmosphere or from a model
need to be adjusted in defining the random component of transport. This avoids attributing the
total turbulent energy to the scales of puff size and smaller.

The PIC model (Lange, 1978; Legg and Raupach, 1982; Thompson, 1987, 1990; Leone et al.,
1997) tracks point masses, rather than puffs. These are far more numerous (hundreds of
thousands) and remain unchanged throughout their lifetimes in the model domain. As points,
they disperse both by mean and turbulent winds. The mean winds are defined on a grid by one
of the methods previously described. The turbulent winds »;’ may be given deterministically as
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where ¢ is the concentration of contaminant, — is the slope of the concentration of
contaminant in the x; direction, and K is the diffusion coefficient for the contaminant. Thus
defined, u;” always points down the local gradient of c.

A more sophisticated approach, however, is to define u;” by a generalized Langevin equation,
following the assumption that the position and velocity of a particle evolve jointly according to a
Markov series expressed by the discrete (finite df) form of :

du, = a,(x,u,0)dt+b,(x,,u,t)d¢,

dx, = u;dt

Here the summation convention applies; i, j, k, and [ € {1, 2, 3}; and d§; is a random number
from a Gaussian distribution of mean zero and variance (not standard deviation) df. The Markov
series by itself is insufficient constraint to enforce physical realizability. A well-mixed
distribution of particles must remain well mixed, a condition satisfied if and only if (Thompson,
1987) coefficients g; and b; also satisfy the Fokker-Planck equation:

0 0 0 9’
L o L g - Zaxeunn gl + [B,(x,,u,,0g,]
ou,0u

o  ox du,

Here B;j = 0.5 by by. The probability density function g,(x, u; t) for Eulerian wind velocity is
normally modeled as multivariate Gaussian. It views the atmosphere as a collection of particles,
rather than a continuous fluid. It represents the density of probability at time ¢ in position x; that
a fluid particle will be found having velocity u; . Legg and Raupach (1982) present the physical
conditions on a; and b;; more readably, though perhaps in less generality. Additional
developments of particle models enforce the well-mixed condition across interfaces, such as at
the top of a mixed layer, where the particle model may experience discontinuous changes in flow
properties from one grid volume to the next (Thompson et al., 1997).

To address the expense of tracking a large number of particles over long distances, hybrid
models have been used. One form uses particles (or puffs) close to each source. The clouds are
allowed to grow until their characteristic scale is resolvable by the model grid. At that time and
place the particles (puffs) pass their mass as a volume source to the general mass budget for that
constituent. An equation of the Eulerian model keeps track of this general budget. Such a form
is useful for slow chemical reactions, such as photochemical smog, some reagents of which
originate in point sources. For emergency response this hybrid mode may be rarely invoked.

Another hybrid makes use of the large aspect ratio of atmospheric scales horizontal to vertical.
It treats a cloud of contaminant as particles in the vertical and puffs in the horizontal (Hurley,
1994, Draxler and Hess, 1998). In contrast to full particles, which are point masses, these
objects (PARTPUFFs) are two-dimensional masses, of zero thickness. Since they cover the
horizontal distribution largely as puffs only 1% as many PARTPUFFs need be released as
particles. Limiting the spread to horizontal simplifies the puff formulation as well. It has earlier
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been noted that atmospheric motions on the scale of a puff deform the puff. Such deformation is
treated in three dimensions in a careful, but fairly complex manner in SCIPUFF, as described
above. Since the bulk of this complexity comes from puff deformation in the vertical,
PARTPUFFs represent considerable simplification. With some justification PARTPUFFS can
be assumed circular allowing a univariate Gaussian distribution to describe their horizontal
spread. Being particles in the vertical, they simply reflect from the surface or any elevated
reflecting layer. The distributed dimensions remain always horizontal, though in terrain-
following coordinates this is transformed horizontal, not constant geopotential. In particular, the
entire object is assumed to make simultaneous contact with the ground. Concentration is
computed at horizontal grid points by summation over all PARTPUFFs within a vertical interval

z. The contribution by a PARTPUEFF to the concentration at the grid point a horizontal distance
r from its center is

A 2
Ac = ———T—exp —O.SLL ,
270, Az o,

where c is the increment in concentration, m is the total mass of the PARTPUFF, oy measures
the horizontal spread, and  z is the depth of the vertical layer in which the PARTPUFF currently
lies. PARTPUFFs contribute to surface concentration if and only if they are within z of the
surface.

Tests in the convective boundary layer, following the measurements of Willis and Deardorff
(1978, 1981) demonstrated results equivalent to a Lagrangian particle model with 1% as many
objects. In a sea breeze, the PARTPUFFs encountered sufficient horizontal shear at the sea
breeze front to produce a noticeable departure from the particle simulation. Otherwise the
agreement was satisfactory, using again only 1% as many objects. The sea breeze test also
demonstrated the effect of resolution too coarse to resolve important features of the contaminant
distribution. Counting particles over too large a volume underreported the peak concentration by
a factor of two. The horizontal distribution of the PARTPUFES provided a more realistic result,
but improvement for both approaches was achieved by halving the horizontal grid spacing in
both directions. Four times as many particles had to be released to accommodate this change,
while there was no change in the number of PARTPUFFs. One should, however, note that
refining the vertical resolution affects particles and PARTPUFFs alike. A third demonstration
involved flow past a hypothetical Gaussian hill in three dimensions simulating diurnal variations
between 0000 and 1200 local time. Dispersion from a nighttime source above the nocturnal
surface layer at half the height of the hill was simulated almost identically by both methods.
About 25 times as many particles as PARTPUFFs were required. The complex situation
involved elevated plume impact and local slope flows down the hillside. Both methods also
matched in simulating a near-surface release, which exhibited splitting of the pollutant cloud
around the base of the hill during the stable nighttime. Daytime patterns were inadequately
represented by both schemes. The concentration maximum was very near the source in the
convective mixed layer, forming a pattern too fine to be resolved by the horizontal grid.
Improving the horizontal resolution, however, would have far less effect on the PARTPUFF
simulation than on the particles.

