NOAA Technical Memorandum OAR ARIL-248

COMBINING CONDITIONED LASER ALTIMETER DATA AND GPS ALTITUDE DATA
TO OBTAIN ACCURATE AIRCRAFT SENSOR HEIGHT MEASUREMENTS

Tamara K. Grimmett
NRC Postdoctoral Associate

Field Research Division
Idaho Falls, Idaho

Air Resources Laboratory
Silver Spring, Maryland

March 2003

UNITED STATES NATIONAL OCEANIC AND Oceanic and Atmospheric
DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Research Laboratories
Donald L. Evans VADM Conrad C. Lautenbacher, Jr. Daniel L. Albritton
Secretary Under Secretary for Oceans Acting Director

and Atmosphere/Administrator

Notice

This document was prepared as an account of work sponsored by an agency of the United States
Government. The views and opinions of the authors expressed herein do not necessarily state or
reflect those of the United States Government. Neither the United States Government, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Mention of
a commercial company or product does not constitute an endorsement by NOAA/OAR. Use of
information from this publication concerning proprietary products or the tests of such products
for publicity or advertising purposes is not authorized.

il

etatalalslolatatelaTaTolnlatatatzTatletlalatatalsiainiatatatalatatlatale et tatntaYe i e Ta

Contents

NOLCE . . . o o it et e ii
Tableof Contents @ it ittt e iii
Listof Figures 0 i i e e e e e e e e iv
Listof Tables e e e e v
ADBSIract e e e e e e e e e e e i
1 Introduction e e e e e e e 1
2 Instrumentation e e e e e e 1
3 Dataand DataProcessing o it 2
4 Methodology e e e 3
4.1 Outlier Detection it ittt et e 3
Returns e 3

Distance-Based Method 3

Grubbs’ Test ittt e 4

4.2 Interpolationof Data 5

43 MergingGPSandLaserData00..... 6

4.4 KnownProblems 0 ... 6

5 Discussion L i e e e e e e e e e 7
6 Acknowledgments e e 7
References e e e e e e e 17
A Code. . .. e e e e e e e e e e 18

iii

List of Figures

1 Raw laser data (LXDist) for Flight 1 (July 21, 2002), second flux leg (scans 2955
to 3547). (a) Laser 1 (meters), (b) Laser 2 (meters) (c) Laser 3 (meters). 9

2 Original signal (LX Dist; black) and data points identified as bad (LXOut; red +)
due to too few returns (a) Laser 1, (b) Laser 2, (¢c) Laser3. i i e e 10

3 Original signal (LX Dist; black) and data points identified as bad (LXOut; red +)
due to too few returns and by distance-based outlier detection scheme (scans 2955
to 3547). (a) Laser 1, (b) Laser2, (c)Laser3. 11

4 Laser 3 original signal (L3 Dist; black +) and data points identified as bad (L3Owut;
red +) due to too few returns and the distance-based outlier detection scheme (scans
3150 to 3200). The clearly distinguished black ’+’ are the remaining outliers. . . . 12

5 Laser 3 original signal (L3 Dist; black +) and data points identified as bad (L30ut;
red +) due to too few returns, the distance-based outlier dectection scheme, and
Grubbs’ test (scans 3150t03200). e e e 12

6 L1Dist (black) and N Alt (red) for flight 1, second flux leg (scans 2955 to 3547). . 13

7 L10wut, L123 Avg, N Altc for flight 1, second flux leg (scans 2955 to 3547). Black
line (L10wut) is the corrected laser 1 data; red (L123 Avg) is the three laser signals
averaged together; green (N Altc) is the offset GPS signal. 13

8 L30Out, L123Avg, N Altc (in meters) for flight 1, second flux leg (scan 2955).
Black line is the corrected laser 3 data; red is the three laser signals averaged
together; greenis the offset GPSsignal. 14

9 Original laser signal (LX Dist; black) and the corresponding corrected signal (LXOut;
red) for scan 2955. (a) Laser 1, (b) Laser2, (c)Laser3. 15

v

List of Tables

1 Summary of cumulative number of bad points identified by different detection
methods. Each column indicates the number and percentage of bad points found
by each method and any proceeding methods for scans 2955 to 3547 (88950 data

POINES). . o o e e e e e e e e e e e e

Abstract

For low level applications, the height of a given sensor above a surface or vegetation canopy is
often a critical measurement if vertical gradients are significant (i.e. within the lower boundary
layer.) This is particularly true for low flying aircraft (10-20 m altitude) where, under stable
conditions, vertical gradients are significant over a few meters. Data from two different altitude
measuring systems (GPS and laser altimeters) can be combined to produce an accurate sensor
altitude measurement. This report outlines an algorithm developed to condition laser altimeter
data and combine it with Global Positioning System (GPS) altitude data to arrive at a more
accurate sensor altitude measurement for low-level flights.

1 Introduction

In an effort to increase our knowledge of the air-sea interface, the Coupled Boundary Layers
Air-Sea Transfer (CBLAST) for light-wind (Low) research program was created. The objectives
of the CBLAST-Low program are

e to measure vertical fluxes of momentum and heat in the lower atmospheric boundary layer
and in the ocean surface layer;

e to identify the processes that influence these fluxes (e.g., shear, convection, surface wave
breaking, Langmuir cells);

e to close budgets for heat and momentum;
e to test parameterizations of fluxes; and

e to obtain other measurements (e.g., horizontal variability of pressure and temperature
sufficient to provide boundary conditions for a large eddy simulation or local application of
a regional-scale simulation).

The initial CBLAST-Low pilot study was conducted during a three week period in July and

August 2001 over the Atlantic ocean south of Martha’s Vineyard Island, Massachusetts. The
LongEZ (registration N3R) research aircraft acquired high-resolution in situ atmospheric

turbulent fluxes in the marine atmospheric boundary layer (MABL) and simultaneously

documented the characteristics of the surface wave field with various remote sensors [Crescenti .
et al. (2001)]. This highly instrumented aircraft has proven to be an especially powerful tool for
studying the spatial variability of air-sea interaction [Crawford et al. (1993), Vogel and Crawford
(1999), Crescenti et al. (1999), Mahrt et al. (2001), Mourad (1999), Sun et al. (2001), Vogel and
Crawford (1999), Vandemark et al. (2001), French et al. (2000), Mourad et al. (2000), Vickers

et al. (2001)].

The purpose of this technical report is to outline a methodology for deriving highly accurate
sensor altitude measurements above the sea surface. Precise sensor altitude is necessary to correct
or extrapolate wind speed to a 10-meter reference height. Corrections may be significant under
stable conditions where strong vertical gradients may introduce significant changes in wind speed
over a few meters. We have observed uncertainties in GPS-derived altitudes up to 4 meters even
after differential corrections have been applied.

2 Instrumentation

A dual-frequency Ashtech GPS is used on N3R to determine ground velocity and aircraft
position (x,y,z) relative to a fixed point on earth. By using differential GPS (DGPS) correction
techniques, aircraft position can be measured to within several centimeters and ground velocity
can be computed to an accuracy of roughly 2 cm/s in the horizontal and 2.5 cm/s in the vertical.
(DGPS is not always available such as for flights over the remote ocean or the arctic sea-ice where
a fixed base station is not possible.) These data are acquired at a rate of 5 Hz. Three

orthogonally-mounted accelerometers are used to augment the GPS position and velocity data to
a frequency of 50 Hz.

An array of laser altimeters is designed to measure the sea surface profile and the one- and
two-dimensional slopes of intermediate scale waves on the order of 1 to 10 m from three
independent altitude measurements. The laser array consists of three Riegl downward-looking
lasers mounted on the vertices of an equilateral triangle with 0.95-m separation. Two are mounted
under either wing (model LD90-3100VHS) while the third (model LD90-3100EHS) is situated in
an instrument pod mounted underneath the aircraft fuselage. The circular footprint of each laser is
about 7.5 mm in diameter at an altitude of 15 m. The two lasers mounted in either wing operate
with a pulse repetition frequency of 2 KHz while the third laser in the pod operates at a frequency
of 12 KHz. The individual pulses are averaged down to a rate of 150 Hz to reduce noise resulting
in 13 pulses per data point for the 2-KHz lasers and 80 pulses per data point for the 12-KHz laser.
The lasers output distance and number of valid returns. The focal length of the lasers are set to 15
m providing a nominal accuracy of 2 mm. The maximum altitude for which the lasers provide
useful data is about 50 m. For more information on N3R and its instrumentation, see Crescenti
et al. (2001).

