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Evaluation of the REEDM Climatological Turbulence Algorithm Using Aircraft

Measurements

Richard M. Eckman

ABSTRACT. During three experiment sessions conducted at Cape Canaveral,
Florida in 1995 and 1996, an instrumented light aircraft was used to collect
turbulence measurements at various altitudes within and above the boundary
layer. In this report, the airborne turbulence measurements are used to
evaluate the climatological turbulence algorithm built into the REEDM
dispersion model. REEDM is used operationally at the Cape to estimate
rocket exhaust cloud dispersion.

Over the ocean and inland waterways near the Cape, the REEDM algorithm
frequently overestimated the turbulence levels by a factor of two or more.
The algorithm’s performance over land surfaces was somewhat better, but
even there the performance varied widely as a function of stability. Tests
were also performed to determine whether better turbulence estimates could
be obtained at the Cape with on-site turbulence measurements. These
tests involved the vertical extrapolation of near-surface sonic anemometer
turbulence measurements. The on-site measurements were a significant
improvement over the REEDM algorithm for boundary-layer turbulence over
the ocean and inland waterways. Over land, the on-site measurements led
to improved estimates of the horizontal turbulence fluctuations, but not the
vertical fluctuations. The findings in this report support the contention that
improved operational turbulence estimates could be obtained at the Cape by
installing on-site turbulence instrumentation.

1. Introduction

The U. S. Air Force has rocket launch facilities both on the East Coast of the U. S. at
Cape Canaveral Air Station, Florida and on the West Coast at Vandenberg Air Force Base,
California. Both facilities have nearby populated areas that can potentially be affected by
the exhaust clouds emitted during rocket launches. To minimize the risks and
environmental impacts associated with the launch clouds, the Air Force uses a dispersion
model called REEDM (Rocket Exhaust Effluent Diffusion Model, see Bjorklund 1990) to
estimate the effluent transport and diffusion. REEDM was first released in the early 1980s,
but it has roots extending back to earlier modeling efforts in the late 1960s and 1970s. It
divides the dispersion of the rocket exhaust into two phases: a buoyant-rise phase and a
passive-diffusion phase. The buoyant-rise phase represents the initial ascent of the cloud as
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a result of its high temperature. The passive-diffusion phase represents the later transport
and diffusion resulting from the ambient atmospheric winds and turbulence.

In the passive-diffusion phase, REEDM requires an estimate of the turbulence levels at the
altitudes where the cloud is located. The main turbulence parameters of interest are the
standard deviations σA and σE of the wind direction in respectively the horizontal and
vertical directions. These parameters can be estimated either with direct on-site
measurements or with a climatological algorithm that is built into REEDM (Bjorklund
1990). Currently, on-site turbulence measurements are being employed at the Vandenberg
facility, but the built-in algorithm is still used at Cape Canaveral.

Although REEDM has been used operationally for many years, there was some concern
within the Air Force that it had not been externally peer reviewed and had not been
evaluated using data collected at the launch facilities. The Model Validation Program
(MVP, Start and Hoover 1995; Kamada et al. 1997) was created to address these concerns.
An early stage of MVP was an external verification and sensitivity study of REEDM
(Eckman et al. 1996). Between 1995 and 1997, MVP conducted a series of four
field-experiment sessions at the launch facilities. Three were at Cape Canaveral
(1995–1996) and one was at Vandenberg (1997). These sessions included surface- and
aircraft-based meteorological measurements and the release of SF6 tracer from fixed surface
locations and from a blimp circling at fixed altitudes.

One of the instrument platforms that contributed to all four MVP field sessions was a light
aircraft operated by the Atmospheric Turbulence and Diffusion Division of NOAA’s Air
Resources Laboratory (Crawford and Dobosy 1992; Eckman et al. 1999). This aircraft, a
homebuilt design called a Long-EZ, can measure a wide variety of atmospheric variables,
including the mean winds and turbulence parameters. The ability of the NOAA Long-EZ
to measure turbulence levels at various altitudes provides an excellent opportunity to
evaluate the performance of the REEDM turbulence algorithm at the launch facilities.

In this report, measurements of σA and σE taken with the Long-EZ at Cape Canaveral are
used to evaluate the climatological turbulence algorithm that is built into REEDM. Two
different comparisons are performed using different sources of input to the REEDM
algorithm. First, the algorithm is run using mean-wind profiles from the Long-EZ as input;
this is considered a “best case” scenario, because the mean-wind profiles are co-located
with the turbulence measurements both in space and time. Second, the REEDM algorithm
is evaluated using rawinsonde wind profiles as input. Since the rawinsonde profiles are not
co-located with the aircraft measurements in space and (usually) time, it is expected that
the algorithm’s performance should be degraded relative to the “best-case” scenario.