Dispersion at night remains a serious deficiency in all dispersion modeling. This involves highly
complex structures on such small scales that turbulence and transport are determined by local
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conditions. The structures are decoupled from the ground and from any other larger-scale
feature that can be reliably treated by models or observation systems. Organized features appear
only intermittently and unpredictably in our present state of knowledge. Numerous studies of
such nocturnal features as slope flows in complex terrain provide hope of understanding their
role in nocturnal dispersion. A few examples include Atmospheric Studies in Complex Terrain
(Clements et al., 1989), and the Vertical Turbulence and Mixing Experiment and URBAN 2000
(Doran et al., 2002; Allwine et al., 2002). New algorithms continue to be developed for the less
severely stable conditions (Zilitinkevich, et al., 2002). There may be hope for improved
understanding of nocturnal turbulence through computational fluid dynamics and large-eddy
simulation. Until computers become considerably more powerful, however, these approaches
will be severely limited by computational requirements, even in research mode

4.4 Deposition

Removal mechanisms, by precipitation, by gravitational settling, and by absorption on the
surface are important for estimating atmospheric concentration as well as for estimating the
amount available to other pathways of harm. Most emergency-response models have some level
of treatment. Reflection of Gaussian puffs at the ground can be partial, using deposition
velocities for contaminants to determine the deposited fraction. Mass found to be deposited is
then removed from the appropriate puff. Wet deposition, a powerful removal mechanism for
airborne contaminants, involves complex interactions among droplets, gases, and particles.
Simplified algorithms exist (e.g. Sykes et al., 1998) which consider the size distribution of both
the raindrops and the particles. Much depends, however, on where a mesoscale model locates
thunderstorms or ordinary showers. Since clear mesoscale forcing for such features is unusual,
their location is likely to be random. It may be argued that the location and timing of the
precipitation is a greater source of uncertainty than is coarse treatment of the wet deposition
process itself.

4.5 Convective Storms

The enhancement of dispersion by convective storms is only minimally treated in modeling and
observations. As part of the continued merging of contaminant dispersion with meteorology, the
results of the considerable study of organized mesoscale phenomena need to be tapped (e.g.,
Flossmann and Pruppacher, 1988, Respondek et al., 1995). A thunderstorm not only produces
washout, but also dramatically alters the wind field. The outcome of transport by such a
modified flow depends on the initial location of the pollutants. If they are lifted with the rising
warm air, they may be scavenged from a larger area than that on which the rain falls.
Furthermore they may be injected into the middle and upper troposphere, not to be returned to
the surface locally at all (Lyons et al., 1986; Thompson et al., 1994). This discussion
underscores the potential for widely divergent forecasts of dispersion driven by forecasts from a
mesoscale model.
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4.6 Resuspension and volatilization

Particles and droplets deposited on the surface can be returned to suspension in the atmosphere
by wind gusts or simply by evaporation. The surface thus becomes a reservoir from which
hazardous material is reintroduced into the air. Though often important for cleanup after an
event, resuspension is negligible during the first few hours, compared to direct contamination
from the source. Thus, resuspension will not be considered here.

4.7 Dose Calculations

Most emergency emissions have limited duration, and most effects vary with the dose received.
Modeling of the dose to which a receptor is exposed involves the same issues as determining the
average concentration over a period. The instantaneous situation may be conceptually separated
into the usual two regimes. Turbulence on scales large compared to the puff’s width will
transport the puff as a single object. Turbulence on scales comparable to or smaller than the
puff’s width will mix and spread the puff. Introducing summation smears the two together. If
only small-scale turbulence were present, a given receptor would experience minimal change in
concentration over the duration of the release since each emitted puff follows the same path from
the source. Large-scale fluctuations, however, nearly always exist, sweeping the puffs over
multiple trajectories. A few puffs may pass directly over a receptor, while others miss it entirely.
The longer the averaging time, the more of the meandering component of the wind will be

included.

Sykes and Gabruk (1997) address this issue with a second-moment model of turbulence.
Second-moment closure is not the only valid approach. The empirical relations that estimate
puff spread over time can serve if the wind information explicitly resolves fluctuations on the
time scale of their characteristic average, about 600 s. It is then possible to release a large
number of model puffs, allow them to meander with the resolved wind and sum their
concentration over time at the receptor of interest. The puffs must be split when their size
exceeds that corresponding to the 600-s time scale.

Sykes and Gabruk (1997), however, provide a framework for understanding the issues of
averaging time and dose. Though they considered plumes, their argument is readily adapted to
puffs. Consider a puff, horizontally isotropic; of horizontal size [, and vertical size [;. The
assumption of horizontal isotropy is simply convenient, not necessary. Scales I, and [, are related
to the standard deviations of a Gaussian puff, but may be larger. For instantaneous dispersion,
only that part of the spectrum of atmospheric turbulence on these scales and smaller contributes
to the spread of the puff. The remainder of the turbulence spectrum moves the puff bodily. In
simulation it must be supplied explicitly by the resolved wind field or by random sampling of
wind components from a distribution having variance given by integrating the turbulence
spectrum over all scales larger than [, and I.

If an average, or aggregate, cloud is to be considered, however, some of the bodily transfer of the

instantaneous puff becomes part of the spread of the aggregate puff. Thus, the effective length
scale of the aggregate cloud is larger than the instantaneous scales [, and [,. Simulation of the
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aggregate divides the turbulence spectrum according to this greater length scale. If the
aggregation time corresponds to the integral length scale of atmospheric turbulence or larger, the
entire spectrum of turbulence acts as a dispersant.

5. RELEATED ISSUES
5.1 Concentration fluctuations

Emergency response models are concerned with the outcome of a single realization. The
ensemble average, to be useful, needs to be accompanied by a measure of the range of departure
from that average. As already noted, fluctuation of the instantaneous concentration about the
ensemble average is usefully divided into two mechanisms. Local entrainment is produced by
eddies of size smaller than or comparable to the width of the plume. Meandering of the whole
plume is through eddies of much larger size than the width of the plume. The former can be
treated using second-order closure of turbulence. The latter may be treated statistically or
explicitly in the resolved wind field. One advantage to the theoretical basis of SCIPUFF is the
ability to extend naturally to consideration of concentration fluctuation. Data limitations in an
actual event, however, are likely to render the advantages of such estimates unrealizable.
Meander is of greatest importance near the source, where the plume is narrow. As the width
grows, fluctuation within the puff becomes more important, eventually dominant.