Even after differential corrections are applied, the GPS-derived altitude above sea level has
uncertainties which are due to the geometry of the constellation of satellites, the geoid model used
to represent the earth’s surface, the actual location of the sea surface compared to the geoid
surface, atmospheric refraction, multipath effects and the number of satellites. This causes the
altitude measurement of the aircraft to be off by as much as 4 meters even though the reported
accuracy of the GPS is several centimeters. The most likely source of this large error is the fact
that the surface of the ocean is assumed to be the surface of the geoid. This error in altitude of up
to 4 meters may not be significant at high altitudes but at lower altitudes (10-20 meters), where
gradients in meteorological variables are larger, can be a signficant error. The signal is "clean’
though in that it has no outliers or dropouts unlike the laser measurements which are quite
accurate below 50 m, but exhibit a significant number of outliers and dropouts. The lasers require
some surface roughness to get a return. Therefore, at very low wind speeds (< 2 m/s) when the
ocean is relatively smooth, the lasers may not provide reliable data. By conditioning the laser data
and combining it with the Ashtech altitude data, an accurate sensor altitude measurement can be
obtained. This report outlines the procedure developed to detect outliers in the laser data, how
values are interpolated to fill in the missing laser data, and the method of merging the GPS data
with the conditioned laser data.

3 Data and Data Processing

- All of the data presented in this report are from the first day’s flight (21 July 2001) where
wind speeds ranged from about 2 to 4.5 m/s providing conditions such that the lasers should
_return good data. However, there were many drop outs and outliers. Drop outs were possibly due
to small slicks on the ocean surface which cause the lasers to receive no returns. Outliers might be
due to interference between the lasers. For example, the ocean surface could be such that laser 1
might receive laser 3’s signal. Also the plane may not always be in level flight which could be
another cause of outliers.

—

The data post-processing and graphics generation is done with Research Systems, Inc.
(www.rsinc.com) IDL (Interactive Data Language) program. In IDL, the laser data is stored as a
two dimensional array. The first dimension is data rate, and the second is the number of scans.
One scan is one second’s worth of data. For the lasers which are sampled at 150 Hz, the first
dimension is 150 and the second dimension, for example, of a 60 second record would be 60. IDL
converts the two-dimensional array to a one-dimensional array when plotting. Therefore when
plotting the laser data, the numbers that would be seen on the x-axis would appear quite large
because they would be the actual number of data points. However, to make the plots more
readable, the x-axis is presented as number of scans. It must be remembered that each scan
consists of 150 data points. Therefore, the actual number of points between scans 3100 and 3200
is (3200-3100+1)*150=15150.

4 Methodology

Figure 1 shows data for all three lasers from a flux leg of the first day’s flight. The flux leg
(scans 2955 to 3547) consists of 593 scans (nearly 10 minutes) which corresponds to 88950 data
points. It is easy to see the good signal in the data, but many outliers are evident, particularly for
lasers 1 and 3. Laser 2, with its higher sampling rate, exhibits fewer outliers.

4.1 Owutlier Detection

The first problem is to identify the invalid data points and outliers in the laser data. This is
done by applying three different detection methods. The first method, dubbed the ’returns’
method, identifies all invalid data points which are defined as data points that have less than 3
returns. The second is a distance-based (DB) outlier detection algorithm. The third is to apply
Grubbs’ test [GraphPad.com (2000)] for outliers. A box plot method was tried in place of the
distance-based method and Grubbs’ test initially, but because of the erratic nature of the data it
was unable to satisfactorily detect the outliers. The so called ’returns’ method identifies bad
points, not just outliers. The DB method and Grubbs’ test are designed to detect outliers.
Throughout the remainder of this report, the terms drop outs and outliers are referred to as bad
points since in the end all these points are rejected and new data are interpolated at their locations.
For all of these methods, one scan at a time is examined.

Returns As mentioned in section 2, 13 valid returns are possible for lasers 1 and 3 and a
possible 80 returns for laser 2. If less than 3 valid returns for any laser are received, the data point
is considered invalid. This filter will reject points that are outliers or dropouts as well as data that
appears to be valid. If in one scan (150 data points) there are less than 4 good data points, the
whole scan is marked as bad and values will be interpolated for it. Figure 2 shows, for flux leg 2
(88950 data points), the data points that are identified as bad by this filter. For laser 1, 28.6%
(25467 data points) of the total points are identified as bad. For laser 2, 20.1% (17863 data points)
are identified as bad and for laser 3, 29.9% (26564 data points) are bad. (Table 1 summarizes the
cumlative number of points identified as bad with each successive detection method.)

Distance-Based Method Many outliers still remain after the returns’ filter is applied, so the
distance-based (DB) outlier detection scheme based on work of Knorr and Ng [Knorr and Ng
(1998)] is employed. This method was intended for multi-dimensional databases so the basic
concept is simplified for the one-dimensional case. The algorithm is as follows:

3

Laser Returns DistBased Grubbs
1 25467 (28.6%) | 27165 (30.5%) | 33519 (37.7%)
2 17863 (20.1%) | 19940 (22.4%) | 26304 (29.6%)
3 26564 (29.9%) | 28634 (32.2%) | 34875 (39.2%)

Table 1: Summary of cumulative number of bad points identified by different detection methods.
Each column indicates the number and percentage of bad points found by each method and any
proceeding methods for scans 2955 to 3547 (88950 data points).

1. Determine how many ’good’ points are left after the returns’ filter.
2. Find the first good point in the scan.

3. Compute the Lagrangian distances (I = v/z? + y?) from the first good point to every other
good point in the scan.

4. If a distance exceeds some value, D, then mark the point as an outlier. (A data point is
marked bad by using NaN.)

5. Add these outliers to the bad points found by the ’returns’ filter.

The first good point is determined by computing 'max’ and *min’ values which are defined as +
one standard deviation from the mean of the remaining good points, and the first point that falls
within this range is selected as the first good point. A value of D = 1.2 was determined
empirically to give good results when less than 143 good points remain after the ‘returns’ test. If
143 or more points are good, then D is set to 0.5. The value 0.5 was also empirically determined.
It was found that if more than 143 points in the scan were good, then outliers were generally
closer to the good data so the distance measure had to be decreased. Figure 3 shows all the points
that are detected as bad from the returns filter and the distance-based outlier detection scheme.

Grubbs’ Test A very careful examination of Figure 3 shows some few outliers still remain after
the DB method is applied. A smaller section (scans 3150 to 3200) of the laser 3 data of Figure 3
is shown in Figure 4 which shows more clearly some of these remaining outliers. As a final step
to detect these outliers, Grubbs’ test [GraphPad.com (2000)] is used. Grubbs’ test is only done if
at least 6 good data points remain in the scan. If this is true, then the following algorithm is
followed otherwise Grubbs’ test is not performed.

1. Compute the mean (1) and standard deviation (o) of the remaining good points.

2. Compute the Grubbs’ test statistic as

P | — value|
152
3. Compute the critical value of Z, Z,.
N-1
e = () *0.15
VN
4

N S

Vet Ya et ilat ot tareals

A

R

" § B M S R K- 4 v S

where N is the number of values. The criteria for outliers is Z > Z.. Z, can never be larger
than (N — 1)/+/N, but since the outliers sought in this step are very near the good data, the
critical value was reduced significantly by the factor 0.15 which was empirically
determined.

4. Mark outliers with Na/N and add to other bad points.

Figure 5 shows results (same as Figure 4) after Grubbs’ test is used.
4.2 Interpolation of Data

After all the bad data points have been determined for each laser, data is interpolated at the
locations of these bad points to provide a good continuous signal. Simple linear interpolation is
used. The entire flux leg is treated at once versus a scan at a time. The reason for this is that there
are some scans with no good points with which to start the interpolation. By using the full flux leg
there are always good points to use in the interpolation scheme. The interpolation algorithm is as
follows:

1. Sort the bad points in ascending order.
If there are no bad points, return.

Note the location of a bad point.

Eal S

Search to the left until a good point is found; note as L. If the end of the flux leg is reached,
set the left point to be the first point of the flux leg.

5. Search to the right until a good point is found; note as R. If the end of the flux leg is
reached, set the right point to the last point of the flux leg.

6. Determine how many points need to be interpolated (R — L + 1).
7. Linearly interpolate for the bad points using IDL’s built in functions.

8. Check if the interpolated point is within 3% of the original point. If the interpolated value is
less than 3% different from the original, then use the original value, else use the
interpolated value.

9. Repeat from step 3 until no outliers are left.

The check to see if the interpolated value is within 3% of the original value is done to ensure that
any original data, if it appears to be good, is used. This uncertainty can arise for the case when the
original point was marked bad because of too few returns. In some of these cases, an interpolated
value can be very close to the original value, and it was deemed better to use the original data
rather than the interpolated value.