Climatological turbulence algorithms such as the one built into REEDM are still commonly
used, but the meteorological community has increasingly favored the use of on-site
turbulence measurements (Hanna et al. 1977, 1982; Irwin 1983). On-site measurements
were also recommended at the Cape by Eckman et al. (1996). However, there is no
guarantee that on-site measurements will improve the performance of a dispersion model.
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Poor instrument placement, for example, can hamper the utility of turbulence
measurements, as can improper processing of the measurements. (e.g., the range of
turbulence eddy sizes that is resolved by the measurements must be consistent with the
dispersion model’s assumptions.)

The utility of on-site turbulence measurements at the Cape is put to the test in this report
by comparing the σA and σE estimates produced by the REEDM algorithm with those
obtained by extrapolating surface turbulence measurements upward through the depth of
the boundary layer. During the MVP sessions at the Cape, sonic anemometers were placed
on towers at several different locations. Turbulence measurements from these instruments
are extrapolated upward using well-known formulas from the open literature and then
compared with the Long-EZ measurements. The intent of this comparison is to determine
whether dispersion estimates can be improved by adding routine surface-based turbulence
measurements at the Cape.

In addition to evaluating turbulence estimates, the report also investigates the spatial
variability of the turbulence at the Cape. This is an important issue, since REEDM
assumes that the turbulence does not vary horizontally.

2. Long-EZ Measurements

Only a brief description of the NOAA Long-EZ aircraft is given here, since the aircraft
itself and the operating principals of its major sensors have been documented elsewhere
(Brown et al. 1983; Auble and Meyers 1992; Crawford and Dobosy 1992; Eckman et al.
1999). The aircraft is designed to carry two passengers and uses a pusher engine
configuration. It has a gross weight of 725 kg. During data collection, the aircraft typically
flies at air speeds of 50–60 m s−1.

The Long-EZ took part in all three MVP sessions at Cape Canaveral. Sessions 1 and 2
occurred respectively in July and October 1995, whereas Session 3 took place in April–May
1996. A series of instrument failures limited the amount of usable turbulence data from
Session 1. Sessions 2 and 3 were significantly more successful.

As shown in Fig. 1, the earth’s surface near Cape Canaveral is a patchwork of land, sea,
lakes, and other wetlands. This surface heterogeneity can lead to rather complex wind
patterns at the Cape, including sea breezes (Reed 1979; Atkins et al. 1995; Atkins and
Wakimoto 1997) and converging winds that can initiate thunderstorm development (Byers
and Rodebush 1948; Neumann 1971). To account for this heterogeneity, the Long-EZ often
flew a series of straight flight legs over specific surface types. Figure 2, for example, shows
three flight legs commonly flown during MVP Session 3. The T–J leg represents a land
surface, E–D represents the sea, and N–S–U represents the shallow inland waterways near
the Cape. A similar set of legs was flown in Session 2, although the E–D leg was further
out to sea. These legs were flown at various altitudes from about 30 m to 1700 m AGL.
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Figure 1: Land-use map of eastern central Florida. The various shades represent
water (white), wetlands (lightest grey), forest and fields (intermediate grey), and

urban/industrial areas (darkest grey).
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Figure 2: Aircraft flight legs used during MVP Session 3.
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Figure 3: Waypoints used to investigate the Merritt Island convergence zone during
MVP Session 3.

During some Session 3 flights, the Long-EZ flew the “convergence-zone” flight legs shown
in Fig. 3. These were intended to investigate the presence of a convergence zone over
Merritt Island.

For the REEDM evaluations in this report, all the available Long-EZ data that were
available from flight legs resembling those in Figs. 2 and 3 were used. Given the hardware
problems and the different type of flight legs used in Session 1 (Eckman et al. 1999), no
data from this session are included. The remaining data from the other sessions can be
divided into five groups according to the prevailing surface type and proximity to the coast:
inland data from the T–J leg, sea data from the E–D and similar legs, data from the Indian
River N–S–U leg, data from the Banana River CZ1–CZ2 leg, and data from the Merritt
Island CZ3-CZ4 and CZ5-CZ6 legs. This grouping into inland, sea, Indian River, Banana
River, and Merritt Island data sets will be used throughout this report.