Under convective conditions near the source, especially with an elevated source, the fluctuations
can be as much as six times the mean (Weil ef al., 1992, Deardorff and Willis 1984). Puff width
near the source is narrow: comparable to or smaller than the convective plumes in the
atmosphere. Therefore, these plumes intermittently bring very high concentrations to the
ground, which otherwise has low concentrations. Because of this mechanism, the concentration
fluctuations of a narrow plume in strongly convective conditions can be conceived as an
exponential stochastic process, which models the waiting time for random events (such as puff
strikes) to happen.

With larger clouds and less severe mixing, concentration distributions are better conceived as a
series of random dilutions due to entrainment of clean air. Each dilution is a multiplication by a
factor less than unity (Csanady, 1972). Thus the logarithm of the concentration is the sum of a
large number of random values, the logarithms of the dilution factors. Such a sum tends toward
the Gaussian distribution as the number of elements increases. Hence its antilog tends toward
the lognormal distribution.

Sykes et al. (1998) note that the concentration variation due to meandering by large-scale winds
is independent of the fluctuation due to turbulence internal to the plume. Thus they can be
treated separately, deriving turbulence within the plume from second-moment closure, and
treating meandering explicitly in the wind field, or statistically with a separate meander-induced
variance of concentration. The exception is persistent vertical shear of horizontal wind, which
produces deformation on space scales short enough to be significant to the puff, but time scales
long compared to the internal turbulence scales of the puff. Shear’s effect is to stretch the puff in
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the horizontal while squeezing it in the vertical. Vertical gradients increase, making mixing
more efficient and decreasing the dissipation time scale for the fluctuations. This effect can be
treated as a special case.

Such computations as given here provide an estimate of the expected departures of the actual
concentrations from their predicted means, provided the departures arise from the stochastic
nature of atmospheric diffusion. Departures due to erroneous input data and inappropriate model
assumptions are not covered. Since data deficiencies are normal in most emergencies, especially
over the time scales covered by this report, a “what-if” mechanism is operationally useful. Rapid
recomputation under multiple scenarios allows quick assessment of the sensitivity of the forecast
to variations in input when data are inadequate for full treatment of concentration fluctuations.
Running an ensemble of different models provides the best approach to questions of propriety of
model assumptions, though this may require an impractical commitment of resources and time.

Draxler (2003) assessed the effect of one type of input error: mislocation of the source. He used
the HYSPLIT model on the continental scale to simulate the ANATEX (Across-North-America
Tracer Experiment, Draxler et al., 1991). He used meteorological data from the NCEP/NCAR
Reanalysis (Kalnay ef al., 1996) on a grid of 136 km horizontal spacing and about 250 m
vertical. He formed an ensemble of 27 members by shifting the wind field plus and minus one
grid point in each direction. Moving the wind field rather than the source maintained the same
relation between source and receptors in all members of the ensemble. Thus, mislocation only of
the source and receptors was simulated in an otherwise correctly specified atmospheric
environment. The resulting ensemble of computed trajectories spread continent-wide. The
majority of the trajectories, however, traveled south and east from the source at Glasgow MT
across the Dakotas, lowa, and Missouri.

Draxler interpreted this outcome using the probability of exceeding (PE) a specified threshold
concentration. A related scheme considered the concentration to be exceeded with a specified
probability (“concentration probability,” CP). He determined distribution of PE by counting the
fraction of ensemble members which forecast a concentration exceeding the specified threshold
(e.g., 10 pg m™). The CP he determined by finding the concentration exceeded at each point by
the specified fraction (e.g., 10%) of ensemble members’ forecasts. He assumed each outcome in
the ensemble to be equally likely in this determination. The highest measured concentrations
generally fell in the regions of highest PE and CP, though with some strong exceptions.

Warner, et al. (2002) examined the effect of variations in atmospheric inputs and model
assumptions. They developed an ensemble of twelve members using boundary and initial
conditions from three different large-scale analyses and applying three different models of
boundary-layer turbulence and two of soil physics. The MMS5 system, configured and
parameterized in the twelve different ways, computed the atmospheric environment for
SCIPUFF to track a hypothetical release from Khamisiyah, Iraq. SCIPUFF was used in
“explicit” and “ensemble” modes. In the explicit mode SCIPUFF was attached to each
individual MMS5 run to create an ensemble of dispersion outcomes. In the “ensemble” mode, a
single run of SCIPUFF estimated both the mean and variance of concentration, taking as input
the ensemble mean and variance over MM5’s twelve outcomes.
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SCIPUFF’s dose patterns varied quite noticeably over the ensemble, especially in the spread of
the plume. The plume’s centerline generally went toward southeast in all simulations but
differed considerably in dispersion: some narrow, some wide. The rate of growth of the area
receiving a dose above a threshold varied strongly over the members of the ensemble. The
narrow-plume dispersions arrived at steady state within ten hours while others, with more
meandering and wider plumes, didn’t arrive at steady state until after 25 hr. The area above
threshold dose varied over the ensemble by more than a factor of four. As with the HYSPLIT
ensemble, PE diagrams were fairly compact for higher threshold doses. They spread
considerably more with lower thresholds. In emergency response only a few ensemble members
at most can be run. It will result in significantly different emergency response to choose one
over another, though none appeared to be the best. Ability such as SCIPUFF’s to estimate
concentration variance might be useful to assess this uncertainty, if provided an estimate of the
ensemble’s variance. Perhaps such an estimate can be obtained through ensemble studies a
priori.