If no good data poihts are found to the left or right of a given bad point, then the interpolation
is done from zero. For example, if there is not good data point found to the left in the search to the

5

P

beginning of the flux leg, then that first point is assumed to be zero and is used in the
interpolation. This is discussed further in section 4.4.

After the three lasers have been corrected to obtain three good continuous signals, the vertical
distance from a given sensor (for example, the wind measurement sensor) to the ocean surface is
derived. This involves converting the data from aircraft based coordinates to earth-based
coordinates. The conversion to earth-based coordinates, explained more fully in Vogel and
Crawford (1999), involves taking into account the attitude of the aircraft and the sensor locations.

4.3 Merging GPS and Laser Data

As mentioned earlier, the GPS altitude measurement tends to drift. Figure 6 shows the laser 1
data (L1Dist) with the GPS (V Alt) measurement. The GPS altitude is several meters lower than
the laser measurement and is evidence of the drift in the Ashtech GPS. The merging of the GPS
data and the laser data is done as follows:

1. Average the three laser readings together to get one reading.

2. Compute the median difference between the average laser reading and the GPS signal in 60
second (scan) increments. Consideration is given to the fact that the laser data is taken at
150 Hz while the GPS data is 50 Hz.

3. Add this value to the GPS data.

4. Handle in a similar manner the last interval of the flux leg that is less than the 60 second
averaging time in length.

This method gives reasonable results as seen in Figure 7. The variable L10ut is the conditioned
laser 1 data; variable L123 Avg is the average of the 3 conditioned (in earth-based coordinates)
laser signals; and N Altc is the offset GPS signal which is taken as the true sensor altitude. Since
the aircraft is flying nearly level most of the time the conversion to earth-based coordinates makes
little difference.

4.4 Known Problems

The above outlined method gives good results for the middle portion of flux legs where the
attitude of the plane is relatively level. But at the beginning and end of flux legs, there are scans
where the aircraft is pulling out of or going into a profile event. The plane is not completely level
during this time which would cause the laser signal to glance off the water surface at an oblique
angle and not return to the antenna causing drop outs. For example, a careful look at the very left
edge of Figure 7 shows that L123 Avg appears to go to zero. A closer look at just the first scan
(scan 2955) for the flux leg, clearly shows the problem. This is shown in Figure 8 where the
corrected laser 3 data (before the conversion to earth-based coordinates), the three-laser averaged
signal and the corrected GPS value are plotted. The corrected GPS value N Altc gives a
seemingly correct answer because of the offset added to the raw GPS based on a 60-second
average of the combined laser signal.

Al

~ N

oSN

Figure 9 shows the raw laser data and the corrected laser data for the three lasers. It can be
seen that the corrected signal for laser 2 and 3 goes to zero at the very beginning of the scan. This
is because there were no good data points until later in the scan, thus when the interpolation was
done there was no ’left’ side data point except zero. The interpolated signal ramps from 0 to the
first good data point. In calculating fluxes from these flights, the very beginning and ending of
each flux leg is neglected to ensure only a good signal is being used.

5 Discussion

There is probably more "tweaking’ that could be done to this method, but the steps as they
now stand give satisfactory results in a reasonable amount of time. Therefore it was deemed
unnecessary to try to refine the method any further. However, many of the parameters in this
method are arbitrarily chosen. For example, the minimum number of points required to determine
that a scan is good was chosen as four after looking at many scans, but the number is still rather
arbitrary. And deciding that six points were sufficient to use Grubbs’ test was arbitrarily chosen
also though based on minimums suggested for the method. These types of parameters would need
adjusting to apply this method to data from another experiment. This method would therefore be
more useful if the adjustable parameters could be chosen as a percentage of the number of data
points or by some other statistical test. Determining these parameters for each experiment
empirically (trial and error) is time consuming and very arbitrary. -

Other outlier detection schemes might also work in place of the distance-based scheme
and/or Grubbs’ test, but these worked well for the CBLAST-Low data. Repeated applications of
Grubbs’ test with decreasing critical values might also work just as well, but this was not tried.
Repeated applications of the DB method did not work. It was not possible to find a second value
for D that would detect all remaining outliers after an initial run of the DB method.

Determining how well this algorithm performs is difficult. Checking to see if all bad points
are identified in all scans for all flights by visual means is time consuming and tedious. Therefore,
a check of every scan was not done, but random ranges of scans were visually checked. A better
checking method would be desirable, but if this could be devised a better detection scheme would
then immediately be available.

This method could also be used with only one laser altimeter measurement. In this case, there
would be no averaged laser signal but one signal to correct the GPS altitude.

Comments from a reviewer were gratefully received. It was suggested that the work be
extended to include height assessment over a forest. However, that was beyond the scope of the
present work. But in that case, the algorithm would be revised to calculate sensor heights above
both the ground and the canopy. Also a future application might be a real-time height algorithm
developed for unmanned aerial vehicle (UAV) autopilot software. However, this has probably
already been addressed more rigorously elsewhere.

6 Acknowledgments

This work was performed while the author held a National Research Council Research
Associateship Award at NOAA’s Air Resources Laboratory/Field Research Division in Idaho

Falls, Idaho. The CBLAST-Low work was supported by a contract from the Office of Naval
Research (N00014-01-F-0008). '

—~

Y

,"'\' SN NN .‘\. ~ TN M 4./\" ~ TN

Ve e N N =\ ;‘f\v YW aal e e et e

=

—

II|IIII[|II|

L1Dist (m)
o
:II-J.JII|I|II|IIII

|||IIIIII|

3000 3100 3200 3300 3400 3500
Scans

(a) Laser 1 (left wing)

II[IIIIlIIII

. ,
(&)}
TT TR T Fr[TTTT T

($)]
HI% ;

L2Dist (m)

lll.lllll'l

3000 3100 3200 3300 3400 3500
Scans

(b) Laser 2 (pod)