Both the inland and Merritt Island data were collected over a land surface. However,
Merritt Island is closer to the coast and surrounded by waterways, so the turbulence there
may be different from that observed inland. Likewise, the Indian River and Banana River
turbulence may differ even though both locations are over waterways.

In all, 781 individual passes along the various flight legs are available for evaluating the
REEDM turbulence estimates. These passes represent a variety of atmospheric conditions,
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including both convective and stable boundary layers. Most of the MVP data were
collected during the day, so there are more data available for unstable and near-neutral
atmospheric conditions than for stable conditions. The data also cover altitudes both
within and above the boundary layer.

To compute estimates of σA and σE from the Long-EZ data, a program called makestats

(Eckman et al. 1999) was used. Among other variables, this program uses the Long-EZ
velocity time series to compute the mean wind speed U , the standard deviation σv of the
horizontal velocity component that is perpendicular to the mean wind direction, and the
standard deviation σw of the vertical velocity component. The directional standard
deviations are then computed as

σA =
σv

U
; (1)

σE =
σw

U
. (2)

The program allows the user to specify the sampling time Λ used in computing the
turbulence statistics. This sampling time affects the range of turbulence eddy sizes that is
included in the fluctuation statistics.

In computing σA and σE, a question arises concerning the appropriate Λ for ensuring that
the observations and the REEDM estimates are not mismatched. According to the
REEDM User’s Manual (Bjorklund 1990), the default sampling time for the REEDM
estimates is 600 s. Eckman (1994a) pointed out, however, that it is physically more
accurate to consider a sampling distance D rather than a sampling time Λ. For
measurements at fixed towers, the sampling distance is D = UΛ. Two separate turbulence
measurements can be considered to be matched regarding their sampling characteristics if
they have the same values of D. This means, for example, that even if two tower
measurements have the same values of Λ, their sampling characteristics are still dissimilar
unless they also have the same mean wind speed U .

In spite of the problems with using a sampling time Λ rather than a distance D, the fact
remains that REEDM uses the default Λ = 600 s. This means D varies with the wind
speed. The Long-EZ measurements can still be compared with the REEDM estimates as
long as it is ensured that the measurements and model estimates both use the same value
of D. For aircraft measurements, the sampling distance is the product of the aircraft’s true
air speed Va and the sampling time Λa. Thus, the aircraft measurements and REEDM
estimates will have equivalent values of D if

VaΛa = UΛR , (3)

where ΛR = 600 s is the sampling time assumed in REEDM. Since Va, U, and ΛR are all
known for each pass along a flight leg, the appropriate value of Λa can be computed.
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Table 1: Net radiation index as a function of solar altitude a.

Range of solar altitude a Net Radiation Index

a > 60◦ 4
35◦ < a ≤ 60◦ 3
15◦ < a ≤ 35◦ 2
0◦ < a ≤ 15◦ 1

3. REEDM Turbulence Algorithm

REEDM uses a turbulence algorithm based on net-radiation and wind-speed classifications
similar to those developed by Turner (1964). The basic input variables are the solar
elevation, cloud cover, cloud ceiling, and the near-surface wind speed. The first three of
these are used to compute a net radiation index (NRI) as described below.

1. If the cloud cover is 10/10 and the cloud ceiling is less than 2134 m, the NRI is zero
for both day and night.

2. For nighttime when the cloud cover is less than 10/10 or the ceiling is greater than
2134 m, the NRI is -1.

3. For daytime when the cloud cover is ≤ 5/10, the NRI is determined from Table 1.

4. For daytime when the cloud cover is > 5/10, the NRI is first determined from
Table 1, but modified as follows.

(a) If the ceiling is < 2134 m, subtract 2.

(b) If the ceiling is ≥ 2134 m and < 4877 m, subtract 1.

(c) If the ceiling is ≥ 2134 m and the cloud cover is 10/10, subtract 1.

(d) If the NRI has been reduced below 1 as a result of items a–c, set the NRI to 1.