5.2 Spread among buildings

A release in an urban area will be spread by very complex patterns. The release may be indoors
or underground and may spread through heating, ventilating, and air-cooling systems (HVAC).
Some may leak outside. Outdoor releases may follow street canyons or get trapped in narrow
spaces. Dispersion among buildings follows very different turbulence patterns from those for
which the empirical relations between puff growth and travel time were developed. The
importance of individual structures hampers treatment by aggregate statistics. Computational
fluid dynamics (CFD) can represent complex flow situations in any detail, subject to the
computing resources available. Though the response time of CFD is currently too long to be
useful in an emergency, it can guide risk assessment and emergency preparedness. Particular
locations at high risk for accident or hostile act can be examined explicitly. More generally CFD
can provide high-resolution metadata to calibrate other models and to help develop intuition and
rules of thumb for incidence response teams.

Cybyk et al. (1999a,b, 2000) have developed the Three-Dimensional Flux-corrected Transport
Algorithm for Computational Transport (FAST3D-CT), from work begun by Boris and Book
(1973). A major issue in such modeling is definition of the boundary, which is enormously
complex, including explicit representation of structures, trees, detailed terrain features, and the
like. The FAST3D-CT uses finite differences with an embedding scheme that can provide very
fine mesh where great detail is required while allowing coarser mesh elsewhere. The mesh
generator is very flexible, allowing also temporal changes, such as opening a door. Clearly,
however, high-performance computer requirements and long lead times preclude routine
eImergency use.

Two modes are described: simulation of actual releases to evaluate FAST3D-CT, and simulation
of hypothetical cases of potential significance. Tracers were released in two experiments at
Dugway Proving Ground in Utah. Both were indoors, one in a test building representing a
typical apartment complex, the other in an airplane hangar simulating an exhibition hall. The
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apartment complex had multiple rooms, connected by doors that were sometimes open,
sometimes not. The hangar had a tool crib, HVAC, recesses to park the hangar’s doors, and a
double row of simulated exhibition booths. Details of the simulated concentration evolution
matched those found in the measured evolution. The concentration itself was generally
simulated within 50% of the measured values. The interior concentration was found to depend
significantly on the wind velocity external to the test buildings.

The hypothetical cases involved simulated releases near the Pentagon and on the Mall in
Washington DC. With just the Pentagon immediately downstream of the release, the cloud’s
pattern was simple, except at the Pentagon itself, where some of the simulated contaminant
became trapped in the central courtyard and in the spaces between the concentric rings of offices.
A later simulation included trees upstream of the release point and an additional large structure
(power plant) beside the Pentagon. The cloud broke into multiple pieces, covered considerably
less distance in the simulation time and generally developed a much more complex pattern.
Taking at face value the results of such a computation in any real situation is dangerous because
of the sensitivity to slight variations in the history of the wind during propagation of the cloud.
These qualitatively reasonable simulations clearly show, however, the complexity of dispersion
in an urban setting.

The complex geometry of urban dispersion modeling lends itself well to finite-element
modeling. Again, great computer resources are required to simulate operational cases. The
work, as above, is limited to risk assessments, to testing of simpler models, and to training
responders’ intuition. Finite-element simulations differ from the finite-difference FAST3D-CT
primarily in the discretization scheme used. Otherwise the same equations of fluid dynamics are
solved, though turbulence and other parameterized features may be treated differently. Camelli
and Lohner (2000) simulated flow around a single L-shaped building achieving qualitatively
correct patterns of flow and concentration. The quantitative match to a wind-tunnel simulation
showed important deviations, indicating further work. Results were found very sensitive to the
specification of the upstream wind profile. Proper specification of initial and boundary
conditions is vital to all simulations.

The study of dispersion among urban buildings has revealed at least two important features
amenable to rapid-response modeling. The speed of transport of the pollutant cloud is reduced,
and the spread of the cloud is increased in all directions, including upwind. Reducing the
transport speed delays the arrival of the cloud at downwind receptors. Furthermore, in shifting
winds a slower-moving cloud will follow a different trajectory than a faster-moving cloud. A
third important feature, unfortunately resistant to accurate simulation, is the trapping of
contaminant in narrow spaces. These sites receive a high dose relative to the main cloud and
provide a secondary contamination as they are flushed.

Efforts to model the influence of city buildings on dispersion of a contaminant cloud in a way
sufficiently simple for emergency response have produced some success. The Urban Dispersion
Model of the UK’s Defence Science and Technology Laboratory (DSTL, Hall et al., 1997,
Griffiths et al., 2000) is a puff model developed from extensive measurements in wind tunnels
and in the atmosphere. Individual large objects, generally buildings, have explicit deflection and
wake regions that interact with a puff according to its size relative to the obstruction. Hundreds
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or thousands of these can be defined in the model field. Smaller objects (e. g., houses) can be
treated in bulk considering aggregate characteristics such as street-grid regularity and orientation.
Tests with data from Salt Lake City during URBAN 2000 (Allwine et al., 2002) produced
encouraging results (Griffiths et al., 2002). An extension of UDM to concentration fluctuations
is in progress (Beck et al., 2002). Full implementation of such a model requires a highly detailed
survey of the city being represented. Such surveys are becoming increasingly available through
airborne laser techniques. Few cities have yet been covered, however.

For cities not yet surveyed in such detail, coarser methods are required. Urban boundary layers
are characterized by a thick “canopy.” This requires specification of a zero-plane displacement
za, the effective level of air-surface transfer. Above z; a simplified urban canopy model defines a
roughness sublayer (de Haan et al., 2001; Grimmond and Oke, 2002) up a height z, , perhaps
three times the “typical” building and tree height in the local area. Within this layer, the model’s
downward momentum flux strengthens as height increases up to z,. This flux divergence
produces a smaller gradient of mean wind than that found in a constant-flux layer. At z, the
usual constant-flux layer begins. Measurements of wind profiles and turbulence should thus be
made above z, to parameterize this model. The surface energy budget favors sensible over

latent heating of the air due to low effective soil moisture and rapid rain runoff. Heat exchange
with the solid surface exhibits hysteresis due to the thermal characteristics of concrete surfaces,
vertical walls, and other features that produce the urban heat island. Grimmond and Oke (2002)
provide a recent approach to defining an urban surface energy budget.