Illllllllll

~~~~~

L3Dist (m)
o
:l}||:lll T | TTTT | TTTT

IIII|III[!

3000 3100 3200 3300 3400 3500
Scans

(c) Laser 3 (right wing)

Figure 1: Raw.laser data (LX Dist) for Flight 1 (July 21, 2002), second flux leg (scans 2955 to
3547). (a) Laser 1 (meters), (b) Laser 2 (meters) (c) Laser 3 (meters).




L1Dist, L10ut (m)

25
20

15
10F

L2Dist, L20ut (m)

L3Dist, L30ut (m)

Figure 2: Original 51gna1 (LXDist; black) and data points identified as bad (LXOut; red +) due to

IIllllllI

3000 3100 3200 3300 3400 3500
Scans

(a) Laser 1 invalid returns

5
e

S AT ¥ R BTN | -
Tt + N . A . i

TN . . 4 +

/ﬁAWVMNWWAMW%mMR

Té

D;—llllllllllllllllll-\\-
W
4
1111

IS + 'l

3000 3100 3200 3300 3400 3500
Scans

(b) Laser 2 invalid returns

|||III||||II
W
I|IIIIIIIII

M

TR I

Il(llllll|

3 F
ARRE wiga
P TRy
T ;‘l)

3000 3100 3200 3300 3400 3500
Scans

(c) Laser 3 invalid returns

too few returns (a) Laser 1, (b) Laser 2, (c) Laser 3.

10

S00

) ) YD)

=

~SO0000000COCOCO0OR0O00000T0O00QN0D00D



5
>
-:{I | L1t I [

III|[|III|.

L1Dist, L10Out (m)

3000 3100 3200 3300 3400 3500

Scans
(a) Laser 1
25F ; ]
£ 20 T # ) & ! 4 e
o 15 =+, SR A + ¢ =
(o] - 1 + * —
= 100y /\j\v /AJ\/"\_\,Z
B M WA i :
- ‘l’ f 1
S s a“w M N\f\/v N V‘" \/\f" ?:
Ot ! .
3000 3100 3200 3300 3400 3500
Scans
(b) Laser 2
25F A 5
E 200 E
3 15F =
™ b
-~ C
wr 10055 —
2 L ]
S 5 =
- u ]
0_ . o =l - - 5 1
3000 3100 3200 3300 3400 3500
Scans
(c) Laser 3

Figure 3: Original signal (LX Dist; black) and data points identified as bad (LXOwut; red +) due to
too few returns and by distance-based outlier detection scheme (scans 2955 to 3547). (a) Laser 1,
(b) Laser 2, (c) Laser 3.

11




14 r £ v _ :lﬁf‘*' | ]
= 10 3 ; o A ' T
3 ok ' :
~ 6C E
n C 3
3 oF =

3150 3160 3170 3180 3190 3200

Scans

Figure 4: Laser 3 original signal (L3 Dist; black +) and data points identified as bad (L30wut; red
+) due to too few returns and the distance-based outlier detection scheme (scans 3150 to 3200).
The clearly distinguished black '+’ are the remaining outliers.

14 C bt Il?.lﬂu ) ]
E 12 E— ) |I II'F :-4 ¥ 4 ) Il ‘Lll | _I_I+ | B ::-I , "_ _-:.
8 e - Yk R 4
q O :
s 6 =
[/)] r N
9 2F =

315 3160 3170 3180 3190 3200

Scans

Figure 5: Laser 3 original signal (L3 Dist; black +) and data points identified as bad (L3Out; red
+) due to too few returns, the distance-based outlier dectection scheme, and Grubbs’ test (scans
3150 to 3200).

12

NCO00C000C000CC0C000CO0000CC0000Q00000000D02000




N
(6)}

== N
o O
T T[T TTT 7T 7]

IIIIII||||I

—i
o

L1Dist, NAIt (m)

=
;
<
g
S
55
=<
>
NEREE

o
é_“_ pra

3000 3100 3200 3300 3400 3500
Scans

Figure 6: L1Dist (black) and N Alt (red) for flight 1, second flux leg (scans 2955 to 3547).

%25: ' ]
S 151 :
g0 W\ T WW%WW ks
O or .

3000 3100 3200 3300 3400 3500
Scans

Figure 7: L10ut, L123 Avg, N Altc for flight 1, second flux leg (scans 2955 to 3547). Black line
(L10wut) is the corrected laser 1 data; red (L123 Avg) is the three laser signals averaged together;
green (IV Altc) is the offset GPS signal.

13




N
o1

) F .
< - ]
Z 20 —
o [ ]
Zz 15F -
N ;
- 10 = B
g 5 _“"k:ﬁnwfffaa,ﬁ#amﬁﬂm TSy —— g
O O Bt , o ]
2955.0 2955.2 2955.4 2955.6 2955.8

Scans

Figure 8: L30ut, L123Avg, N Altc (in meters) for flight 1, second flux leg (scan 2955). Black
line is the corrected laser 3 data; red is the three laser signals averaged together; green is the offset
GPS signal.

14

S~ N00C0CO00000CON00000000000000000000200000200 |




L1Dist, L1Out (m)

(o]
II|]III|II§.—I[II|III|III[III

*
IIIIIII|I¢L|||II|III[III|I|I

3
3

— S S AN NN NN NS N NS N NN S N e o Sy N

2955.0 2955.2 2955.4 2955.6 2955.8
Scans

(a) Laser 1

"y
D

X ORE MK * * AR s i

el e

Y .;_(.:,H.,,*'.
L ppr
| |—I-'-|-'-l—*—d-Hi-IH-‘.-!-!-!v-é-. i
R
el
L pepet

L2Dist, L20ut (m)

A
i |.|.|.|.:-:.|-|.|.|44.f..| 1
A

Illlllll II|IIIIIII|III|III

ST TT[TTT[TT T TI T[T T I ITTJrIT
LRRN RN RRRNRRRE RN

— —h
oON OO ODMN

e e s

2955.0 2955.2 2955.4 2955.6 2955.8
Scans

(b) Laser 2

AKX o x RO 3 i KX K 3¢ I*“'ﬁﬁl K PR +¥mmasaams5000004
FRTTReaE T L o
T

e

L3Dist, L30ut (m)

<

—r ot
oON OO OO O N BM

EIII'Illlll*llllllll[lll[lll

IIIIIIllI:l-l‘lllllllilllllll

4ol e

el

L

e
b

ettt

2955.0 2955.2 2955.4 2955.6 2955.8
Scans

e Ne e b M St e

(c) Laser 3

Figure 9: Original laser signal (LX Dist; black) and the corresponding corrected signal (LXOwut;
red) for scan 2955. (a) Laser 1, (b) Laser 2, (c) Laser 3.

15




References

Crawford, T., R. McMillen, and R. Dobosy, 1993: Correcting airborne flux measurements for
aircraft speed variation. Boundary-Layer Meteorol., 66, 237-245.

Crescenti, G., T. Crawford, and E. Dumas: 1999, Data report: LongEZ (N3R) participation in the
1999 Shoaling Waves Experiment (SHOWEX) spring pilot study. NOAA Technical
Memorandum ERL ARL-232, Silver Spring, MD, 86 pp.

Crescenti, G., J. French, and T. Crawford: 2001, Aircraft measurements in the Coupled Boundary
Layers Air-Sea Transfer (CBLAST) light wind pilot field study. NOAA Technical
Memorandum OAR ARL-241, Silver Spring, MD, 82 pp.

French, J., G. Crescenti, T. Crawford, and E. Dumas: 2000, LongEZ (N3R) Participation in the
1999 Shoaling Waves Experiment (SHOWEX) Spring Pilot Study. NOAA Technical
Memorandum ARL-20, Silver Spring, MD, 51 pp.

GraphPad.com: 2000, Grubbs test for detecting outliers. Internet:
www.graphpad.com/calculators/GrubbsHowTo.cfm.

Knorr, E. and R. Ng: 1998, Algorithms for mining distance-based outliers in large datasets.
Proceedings of the 24th VLDB Conference, Very Large Data Base Endowment.

Mabhrt, L., D. Vickers, J. Sun, T. Crawford, G. Crescenti, and P. Frederickson, 2001: Surface
stress in offshore flow and quasi-frictional decoupling. J. Geophys. Res., 106, 20629-20639.

Mourad, P.: 1999, Footprints of atmospheric phenomena in synthetic aperature radar images of
the ocean surface: A review. Air-Sea Exchange: Physics, Chemistry and Dynamics,
G. Geernaert, ed., Kluwer Academic Publishers, 269-290.

Mourad, P., D. Thompson, and D. Vandemark, 2000: Extracting fine-scale wind fields from
synthetic aperture radar images of the ocean surface. Johns Hopkins Univ., Appl. Phys. Lab.
Tech. Dig., 21, 108-115.

Sun, J., D. Vandemark, L. Mahrt, D. Vickers, T. Crawford, and C. Vogel, 2001: Momentum
transfer over the coastal zone. J. Geophys. Res., 106, 12437-12448.

Vandemark, D., P. Mourad, S. Bailey, T. Crawford, C. Vogel, J. Sun, and B. Chapron, 2001:
Measured changes in ocean surface roughness due to atmospheric boundary layer rolls. J.
Geophys. Res., 106, 4639-4654.

16

S COEOCECO0CNO00000000000000NNNN0000D0NIANAN




Vickers, D., L. Mahrt, J. Sun, and T. Crawford, 2001: Structure of offshore flow. Mon. Wea. Rev.,
129, 1251-1258.

Vogel, C. and T. Crawford: 1999, Exchange measurements above the air-sea interface using an
aircraft. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. Geernaert, ed., Kluwer
Academic Publishers, 231-245.

17




A Code

7
’
’

2

’