Grimmond and Oke (1999) reviewed two means of determining z; and the surface roughness
length zo. These were called morphometric and anemometric. The first method derives zp and z4
from representative measures of the size and density of buildings and trees in the area. The
second method derives the parameters from wind measurements, whether of mean profiles or of
turbulence. Unfortunately, the results were discouragingly scattered. The great variety of
roughness elements in cities left no clearly superior means of determining aerodynamic
properties of any given surface. The authors nevertheless noted some necessary features of good
practice. They favored simplified morphometric methods as easier to apply and as yielding
results of comparable validity to anemometric methods. The class of cityscape can normally be
determined from oblique aerial photographs of representative sections of the city to be modeled.
Guidance to this end is provided. A zero-plane displacement is always present over a city, and
thus is required in models. Values of roughness length should lie within limits appropriate to the
class of cityscape. The authors provided a table of such limits for four classes of cityscape,
ranging from detached suburban houses to high-rise urban cores. Additional semiquantitative
guidelines were given, accounting for such features as the density of trees and the orientation of
major streets relative to the wind direction. The resulting values of z; and zy, while not reliable
to high precision, can be incorporated into meteorological preprocessors or mesoscale models
supporting the dispersion calculations.

Masson et al. (2002) tested a scheme called Town Energy Balance (TEB), based on the designs
discussed in the previous paragraphs. The TEB represents the partitioning of insolation among
the various radiative, turbulent, and surface fluxes at the earth’s surface. The investigators
placed instruments in commercial areas of Mexico City, Mexico, and Vancouver, British
Columbia, Canada. These areas had no significant vegetation cover. Atmospheric turbulent
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fluxes were measured at 28 m above ground. Infrared thermometers sensed surface temperatures
of representative roads, and of walls and roofs of buildings. A soil flux plate was installed in
Vancouver.

The TEB successfully represented several important qualitative features of the surface energy
balance including the strong role of heat storage in buildings and streets (urban heat island), the
maintenance of upward sensible heat flux at night, the dominance of sensible over latent heat,
and the significance of the ratio of building height to street width. Mexico City, with taller stone
buildings and narrower streets, retained upward sensible heat flux longer through the night than
Vancouver, as expected and measured. Giving streets a roughness length of 0.5 m was required
to generate sufficient atmospheric fluxes, especially for the wide streets in Vancouver. The high
value represented traffic and other unaccounted roughness. The TEB is forced primarily by
insolation, which was estimated well from measurements 8 km to 15 km away. As must be
expected with a simple model, however, the simulated fluxes were fairly coarse in quantitative
measure. Sensitivity tests showed the ratio of building height to street width to be important,
along with the streets’ albedo if this ratio is small.

The TEB missed some interesting features which future developments could treat. Sensible heat
flux in Mexico City rose significantly just at dawn, when surface storage should theoretically be
receiving the majority of the new insolation. Morning traffic was invoked to explain a similar
observation in Tokyo, Japan. The tested version of the TEB had no explicit treatment of diurnal
traffic patterns. Atmospheric heat fluxes were also poorly represented in the first of two study
periods in Vancouver. A sea breeze probably produced advection, also not yet treated in the
TEB.

Masson et al. (2002) recommended some good measurement practices for verification of urban
land-surface models. Their measurement of fluxes, not just temperatures, greatly aided
understanding of the energetics of the system. They also noted, however, some deficiencies of
the field deployment that produced mismatch between model and measurements in this
pioneering effort to verify an urban land-surface model. Principally, the scale of measurement
should match the scale of the simulation (tens of kilometers) and should include effects of clouds
and other departures from ideal conditions.

For the foreseeable future, emergency-response models on 10 km scales will require
simplifications from the full simulation of dispersion among buildings. Two significant features
of dispersion in urban boundary layers which are amenable to simplified modeling are the
slowing of transport and increase in spread. Work addressing the adequacy of representation of
these processes, a sample of which has been cited above, continues to progress.

5.3 User Interface

The high capacity of computing, storage, and display resources currently available even on
laptop computers makes a detailed graphical user interface (GUI) attractive for emergency
response, especially if the event is likely to cover several hours and tens of kilometers or more.
In an activity dependent on rapid response, graphical images allow models and data acquisition
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to be quickly implemented and their results readily grasped for rapid decision-making.

Commercially available data bases and geographical information systems (GIS) provide rapid,
sophisticated access to a wide range of relevant information. Political boundaries quickly show
jurisdictions. Road patterns indicate evacuation routing. Hospitals can be identified.
Characteristics of buildings in the area can be known. Such data bases are kept more or less up
to date in the course of their use for multiple ongoing commercial and governmental purposes.
Boechler (2001) suggests an interesting use of such information: applying infiltration models,
based on characteristics of local structures, to determine a phased evacuation. Some people
would shelter in place to evacuate later, while others would evacuate immediately. In principle,
this would reduce traffic and get more people to safety. Bacon et al. (2000) use a GUI to speed
grid generation for their adaptive-grid model. Software “wizards” can facilitate quick
configuration of a mesoscale model for people not expert in such modeling. Modern
communication, coupled with GUI, allows near-real-time access to atmospheric data along with,
for example, current contact information for medical personnel or other important people.

It must never be forgotten, however, that the utility of information derived from this wide array
of resources is tied to the accuracy of the chain of forecasts on which the derivation relies.
Predictions of health effect depend on accurate forecasts of the amount and duration of the
contamination and its infiltration into spaces where the people are. Contamination forecasts
depend on accurate forecasts of the atmospheric environment, especially wind and mixing, on
appropriately fine scales. Forecasts of the local atmospheric environment depend on forecasts of
larger-scale patterns, such as the tracks of storms, positions of fronts, and large-scale moisture
transport. The potential for surprises is significant, especially for emergencies relevant to this
discussion: those affecting more than several square kilometers.