This appendix contains listings of the code written for IDL Version 5.5. The variable
*datapath’ 1s "hard wired’ in the code. This contains the directory name where the data is kept.
But the rootname’ variable must be added to ’datapath’ to get the full directory specification.

NAME: Alt (FILE: alt.pro)

Tami Grimmett

NRC Postdoctoral Research Associate
NOAA/Air Resources Laboratory
Field Research Division

1750 Foote Drive

Idaho Falls, ID 83402
Office: 208-526-2743
Fax: 208-526-2549

tami@noaa.inel.gov

PURPOSE:

The purpose of this procedure is to compute a good altitude for
the flux legs and profile manuevers.

CALLING SEQUENCE:

naltc = Alt (rootname, nalt, pitch,roll, heading, $
L1Dist,L2Dist,L3Dist, LlRetn,L2Retn,L3Retn, $

Lle,

L2e, L3e)

EXTERNAL FUNCTIONS, PROCEDURES, AND FILES:

Error_message (from www.dfanning.com)

Readmkr
HandleBadPoints
DBOutliers
Interp
InterpFastData
CorrNAlt

NAMED STRUCTURES:

marker

INPUTS:
rootname:

root filename for data

18

o~
3

\’\’\

o

N

SO0 00 5

i

N N o N N N e N T N T T N N N e Wi

Yalolslslslelalaleial

.

o~




H nalt: GPS altitude data

; pitch, roll, heading

; I.1Dist, L2Dist, L3Dist: Uncorrected laser data

H L1l1Retn, L2Retn, L3Retn: Number of returns for each datapoint

: Lle, L2e, L3e: Laser data converted to earth-based coordinates
; L10ut, L20ut, L30Out: Raw laser data with bad points identified

; Hz150: Flag to indicate if the GPS data needs
to be converted to 150 Hz. :

; OUTPUTS:

; Lle: Laser 1 data corrected to earth-based coordinates
H L2e: Laser 2 data corrected to earth-based coordinates
: L3e: Laser 3 data corrected to earth-based coordinates

: naltc: Corrected altitude data (function return)

; VARIABLES:

; MODIFICATION HISTORY

; 17 Dec 2001 Started
; 05 Mar 2002 Completed & code clean up

Function Alt, rootname, nalt, pitch, roll, heading, $
Ll1Dist, L2Dist, L3Dist, LlRetn, L2Retn, L3Retn, $
Lle, L2e, L3e, Ll23avg, L1Out,L20ut,L30ut, Hzl50=nHz150

; Note start time of this procedure
strtTime=systime (/seconds)

; Set constants

nHz50 50.
lsize = SIZE(L1lDist)

;" Interpolate slow data (50 Hz) into fast data (150 Hz)

pitch = REFORM (pitch, [nHz50,1size[2]])

roll = REFORM(roll, [nHz50,1size[2]])
heading = REFORM (heading, [nHz50,lsize[2]])

nalt = REFORM (nalt, [nHz50,1sizel2]])

pitch £ = InterpFastData(pitch, nHz150) ; 50 Hz
roll f = InterpFastData(roll, nHzl1l50) ; 50 Hz
heading f = InterpFastData(heading, nHz150) ; 50 Hz

IF KEYWORD_SET (nHz150) THEN BEGIN
nalt_f = InterpFastData(nalt, nHz150)
nalt = nalt_f

19




ENDIF

; Read marker file
; Check if there are any flux legs to correct

marker = ReadMKR (rootname,nflux=nflux)

IF nflux LE 0 THEN GOTO, endit

Lle FLTARR (Lsize[1] ,Lsize[2])
L2e FLTARR (Lgize[1],Lsize[2])
L3e = FLTARR(Lsize[l1l],Lsize[2])

; matrix = Transmatrix(roll f,pitch_f,heading f)

FOR 1 = 0L, 2 DO BEGIN ; for each laser
Learth = FLTARR(LSize[1],LSize[2])

; Create arrays to hold data with outliers removed
; Get rid of bad data (dropouts and outliers)

IF 1 EQ 0 THEN LOut = LlDist
IF 1 EQ 1 THEN LOut = L2Dist
IF 1 EQ 2 THEN LOut = L3Dist
PRINT, Laser ' ,1l+1

FOR m=0L,nflux-1 DO BEGIN
fluxStrt = marker.flux[m, 0]
fluxEnd = marker.flux[m,1]
PRINT, ‘Alt: flux leg #’, m+l
IF 1 EQ 0 THEN BEGIN

HandleBadPoints, LlDist, LOut, LlRetn, nHzl150, fluxStrt,

ENDIF ELSE IF 1 EQ 1 THEN BEGIN

HandleBadPoints, L2Dist, LOut, L2Retn, nHz150, fluxStrt,

ENDIF ELSE IF 1 EQ 2 THEN BEGIN

HandleBadPoints, L3Dist, LOut, L3Retn, nHzl150, fluxStrt,

ENDIF

PRINT, ' '

20

Create arrays to hold the data transformed to earth based coordinates

Compute the matrix that transforms airplane coordinates to earth coordinates

fluxEnd

fluxEnd

fluxEnd

alslelalslalalclolelnlelelalo Rl

-

o~

atetalalelelsinislslalnialelniorclslelslalslclololt




I

"0 T AR TR

Y

£ S s sy £y £ £ 6 e o g5 4 7

ENDFOR

; Correct altitudes to earth-based coordinates
; 1,2, & 3 refer to lasers 1,2, & 3

; Define displacement matrix
; (These are the distances from the bat probe to the lasers.)
LD = [ [-3.6871, -2.8829, -3.6871], $
[ 0.4707, 0.0000, -0.4707]1, $
[-0.3048, -1.0148, -0.3048] ]

; Translate each lasers measurement to the bat probe
Learth[*,*] = LOut([*,*] - LD[1l,2] - §
LD[1,0] * tan(pitch f/!radeg) - $
LD[1,1] * tan(roll_£f/!radeg)
; Do the transformation for the z-coordinate only
FOR m=0L,nflux-1 DO BEGIN

fluxStrt = marker.flux[m, 0]

fluxEnd = marker.flux[m, 1]

Learth[*, fluxStrt:fluxEnd]l = TEMPORARY (Learth[*, fluxStrt:fluxEnd]) * $
cos (pitch £ [*,fluxStrt:fluxEndl/!radeg) * $
cos (roll_f[*,fluxsStrt:fluxend]/!radeg)

ENDFOR

: Store corrected and transformed laser values

IF 1 EQ 0 THEN Lle = Learth
IF 1 EQ THEN L2e = Learth
IF 1 EQ 2 THEN IL3e = Learth

[=

IF 1 EQ 0 THEN L1lOut LOut

IF 1 EQ 1 THEN L20ut LOut

IF 1 EQ 2 THEN L30Out = LOut
ENDFOR

; Average the three laser readings together to get one reading

IF KEYWORD_SET(nHZlSO) THEN BEGIN
Li23avg = DBLARR (nHz150,lsize[lsize[0]])
nscans = lsize[lsize[0]]
FOR j=0L,nscans-1 DO BEGIN
FOR i=0L,nHz150-1 DO BEGIN
Ll123avgli,j] = MEDIAN( [Lleli,jl, L2eli,3j], L3eli,jl] )

21




ENDFOR
ENDFOR

ENDIF ELSE BEGIN
L123avg = DBLARR (nHz50 ,lsize[lsize[0]])
nscans = lsize[lsize[0]]
FOR j=0L,nscans-1 DO BEGIN
FOR i=0L,nHz50-1 DO BEGIN
i1 = 1*3.
i2 = i*3. 4+ 2.
tmp = [ Lle([il:i2,j1, L2el[i1l:i2,jl, L3elil:i2,3] ]
L123avgli,j] = MEDIAN (tmp)
ENDFOR

ENDFOR
ENDELSE

; Compute the mean offset between Ll23avg (the average laser signal) and
; NAlt (the GPS signal) to apply as a correction to the GPS signal
; Apply the correction
; Define averaging length
nSecMean = 60

; Define structure to hold offsets

struct = {offset_str, nOffsets:0L, values:FLTARR(30) }
onestr = {offset_str}
offset = REPLICATE (onestr, nflux)

; Correct the altitude

naltc = CorrNAlt( nSecMean, marker, nalt, Ll23avg, offset, Hz150=nHz150 )

; Apply a linearly weighted correction for the profile

; If the profile is in between two flux legs, the correction

; to the profile is weighted by the corrections for the two

; flux legs. For example, on the left side, the first point

; of the profile is given a correction which is 100% of the

; offset for the flux leg on that side and 0% from the right flux leg.

sizepro = SIZE (marker.profile)
nprof = sizeprolll]
; Check if there are any profiles
IF nprof LE 0 THEN BEGIN
; If no, print a message indicating there are no profiles
PRINT, 'ALT: There are no profiles to correct, nprof=’,nprof

22

.

«cq e

¢ee ®

,QQOO_OOOQ-OOOO!OOO"OOOQC‘Q‘QQQQ-‘QQQC“QQ‘

e, S e e e ———




N

LN

L A B B A A B A A 2 4 A 2 A A A A B A A &2 & A 2 2 & N A A R N2 2 E A E NS AN EE K

If vyes,

ENDIF ELSE BEGIN )
print a message indicating how many profiles there are
PRINT, 'ALT: There are’, nprof, ' profiles to correct’
determine if there are any flux legs
IF nflux LE 0 THEN BEGIN
If no, print a message indicating there are no flux legs
PRINT, ‘ALT: There are no flux legs to correct profiles, nflux=’',nflux
If yes,

ENDIF ELSE BEGIN
for each profile
FOR ip=0L,nprof-1 DO BEGIN
profStrt = marker.profilelip, 0]
profEnd = marker.profile[ip, 1]

determine if profile is before the first flux leg
If yes, add 1st flux leg’s offset to profile
If no, continue
IF marker.profile[ip,1] LE marker.flux[0,0] THEN BEGIN
naltc[*,profStrt:profEnd] = nalt[*,profStrt:profEnd] + $
offset [0] .values[0]

else determine if profile is after the last flux leg
If yes, add last flux leg’s offset to profile
If no, continue
ENDIF ELSE IF marker.profile([ip,0] GE marker.flux[nflux-1,1] THEN BEGIN
noffsets = offset[nflux-1] .noffsets
naltc[*,profStrt:profEnd] = nalt[*,profStrt:profEnd] + $
offset [nflux-1].values[noffsets-1]

ENDIF ELSE BEGIN
else determine if profile is between flux legs

If no, print a message indicating there is something
wrong with this profile
If yes, add a linear offset to the profile

Catch, theError

IF theError NE 0 THEN BEGIN
Catch, /Cancel
ok = Error_Message (/Traceback)

ENDIF '

ix =0L

locFound = 0

WHILE (locFound NE 1) DO BEGIN
fluxStrt = marker.flux[ix, 0]
fluxEnd = marker.flux[ix, 1]

23




IF (marker.profilelip,0] GE marker.flux[ix,1]) AND $
(marker.profilel[ip,1] LE marker.flux[ix+1,0]) THEN BEGIN
locfound = 1
npts = (profEnd - profStrt + 1) * nHz1l50
nStrt = profStrt * nHz150
nEnd = profEnd * nHz150

FOR pt = OL, npts-1 DO BEGIN
n = nStrt + pt
noffsets = offset[nflux-1] .noffsets
totoffset = (n - nStrt)/npts*offset[ix+1].values[0]l+ $
(nEnd - n)/npts*offset[ix].values[noffsets-11
naltcin] = nalt[n] + totoffset

Vi T B om M Siee Siany SN o S S SR S S ae. S ome

ENDFOR (

ENDIF (

ix = ix+1 (

ENDWHILE (

ENDELSE ; end of check for profile location in relation to flux legs

ENDFOR ; end of each profile loop (
ENDELSE ; end of flux check (
ENDELSE : ; end of nprof check (i.e. there were profiles to correct) (
¢

endit:

; Compute the execution time of this procedure
endTime=systime (/seconds)
elaps = endTime-strtTime

minut = floor(elaps/60.)
sec = elaps - (minut*60.)
PRINT, format = ’ ("ALT: Elapsed Execution Time (mm:ss): ", i2, ":", i2)’, minut,

RETURN, naltc
END

24

[0)]
I el el el e e e e N e i R N N e W




i+
; NAME: ReadMKR

; PURPOSE:

; This function reads a marker file {(.mkr) and returns
; a structure containing the marker tag and start/stop
; scans for marker pairs.

; CALLING SEQUENCE:

; ReadMKR, rootname, nflux=nflux, help=help, nprofile=nprof, nevent=nevnt

; INPUTS:

: rootname The root name for the flight data
; OUTPUTS:

; nflux: Number of flux legs in flight

; nprof: Number of profiles in flight

; nevent: Number of other events in flight
; marker: A structure

; NAMED STRUCTURES:

: marker

; flux LONG Arrayl[*,2]
; profile LONG Arrayl[*, 2]
; event LONG  Arrayl[*]

; MODIFICATION HISTORY:

; 05 Mar 2002 TKG Updated (based on version from Jeff French)

FUNCTION ReadMKR, rootname, nflux=nflux, help=help, nprofile=nprof, nevent=nevnt

IF KEYWORD_SET(help) THEN BEGIN
print, ' SYNTAX'

print,’ Result = ReadMKR (rootname)’

print, ' ARGUMENTS'

print,’ rootname’

print, a string containing the name (and path if’
print,’ =~ not in current directory) of the marker file’
print,’ to read’

print,’ ’

print, ' EXAMPLE’

print,’ Create a structure containing the start/stop’
print,’ scans for flux & profile runs, and scan numbers’
print,’ for event switches. If there are no events (or’
print,’ flux/profiles) the tag is returned equal to -1’

25




print,’
print,’ marker = ReadMKR (rootname) ’
print,’
print,’ help,marker, /struc’
print,’ ** Structure <81b492c>, 3 tags, length=48, data length=48, refs=1‘
print,’ FLUX LONG Arrayl[4, 2]’
print,’ PROFILE LONG Array[1, 2]°
print,’ EVENT LONG Array[2]’
print,’ -
print,’ print,marker.event’
print, 2491 26227
return, -1
endif
; define data path and marker file absolute filename
datapath = ‘/home/tgrimmet/Research/Air-Sea/CBLAST-Low/Flights/’
datafile_mkr = datapath + rootname + ‘.mkr’

; open

file

OPENR, fnum, datafile mkr, /get_lun

; begin reading in marker file, line by line searching for ‘OPENED’

line

=117

REPEAT begin
READF, fnum, line
ENDREP UNTIL (EOF (fnum) OR (STRPOS(line,’OPENED’) gt 0))

; now we are into the events, fluxes, etc....
proon = 0 && flxon = 0 && ipro = 0 && iflx = 0 && levt = 0

flux

= lonarr(100,2) && profile = lonarr(100,2) && event = lonarr(100)

REPEAT begin
READF, fnum, line

7

CA

look for marker switch turning on/off or blank spaces
SE (STRMID(line,0,3)) OF

'EVT’ : begin
event [ievt] = LONG(STRMID(line,7,5))
ievt = ievt + 1

end
'FLX’ : begin

flux[iflx, 0] = LONG(STRMID(line,7,5))

flxon = 1

proon = 0 ; sanity check for messed up markers
end

"PRO’ : begin
profile[ipro,0] = LONG(STRMID(line,7,5))
proon = 1
flxon = 0 ; sanity check for messed up markers

26

OO ONDOD TGO

TN N N N N W= W W o W A W W= W e M G T

i

_—

OO

00000

Fan N
{




P 2 s &% S8 £

end

! ’ : begin
if (STRMID(line,4,2) eq ‘' 0’) then begin
if (flxon) then begin
flux[iflx,1] = LONG(STRMID(line,7,5))

flxon = 0
iflx = iflx + 1
endif

if (proon) then begin
profile[ipro,1] = LONG(STRMID(line,7,5))
proon = 0
ipro = ipro + 1
endif
endif
end

ELSE : tmp=0 ; do nothing
ENDCASE
ENDREP UNTIL (EOF (fnum) OR (STRPOS(line,’'CLOSED’) gt 0))
if (iflx gt 0) then $
flux = flux[0:iflx-1,*] $
else flux = -1
if (ipro gt 0) then $
profile = profile[0:ipro-1,*] $

else profile = -1

if (ievt gt 0) then 3
event = event[0:ievt-1,*] §

else event = -1
nflux = iflx
nprof = ipro
nevnt = ievt

; close file & deallocate file unit
FREE_LUN, fnum

marker = { flux:flux, profile:profile, event:event}

RETURN, marker

end

27




NAME: HandleBadPoints

PURPOSE:

Find dropout points and outliers using a distance-based method

Interpolate new valueg using linear interpolation

CALLING SEQUENCE:

HandleBadPoints, LDist, LOut, LRetn, Hz, scanl,

INPUTS:

ILDist

LOut

LRetn

Hz

scanl, scan2
OUTPUTS:

xOutTot

MODIFICATION HISTORY:

05 Mar 2002 TKG Original

scan2,

PRO HandleBadPoints, LDist, LOut, LRetn, Hz, scanl, scan2

xOutliers 0

xOutTot = 0

Find outliers

FOR j = scanl,scan2 DO BEGIN

xOutTot

noutl = DBOutliers(LDist, LRetn, LOut, Hz, j, xOutliers)

IF noutl GT 0 THEN BEGIN

IF (SIZE(xOutTot)) [0] EQ 0 THEN BEGIN

xOutAbs = (j*Hz) + xOutliers ; calculate absolute address

xOutTot = xOutAbs

ENDIF ELSE BEGIN

xOut2Abs = (j*Hz) + xOutliers ; calculate absolute address
xOutTot = [xOutTot, xOutlibs] ; concatenate arrays
ENDELSE
28

DN f\ £

-~
\ \

ANOOOODD

~
\

¢
~.

CoOO

O

3

(DY Cy




ENDIF
ENDFOR

; Put arrays into the [datapoint*scan] format for interpolation

szLDist = SIZE(LDIST)

IF szLDist[0] EQ 2 THEN BEGIN
nscans = szLDist[2]
LDist = REFORM(LDist, [Hz*nscans])
LOut = REFORM(LOut, [Hz*nscans])

ENDIF

; Interpolate new values for the bad points

Interp, LDist, LOut

; Put arrays back into the [datapoint, scan] format

gszLDist = SIZE(LDIST)

IF szLDist[0] EQ 1 THEN BEGIN
nscans = szLDist[1] / Hz