Weather forecasters routinely reduce the likelihood of surprises in developing their forecasts by
using output from multiple models. In the field of atmospheric transport and dispersion, multiple
agencies, public and private, are capable of producing scientifically defensible forecasts of
contaminants” doses and health effects. Having a variety of missions and perspectives, these
agencies use multiple models and various sets of modeling parameters. If a protocol for
cooperation can be established, a multiplicity of models can become available for use in a given
emergency. This protocol would include standardization at least of report formats and
communications protocols. It would also provide for the selection of a coordinator from an
appropriate location and agency for any given emergency. GUI’s based on this standard protocol
could then facilitate rapid communication of all information to the appointed coordinator.

6. VERIFICATION

Verification is fundamental to any modeling effort, but must be so construed as to give account
to the purpose of the model. For regulatory application the issue is the reliability of a model’s
forecast of compliance or noncompliance with regulations. Rapid execution is unnecessary, and
the highest concentration’s location in time or space is of less interest than its value. Emergency
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applications in contrast require rapid execution, using data of opportunity. The location in time
and space of the contaminant cloud from this particular release is the primary issue.

Models are verified by evaluation of the assumptions and simulations, by searching out coding
errors, and by comparison with measurements. Comparison with measurements may be direct or
indirect. Indirect comparison uses models more sophisticated than the one being tested. The
sophisticated model transforms and interpolates the measurements, enhancing the utility of the
comparison.

Not all mismatches between models and measurements arise from shortcomings of the models.
Certainly, every model is simpler than the scenario it simulates. But measurement programs
likewise capture only partially the scenarios they observe. Instruments cannot be placed
everywhere, nor will the deployed instruments perfectly represent the phenomena on which they
are to report. They may be inappropriately located and exposed, imperfectly calibrated, or
insufficiently dense. They may not be measuring the optimal parameters to discern the physical
processes being simulated by the model. Like the shortcomings of modeling, these shortcomings
of experimental design arise from technological limitations. With care, knowledge, luck, and
good judgment, they can be minimized, but not eliminated.

Furthermore, the model operates on ensemble statistics, predicting the mean, and perhaps higher
moments, of a distribution of outcomes of identical experiments. Measurements represent only
one of these outcomes, though a time or space average may, with appropriate design, estimate an
ensemble average. The spread of individual outcomes about the ensemble mean may be large
compared to the mean itself, introducing a wide range of irreducible mismatch between the
measured and forecast values. Evaluation scores need to be designed to take this situation into
account (Weil et al., 1992). Furthermore, emergency-response models are explicitly concerned
with estimating the outcome of yet another single realization. This requires explicit
consideration of concentration fluctuations in some form in the evaluation and in the operational
use of the model.

In the traditional evaluation tests a tracer is released over an array of 100 or more fixed monitors,
deployed according to the situation being tested. Often the pollutant cloud will hit only a
minority of the sensors, the majority reporting zero. The model domain will have the same
result—a perfect forecast, but of no interest. Eliminating all pairs of measured and modeled
values, where both are zero, can strengthen the evaluation. The obvious pairing of observed and
modeled concentrations matches them by location and time. Such a pairing, however, lumps all
sources of variance together, including the irreducible variance noted above. Other comparison
schemes have been found more useful. '

Moderate errors in transport often have large consequence because of the strong variation of
concentration across the plume. Pairing modeled and measured data by rank can mitigate this
problem for regulatory applications if the location of high concentration is not important.
Emergency response, for which location matters, requires more detailed knowledge of both
transport and dispersion of contaminants. These can be separated in the measurement protocol
by tracking the contaminant cloud with mobile sensors whose absolute position on earth is
always known. The Global Positioning System (GPS) has greatly simplified this activity over
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the past decade. Such a protocol allows specification of the measurements’ locations relative to
the center of the cloud as well as to earth. Pairing measured and modeled results relative to the
centers of the measured and simulated clouds tests dispersion alone. Comparing these clouds’
centers relative to earth tests the transport.

6.1 Evaluation Criteria

The evaluation criteria for these comparisons are intended to establish the capabilities of models
generally and to distinguish between better and poorer models. Many of the criteria presented
below were taken from Chang et al. (2000). The simplest quantitative measures are purely
statistical. The quantities being compared may be the concentrations (C,, C,) themselves, or
they may be more general statistics (S,, Sp). The subscripts refer to “observed” and “predicted”
values, paired in any of the ways discussed above. The (S,, Sp) may be a spatial or temporal
mean or something more exotic, such as the robust highest concentration (RHC) of Cox and
Tikvart (1990).

The simple difference

d = §,-§,

applies best when S has a Gaussian or other symmetrical distribution. Concentrations
themselves, being nonnegative, have a skewed distribution, often approximately lognormal.
Their ratios are generally more meaningful than their differences. A given value of d under low
concentrations may be a large fraction of those concentrations. The same value of d under
concentrations one hundred times as large may be insignificant relative to the concentrations.
Factors of 100 and more between largest and smallest concentrations are common in evaluation
experiments. If a simple average of differences is used, the results will appear to be worse than
they are. Pairs (C,, C,) with the highest concentrations will dominate the average even if their
discrepancy is not particularly large relative to their value. A better use of d is with composite
measures S, and S,, which themselves subsume all aggregation.

A simple modification, if S is positive and not itself an aggregate, is to normalize by the mean
between S, and S, to form the Fractional Bias

2(8,-5,)
B, = ———, §,,§,20

S,+8§,

An average of individual values of Br is uniformly influenced by all entries regardless of the
magnitude of S. A perfect match gives Br = 0. The fractional bias is bounded by 2, which
occurs when either of S, or S, is zero.

Recognizing the approximately lognormal distribution of the concentrations, the ratio of their
geometric means

M, = exp(lnC, - lnCp)

is an attractive aggregate statistic. It measures discrepancies as ratios, rather than arithmetic
differences. A perfect resultis Mg =1. As measures of the systematic bias of a model, By and

M function similarly. The fractional bias, however, can tolerate a zero value in either S, or S,
(not both). With Mg all concentrations must be strictly positive. This can be troublesome near
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the edge of a cloud. On the other hand, M, being unbounded in either direction, is very
sensitive to pairs (C,, Cp), where both are small, but one is much smaller than the other. A
plausible approach is to select a threshold concentration such that all quantities below the
threshold are assigned the threshold value. The algorithm must, of course, eliminate any pairs of
ZEeros.