LDist = REFORM(LDist, [Hz,nscans])
LOut = REFORM (LOut, [Hz,nscans])

ENDIF

END

29




; NAME: DbOutliers

; PURPOSE:

H To determine and mark all invalid datapoints and outliers in a

; scan. Invalid datapoints are defined as those having fewer than

; 3 returns. Outliers are defined as points that lie at a greater

; distance than some specified distance from a selected point in the
; distribution that is defined as good.

; CALLING SEQUENCE:

H noutliers = DBOutliers(LDist, LRetn, LOut, Hz, scan, xoutliers)

; INPUTS:
; LDist: 'Raw’ laser data

: LRetn: Number of laser returns

; LOut : Laser data with bad points identified

; Hz: Rate data was acquired (Hz)

; scan

; OUTPUTS:

; xoutliers: array index of bad points

; noutliers: number of bad points found (function return)

; MODIFICATION HISTORY:

: 05 Mar 2002 TKG Original

FUNCTION DBOutliers, LDist, LRetn, LOut, Hz, scan, xoutliers
; Initialize outliers wvariable

‘xOutliers = -1

; Mark those points that have fewer than 3 returns as outliers

where (LRetn[*,scan] LT 3)
where (LRetn[*, scan] GE 3)

xOutliers
remaining

A0 O

A

~

L




; Check for scans that have only a few good points (in this case, LE
; 3 pts). If this is the case, set the whole scan as being bad and
; all points are outliers and return.

IF (SIZE(remaining)) [1] LE 3 OR (SIZE(remaining)) [0] EQ 0 THEN BEGIN
LOut [*, scan] =!Values.F_NaN
xOutliers = where (FINITE (LOut[*,scan]) GT -1000.)
RETURN, N_ELEMENTS (xOutliers)

ENDIF

; Set the distance from a point that will be considered an outlier.

; If there were many points with less than 3 returns, o

probably most of the scatter in the data is removed, and a larger distance must
; be used to not identify good p01nts

sr = SIZE(remaining)

IF sr{l] GE 143 THEN BEGIN
D=0.5

ENDIF ELSE BEGIN
D=1.2

ENDELSE

; Determine the number of remaining points

npts = srlsr[0]+2]

; Create array to hold the computed distances

dist = FLTARR (npts)

; Compute distances

mn = moment (ldist [remaining, scan])
sd = sqrt(mn[1])

min = mn[0]-sd

max = mn[0]+sd

; Find the first good point. The first points in a scan may be outliers.

q=0
WHILE LDist [remaininglq],scan] LT min OR LDist [remaining(gl,scan] GT max DO BEGIN

q = g+l

31



ENDWHILE

dist = SQRT( (remaining/Hz-remaininglgl/Hz)"2 + §

(LDist [remaining, scan] -LDist [remaininglqgl,scanl) 2 )

; Determine outliers. Concantenate all outliers together.
; outliers with NaN.

x0 = where(dist[*] GT D)

IF xoutliers[0] NE -1 THEN BEGIN
IF xo[0] NE -1 THEN BEGIN
xoutliers = [ xoutliers, remaining[xo[*]] }
ENDIF
ENDIF ELSE BEGIN
IF xo0[0] NE -1 THEN BEGIN
xoutliers = xo
ENDIF
ENDELSE
xoutliers=xoutliers[sort (xoutliers)]

IF (SIZE(xoutliers)) [0] NE 0 THEN LOut [xoutliers, scan]=!Values.F_NaN

; Do a second pass through the data
;  Grubbs Test

Mark the

remaining = WHERE( FINITE(LOut[*,scan]) NE FINITE(!Values.F_NaN))

sr = SIZE(remaining)

IF sr[l1] GT 6 THEN BEGIN
mn = moment (1dist [remaining, scan])
sd = sqgrt{(mn[1])
z = ABS(mn[0] -LOut [remaining, scanl) /sd

siglevl = ((sr[1]-1)/8QRT(sr[1])) * 0.15
iz = WHERE(z GT siglevl)

P e e e e e e e e e m e m e e e e e e m e mm e —————————

; Determine outliers. Concantenate all outliers together.
; outliers with NaN.

IF xoutliers[0] NE -1 THEN BEGIN
IF iz[0] NE -1 THEN BEGIN
xoutliers = [ xoutliers, remainingl[iz] ]

32

Mark the

3

\

-~

/

~ o~

N




& B AU W &R O F R

ENDIF
ENDIF ELSE BEGIN
IF xo[0] NE -1 THEN BEGIN
xoutliers = iz
ENDIF
ENDELSE
xoutliers=xoutliers[sort (xoutliers)]

IF (SIZE(xoutliers)) [0] NE 0 THEN LOut [xoutliers,scan]=!Values.F NaN
ENDIF

; Check if there are enough good points left

IF (SIZE(xoutliers)) [1] GE 144 THEN LOut[*,scan]=!Values.F NaN

; Return the number of outliers found
RETURN, N_ELEMENTS (xoutliers)

END

33




i+

; NAME: Interp

; PURPOSE:

; To linearly interpolate new values for points marked as bad.
; CALLING SEQUENCE:

H Interp, LDist, LOut, xOutliers

; INPUTS:
H LDist: 'Raw’ laser data
: Lout: Laser data-with bad points identified

; xOutliers: array index of bad points
; OUTPUTS:
: LOut: Corrected laser data

; REFERENCES:

; "Algorithms for Mining Distance-Based Outliers in Large Datasets"
: Edwin M. Knorr and Raymond T. Ng, University of British Columbia
; Proceedings of the 24th VLDB Conference, New York, USA, 1998

; MODIFICATION HISTORY:

; 05 Mar 2002 TKG Original

PRO Interp, LDist, LOut, xOutliers

; Find all the outliers

; xOutliers = WHERE (FINITE (LOut) EQ FINITE(!ValueS.F_NaN))
; Make sure the xOutliers array is sorted

sortxOut = xOutliers [SORT (xOutliers)]

; Set constants
pcntDiff = 0.03

nOutliers = N_ELEMENTS (xOutliers)

; Check if there are any outliers

34

COOCOCOCOOO0O00O0000QDOTO00DTNRCONTINDND |

\

OO




IF xoutliers[0] EQ -1 THEN return

; One point on either gide of ’j’, which is the location
; where we need an interpolated value, is needed. The points are

H L = left
; R = right
FOR j = 0L, nOutliers-1 DO BEGIN
jj = LONG{ xOutliers[j] )

; Find L [ideally this would be (j-1)]
IF jj EQ 0 THEN BEGIN
L =3j
ENDIF ELSE BEGIN
L = jj-1
WHILE (FINITE(LOut[L]) EQ FINITE(!Values.F_NaN) AND L GT 0) DO L=L-1
ENDELSE

; Find R [ideally this would be (j+1)]
R = jj+1 .
WHILE (FINITE(LOut[R]) EQ FINITE(!ValueS.F_NaN)) DO BEGIN
IF R EQ (N_ELEMENTS (LOut) -1) THEN BREAK
R=R+1
ENDWHILE

; After finding good values on either side of the bad point
; or outlier, linear interpolation is done.

npts = R - L + 1
xGood = [L, R]

yGood = LOut [xGood]

yInterp = INTERPOL (yGood,npts)

: Now we need to check whether the interpolated value is better

; or not. If the interpolated point is within 3% of the original
; data point, the original data point is retained. Otherwise

; the interpolated value is used.

IF yInterpl[jj-L] LT LDist[jj] THEN BEGIN
IF LDist[jj] NE 0. THEN BEGIN '
IF yInterpl[jj-L]l/LDist[jj] LT 1.-pcntDiff THEN BEGIN
LOout [jj] = yInterpl[jj-Ll
ENDIF ELSE BEGIN
LOut [jj] = LDist[jj]
ENDELSE
ENDIF ELSE IF Lbist[jj] EQ 0. THEN BEGIN

35




LOut[jji = yInterp[jj-L]
ENDIF

ENDIF ELSE IF yInterp[jj-L] GT LDist[jj] THEN BEGIN
IF LDist[jj] NE 0. THEN BEGIN

IF yInterpl[jj-L]1/LDist([jj] GT 1.+pcntDiff THEN BEGIN

Lout [jj] = yInterp[jj-L]
ENDIF ELSE BEGIN
Lout [j§] = LDist[j3j]
ENDELSE
ENDIF ELSE IF LDist[jj] EQ 0. THEN BEGIN
Lout [jj] = yInterp[jj-Ll]
ENDIF

ENDIF ELSE IF yInterpl[jj-L] EQ LDist[jj] THEN BEGIN
Lout [jj] = LDist[jj]
ENDIF

ENDFOR ; end of loop for each outlier

RETURN
END

36

DN SN

~~.

A

~~




§+ NAME: InterpFastData

; PURPOSE:

H To create 150 Hz data from 50 Hz data
; CALLING SEQUENCE:

H InterpFastData, slowvar, fastHz

; INPUTS:

; slowvar: Data to be interpolated to faster rate
; Hz: Rate data is to be interpoated to

; OUTPUTS: ‘

; fastvar: Data interpolated to faster rate

; MODIFICATION HISTORY:

; 05 Mar 2002 TKG Original

FUNCTION InterpFastData, slowvar, fastHz
nsize = SIZE(slowvar)

; For 1 Hz data

~

IF nsize[0] EQ 1 THEN BEGIN

nScan = nSize[1]
fastvar = DBLARR (fastHZ, nScan)
dt = 1./fastHz

FOR j=0L,nScan-1 DO BEGIN
fastvar[0,j] = slowvarl[jl
FOR i=1,fastHz-1 DO BEGIN
fastvar[i,j] = fastvar[i-1,j] + dt
ENDFOR
ENDFOR

H Greater than 1 Hz data

ENDIF ELSE IF nsize[0] EQ 2 THEN BEGIN
nScan = nSize[2] :
fastvar = FLTARR(fastHZ, nScan)
FOR j=0L,nScan-1 DO BEGIN
fastvar([*,j] = INTERPOL(slowvar([*,j], fastHz)
ENDFOR

ENDIF

37




J—

38

RETURN, fastvar

END



; NAME: CorrNAlt

; PURPOSE:

; Compute the mean offset between zavg (the average laser signal) and
; NAlt (the GPS signal) to apply as a correction to the GPS signal.

; Apply the correction.

; CALLING SEQUENCE:

: naltc = CorrNAlt (nSecMean, marker, nalt, zavg, offset, Hz1l50=nHz1l50)

; INPUTS:

; nSecMean: Length of time for which the offset will be calculated
H marker: A structure

H nalt: GPS data

: zavg: Averaged laser data

; KEYWORD PARAMETERS:

H nHz150:

; OUTPUTS:

; offset: The computed difference between zavg and nalt
; naltc: The corrected GPS signal (function return)

; NAMED STRUCTURES:

H marker

; flux LONG Array[*, 2]
; profile LONG  Arrayl[*,2]
; event LONG  Arrayl*]

; MODIFICATION HISTORY:

; 05 Mar 2002 TKG Original

FUNCTION CorrNAlt, nSecMean, marker, nalt, zavg, offset, Hz1l50=nHz150

; Determine how many offsets there will be for the averaging length
; nSecMean

noffsets = 0

gsizemkr = SIZE (marker.flux)

nflux = sizemkr[1] ; no. of flux legs
FOR m=0L,nflux-1 DO BEGIN

39




fluxStrt = marker.flux[m, 0]

fluxEnd = marker.flux([m, 1]

noffsets = noffsets + (fluxEnd - fluxStrt + 1)/nSecMean

offset [m] .noffsets = (fluxBnd - fluxStrt + 1)/nSecMean
ENDFOR

naltc = nalt
FOR m=0L,nflux-1 DO BEGIN

fluxStrt = marker.flux[m, 0]
fluxEnd = marker.flux([m,1]

il = fluxStrt
i2 = il + nSecMean
ict = 0

FOR j = 0L, offset[m].noffsets-2 DO BEGIN

offset [m] .values[ict] = MEDIAN (zavg([*,i1:1i2] - nalt([*,il:i2])
naltc[*,1i1:1i2] = nalt[*,i1:12] + offset[m].values[ict]

iect = ict + 1

i1 = i2
i2 = 11 + nSecMean
ENDFOR

: Handle last interval which will be greater than nSecMean in
; length

i2 = fluxEnd
offset [m] .values[ict] = MEAN(zavg[*,il:i2] - mnalt[*,il:i2])
nalte[*,11:12] = nalt[*,il1:i2] + offset[m].valueslict]

ENDFOR

RETURN, naltc
END

40

~

J




NAME:
ERROR_MESSAGE

PURPOSE:

The purpose of this function is to have a device-independent
error messaging function. The error message is reported

to the user by using DIALOG_MESSAGE if widgets are

supported and MESSAGE otherwise.

; AUTHOR:

FANNING SOFTWARE CONSULTING
David Fanning, Ph.D.
1645 Sheely Drive
Fort Collins, CO 80526 USA
Phone: 970-221-0438
E-mail: davidfedfanning.com
Coyote’s Guide to IDL Programming: http://www.dfanning.com/
CATEGORY :
Utility.
CALLING SEQUENCE:
ok = Error Message (the_Error Message)
INPUTS:
the_Error Message: This is a string argument containing the error
message you want reported. If undefined, this variable is set
to the string in the !Error_ State.Msg system variable.

KEYWORDS :

NONAME: If this keyword is set the name of the calling routine
is not printed along with the message.

TRACEBACK: Setting this keyword results in an error traceback
being printed to standard output with the PRINT command.

In addition, any keyword appropriate for the MESSAGE or DIALOG_MESSAGE
routines can also be used.

OUTPUTS:
Currently the only output from the function is the string "OK".
RESTRICTIONS:

The "Warning" Dialog Message dialog is used by default. Use keywords
/ERROR or /INFORMATION to select other dialog behaviors.

EXAMPLE :
To handle an undefined variable error:

IF N_Elements(variable) EQ 0 THEN $
ok = Error_ Message (’Variable is undefined’, /Traceback)

; MODIFICATION HISTORY:

Written by: David Fanning, 27 April 1999.

Added the calling routine’s name in the message and NoName keyword. 31 Jan 2000.

Added _Extra keyword. 10 February 2000. DWF.
Forgot to add _Extra everywhere. Fixed for MAIN errors. 8§ AUG 2000. DWF.

41

DWF.




; Adding call routine’s name to Traceback Report. 8 AUG 2000. DWF.
; Switched default value for Dialog_Message to "Error" from "Warning". 7 OCT 2000. DWF.

P HHHHEEHHEE R R S R R BRI

7

; LICENSE

; This software is OSI Certified Open Source Software.
; OSI Certified is a certification mark of the Open Source Initiative.

; Copyright (© 1999-2000 Fanning Software Consulting

; This software is provided "as-is", without any express or
; implied warranty. In no event will the authors be held liable
; for any damages arising from the use of this software.

; Permission is granted to anyone to use this software for any
; purpose, including commercial applications, and to alter it and
; redistribute it freely, subject to the following restrictions:

; 1. The origin of this software must not be misrepresented; you must

; not claim you wrote the original software. If you use this software
7 in a product, an acknowledgment in the product documentation

; would be appreciated, but is not required.

; 2. Altered source versions must be plainly marked as such, and must
: not be misrepresented as being the original software.

; 3. This notice may not be removed or altered from any source distribution.

; For more information on Open Source Software, visit the Open Source
; web site: http://www.opensource.org.

7 HEHEEEHEHEEREEREE R REREEREHEEEHEERREERE R

FUNCTION ERROR MESSAGE, theMessage, Traceback=traceback, NoName=noName, _Extra=extra -
On_Error, 2
; Check for presence and type of message.

IF N_Elements (theMessage) EQ 0 THEN theMessage = !Error_State.Msg
g = Size(theMessage)
messageType = s[s[0]+1]
IF messageType NE 7 THEN BEGIN
Message, "The message parameter must be a string.", _Extra=extra
ENDIF

; Get the call stack and the calling routine’s name.

Help, Calls=callStack
callingRoutine = (Str_Sep (StrCompress(callStack[1])," ")) [0]

; Are widgets supported? Doesn’t matter in IDL 5.3 and higher.

widgetsSupported = ((!D.Flags AND 65536L) NE 0) OR Float(!Version.Release) GE 5.3
IF widgetsSupported THEN BEGIN
IF Keyword_Set (noName) THEN answer = Dialog_Message {theMessage, _Extra=extra) ELSE BEGIN
IF StrUpCase (callingRoutine) EQ "$MAINS" THEN answer = Dialog_ Message (theMessage, _Extra=extra) ELSE §
answer = Dialog_Message (StrUpCase (callingRoutine) + ": " + theMessage, _Extra=extra)
ENDELSE
ENDIF ELSE BEGIN
Message, theMessage, /Continue, /NoPrint, /NoName, /NoPrefix, _Extra=extra

Print, ‘%’ + callingRoutine + ’: ’ + theMessage
answer = 'OK’
ENDELSE

&

~

N

\

—

NN S

>

)

1

p—

!

¥

!

1

~ ~ f-\ SV =AY

o Yelaclalaiale

Y atale

e

alalalalalsialole

~ S




g

7

IF Keyword_Set (traceback) THEN BEGIN
Help, /Last_Message, Output=traceback
Print, '’

Print, ‘Traceback Report from ‘ + StrUpCase(callingRoutine) + ’:

Print,
FOR j=0,N_Elements (traceback)-1 DO Print,

ENDIF

RETURN, answer
END

Provide traceback information if requested.

" + traceback(j]

43

’