The normalized mean square error
(S,-5s,)°

53,
measures the strength of the spread of predicted values about observed, relative to the square of
the geometric mean of the averages. Since the numerator is the mean of &, the same comment
applies here for lognormally distributed S. The square, in fact, enhances the significance of

larger discrepancies. The normalization by the product of the means compensates somewhat for
mean discrepancies in the two data sets.

gMS

The geometric variance of observed about predicted
V, = exp[(lnSo - InS,)’ ]
was used by Chang et al. (2000) to measure the random scatter of model results. Although this

expression is simple, its interpretation is not straightforward. More direct is the geometric
variance of the ratio of observed to predicted about its geometric mean:

V.. = exp| ((InS,-InS,) - M) |

This removes the geometric means from the expression, leaving only the random scatter. The
scatter may be more readily interpreted from the “geometric standard deviation:”

o = exp|Ini(Veo)]
If S is lognormally distributed, approximately 68% of the predictions are within a factor o;
of M.

The linear correlation coefficient between predicted and observed values

(s, -5,X8,-5,)
05,0,

R =

gives a measure of the interrelation between the two sets of statistics. Again, given the
approximate lognormal distribution of concentration, it may be useful to consider computing R
on the logarithms of the quantities.

A commonly used evaluation that takes account of the nature of the distribution of the
concentration is the fraction within a factor of N

size{A E) #<§—2<N}

facN = size {QF

Here Q is the set of all outcomes of the test. Its subset A is described in the expression, and size
{A} is the number of members in the set A. Often N = 2, though other integers have been used
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when necessary.
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Figure 2: Example of regions used to compute the MOE (from Warner et al., 2001)

6.2 Measure of Effectiveness

Warner et al. (2001) have developed a Measure of Effectiveness (MOE) which evaluates a
forecast in terms of the regions of false positive Agp, false negative Agy, and overlap Agy. In
Agrp, contamination was forecast but not experienced. In Agy, contamination was experienced
but not forecast. In Agv, contamination was both experienced and forecast, though not

. . ) A A .
necessarily in the same amount. The MOE has two dimensions (1— N 1- i) , either of
HIT PR

which can range in [0,1], including endpoints. Here Ay is the region which experienced
contamination, while Apg is the region predicted to experience contamination. Thus the two
dimensions of the MOE are unity minus the false negative fraction, and unity minus the false
positive fraction. The MOE provides a framework which can incorporate graphically both the
model’s practical effectiveness and the user’s level of risk tolerance.
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Figure 3: MOE from two models finding the extent of the affected area depicted in Fig 2,
where the “effect” is taken to occur when the dose exceeds 60 units. (from Warner et al.,
2001)

The index is determined by comparison between data from a dispersion experiment and forecasts
from the model being tested. The “areas” may be defined in multiple ways, giving flexibility to
the measure. Typical dispersion experiments report the dose of tracer received over a specified
sampling time along rings of samplers at several distances from the source. If the extent of an
affected area is more interesting than the dose received within, the Apy can be defined as the
cumulative length of segments of the sample ring on which dose above some threshold was
experienced, but not forecast. The Arp and Apv are defined analogously. When the dose within
the affected area is important, integration along a sample ring is used. The Agp is the integral of
that forecast dose which exceeds the dose observed. The Agy is the integral of that observed
dose which exceeds the dose forecast. The Agy is the integral of that portion of dose both
observed and forecast. Fig. 2 shows an example.
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The MOE is presented graphically as in Fig. 3. A perfect forecast has MOE = (1,1). When
MOE is (0,0), the forecast region is disjoint from that actually affected. Warner et al. (2001)
used the MOE to compare models of NARAC and HPAC using data from the Prairie Grass
Experiment (Barad, 1958). They estimated the 95% confidence interval using bootstrap
resampling techniques, to be discussed below. Both models are comparable in overall accuracy,
the difference showing the tradeoff between false positive and false negative bias. The NARAC
results indicate greater likelihood of false positive than negative. That is, false alarms are more
likely than failure to warn. The HPAC is also biased in this direction, but less so.

Different applications may imply different biases in the risk-tolerance tradeoff. Users can
represent their bias through a user’s figure of merit (FOM)

A
0 £ FOM = ov < 1.
(Aoy + CpyApy + CppApp)

The coefficients Cry and Crp take nonnegative real values and indicate the user’s tolerance of
false positive and false negative outcomes. A large coefficient indicates low tolerance. If both
coefficients are zero, any outcome is acceptable. A defensive role indicates large Cry and allows
smaller Crp, preferring false alarms over failure to warn of a hazard. The FOM, if plotted on Fig.
3, would vary over the region from zero at (0,0) to unity at (1,1). It can be represented as a color
spectrum varying from red to green with yellow assigned to 0.5. Models with MOE in the green
area are acceptable according to the user’s criteria, expressed through the coefficient values.

6.3 Bootstrap Resampling |

Given an outcome, consisting of pairs (So, Sp), the performance of a model can be assessed using
measures such as those just given. This single number however would be different if the test
were run again, even under the same conditions. The distribution of such possible outcomes can
be estimated from the data on hand using the “bootstrap” resampling technique (Efron and ﬂ
Tibshirani, 1998). The existing collection of pairs (S,, Sp) is taken to be representative of all
possible outcomes of the test. The bootstrap will provide estimates of the underlying population,
accurate to the extent that the sample in hand properly represents it. The larger the collection the
better is the approximation. The procedure is to form from this set a large collection of
alternative outcomes, at least 100, by randomly drawing about as many pairs as in the original
collection. The crux of the technique is to draw each successive pair from the full set. That is,
the drawing includes replacement. From each alternative outcome, the performance measure of
interest is computed. The collection of performance measures estimates a distribution that could
have occurred by chance from the test that was run.

Any desired statistic can be determined from this distribution. Central statistics are, however,
more accurately estimated than are higher moments and more extreme quantiles (2%-ile or 98%-
ile, for example). Such statistics depend on low-probability outcomes, intrinsically unlikely to
be present in the underlying outcome set. High-percentile values, however, are interesting as
limits to the confidence interval for the performance measure. The accuracy of their estimation
can be improved by providing a larger initial set of pairs or by fitting a tail model to the
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distribution. Knowledge of the physics of dispersion and of the situation simulated is required to
design the resampling scheme and to interpret the results. For example, outcomes from multiple
tests may be combined to increase the statistical power. However, tests run under different
stability conditions would be inappropriate for combining into a single set.

Another resampling scheme can be applied to assess the likelihood of significant difference
between two models by some test statistic, such as one of the performance measures. Test
statistics, such as mean or maximum concentration, can also be compared between an individual
model and a set of measurements. Each set of outcomes, measurements, model A, model B, efc.
forms a column in a conceptual table. Each column is ordered by the same protocol. For
example, the ordering may be by time and place, or by quantile in their respective sets. Any
ordering may be used so long as it is the same for each column.

By the null hypothesis, each column represents a sample from the same population. That is, the
underlying “true” value of the test statistic is the same for each column. If so, one can create
additional outcomes by drawing from each row a value selected randomly from among the
columns. If many new columns are created this way and the test statistic computed for each, a
distribution of values of the test statistic can be developed. This distribution gives the likelihood
that any particular value of the test statistic occurred by chance, given that all outcome sets came
from the same population. If the probability is “small” that the test statistic from one or more of
the original sets occurred by chance, the hypothesis is rejected. Following standard statistics
practice, some prespecified threshold defines “small.”

Optimally for resampling, the departure between simulated and observed values is symmetrically
distributed about zero. Pollutant concentrations, being nonnegative, often have approximately a
lognormal distribution. Thus, the logarithms of the concentrations are more symmetrically
distributed than the concentrations themselves.

6.4 Statistically evaluating model physics

The best model is the one with smallest bias and greatest confidence that error is small. That is,
it has a small discrepancy between predictions and measurements, and that discrepancy has a
narrow confidence interval. Such pure statistical techniques show one model to perform better
than another for the conditions of the sample. The likelihood of good performance under other
conditions is greatly enhanced if the model’s superior performance reflects a superior simulation
of the underlying physics: “did the model get the right answer for the right reason?”

Establishing multiple ensembles of observations can test the ability of the model(s) to represent
changes in the physical environment. Membership in an ensemble is defined by values of the
model’s input parameters &,, which include source configuration, static stability, wind speed, and
the like. Subranges of the &, define bins to which measurement runs are classified. All runsina
given bin constitute an ensemble. The width of a bin is determined by the significance of
variations in each &;, i=1, ..., n, which can be tested by resampling.
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Sufficient observations to populate each bin with a meaningful ensemble are usually unavailable.
A promising alternative for some situations (Weil et al., 1992) is to assume that the
dimensionless fluctuation ¢’, o has a universal probability distribution independent of the
values of &,. Here o, is the standard deviation of the concentration fluctuations, and ¢’ is the
departure of measured concentration from the ensemble mean due to unaccountable sources of
variance. lItis the irreducible component of measurement uncertainty. Unfortunately, o is
generally unavailable as well, leading to a further compromise. The ratio of predicted to
observed concentrations ¢, co ', paired in any appropriate way is distributed approximately
lognormally. Its logarithm, approximately Gaussian, can be plotted as a function of the
parameter &; of interest. Given the usual scatter in such a plot, it is preferable to define bins from
subranges of &;. If the confidence interval for In(c;)-In(c,) excludes zero, the model is judged
insufficiently responsive to changes in & over the affected range.

7. SUMMARY

The impressive increase in computer resources over the past 20 years has enabled major
advances in forecasting atmospheric contaminants’ dispersion. Highly detailed modeling, based
on sophisticated theory, is now available (e.g., Lee et al., 1998; Leone et al., 1997; Sykes et al.,
1998; Bacon et al., 2000). Emergency releases are likely to be in urban settings, prompting
development of detailed modeling schemes (Cybyk et al., 1999a; 1999b; Griffiths, et al., 2000),
along with simpler schemes for more rapid response (Grimmond and Oke, 2002). The more
detailed models apply well to the pre- and post-event activities of planning and cleanup.
Modeling for response to an event in progress must be simpler to be able to run in the shortest
possible time. Furthermore, responders are dealing with one particular outcome of a stochastic
process having intrinsically large variance. Continued increases in computer power and
communication promise to make the results of increasingly sophisticated modeling available to
such responders.

Use of theoretical sophistication in modeling requires accompanying demonstration of improved
forecast accuracy and versatility. Increasingly sophisticated field tests and data sets are coming
available (e.g., Chang et al., 2003; Masson et al., 2002; Allwine et al., 2002). Forecasts of
uncertainty, now possible under current simulation practice (e.g., Sykes et al., 1998), are
receiving tests of validity and cost-effectiveness (Warner ef al, 2002). In any case a large
irreducible uncertainty is characteristic of dispersion forecasting (Hanna and Yang, 2001). The
primary source of uncertainty is in representing the atmospheric environment, especially the
wind, which determines the contaminants’ trajectory. Characterizing this uncertainty after the
manner of Warner et al. (2002), Chang et al. (2003), and Draxler (2003) is important and worthy
of further work.

Resources, both in computing and in databases, are now sufficient to provide a friendly interface
that rapidly displays information in a form readily grasped by emergency decision makers,
saving much-needed time. With appropriate cooperation and standardized protocols, output
from several agencies’ models could be made available to an information coordinator for a given
emergency. This coordinator, preferably having knowledge of dispersion in the local area would
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choose an appropriate strategy for a given release in the face of the remaining large uncertainties.
Having the results from multiple models in standard display format provides some idea of the
range of possible outcomes.

Training of those responding to emergencies involving atmospheric releases can benefit from
results of model verification and uncertainty assessment applied to decision making in the face of
the uncertainty. Warner et al. (2002), for example, show that uncertainty is significantly reduced
if a higher dose of contaminant can be tolerated. Measures of effectiveness, figures of merit, and
other means of expressing risk tolerance (e.g., Warner et al., 2001, discussed in the Verification
section above) appear promising for this effort.
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