For any altitude above the boundary-layer depth h, REEDM sets both σA and σE to a
default free-atmosphere value of 0.0175 rad (1◦). At lower altitudes, the model first
computes σA and σE at an elevation of 10 m AGL using simple look-up tables (Bjorklund
1990). In these tables, the appropriate estimates of the turbulence parameters are found by
cross-referencing against both the NRI and the 10 m wind speed. The σA estimates in these
tables range from 0.0696 rad for light winds and NRI = −1 to 0.4538 rad for light winds
and NRI = 4. The corresponding range of σE is from 0.0524 to 0.1518 rad. According to
Bjorklund (1990), the REEDM look-up tables were derived from various data sources,
including data from the White Sands Missile Range, New Mexico (Swanson and Cramer
1965); from the Round Hill Field Station, Massachusetts (Cramer et al. 1966); and from
data published in Lumley and Panofsky (1964).
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Once the values of σA and σE are computed at 10 m, the REEDM algorithm uses power
laws to adjust the estimates for altitudes z up to 100 m:

σA(z) = σA(zr)
(

z

zr

)
−m

(4)

σE(z) = σE(zr)
(

z

zr

)n

(5)

Here, zr is the reference height of 10 m and the powers m and n have their own look-up
tables based on the NRI and wind speed (Bjorklund 1990). These power laws come from
the same data sources mentioned in the foregoing paragraph.

For altitudes above 100 m but less than h, REEDM’s computations depend on atmospheric
stability. The model’s concept of stability is based on the well-known Pasquill (1961)
stability categories, which are obtained from the NRI and the wind speed. Under
convective conditions, REEDM first uses the power-law estimates of σA and σE at 100 m to
compute values of σv and σw from Eqs. (1) and (2); the value of U at 100 m is interpolated
from measured wind profiles (usually rawinsonde profiles). From 100 m to 0.8h, σv and σw

are assumed to be constant with height. Thus, the values of σA and σE at these heights are
obtained from Eqs. (1) and (2) by using the constant values of σv and σw together with
interpolated values of U . In the top 20% of the boundary layer, σA and σE are linearly
reduced from their values at 0.8h to the free-atmosphere value of 0.0175 rad.

In stable and near-neutral conditions, REEDM uses a simpler approach for estimating σA

and σE above 100 m. First, Eqs. (4) and (5) are used to compute σA and σE at 100 m. A
linear reduction with height is then assumed between 100 m and the boundary-layer depth
h. Both σA and σE are assumed to equal 0.0175 rad at h.

REEDM performs some additional manipulations of the turbulence parameters before
arriving at final values that are used to diffuse the exhaust clouds (Bjorklund 1990). For
example, the turbulence parameters may be adjusted to account for the gravitational
settling of large acid droplets. Also, some versions of REEDM adjusted the turbulence
parameters to account for the time required for the buoyant exhaust cloud to rise to its
stabilization height, an adjustment that was questioned in Eckman et al. (1996). These
types of adjustments are not considered here, because they are related to the properties of
the exhaust clouds and not to the basic boundary-layer turbulence structure.

4. Spatial Variability of the Turbulence at Cape Canaveral

A basic assumption in REEDM is that a single wind and turbulence profile is
representative for the entire model domain. Given the variability of surface types in Fig. 1,
this would appear to be a rather poor assumption for Cape Canaveral. This section
investigates the spatial variability of the Cape boundary layer structure.
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4.1. Aircraft Measurements

The main spatial variations near the Cape are expected to be between the land and sea.
The turbulence over the Indian and Banana Rivers may also have different characteristics.
Figure 4 is an example of the horizontal variations observed at the Cape on 13 July 1995.
The Long-EZ flew long legs perpendicular to the coast on this flight. There is some
evidence of a sea breeze in these plots. During the low-level 170 m pass, the potential
temperature is nearly constant at about 300 K over the sea, and then it increases gradually
inland. The easterly wind starts out at 2–3 m s−1 out to sea and then reaches a maximum
of 6 m s−1 about 5 km inland. The turbulent kinetic energy e is low over the water,
increases to a maximum about 10–30 km inland, and then decreases again. During the
1580 m pass, the variables showed less spatial variability. However, the reduced speed of
the easterly wind at this level may be an indication of a return flow.

An important point in Fig. 4 is that conditions do not change abruptly at the coast.
Rather, the variables tend to change more gradually over many kilometers. For REEDM,
this means that much of the model domain will occupy the transition zone between typical
conditions over the sea and conditions inland over Florida. REEDM’s assumption that the
turbulence is horizontally uniform will therefore often be invalid.

Figure 5 shows another example of spatial variability. In this case, the plots are mean
vertical profiles for inland, sea, and Indian River flight legs from Long-EZ Flight 2 on 2
November 1995 (Session 2). This was a period when the near-surface wind was from the
south-southeast. The potential-temperature profiles for all three flight legs are similar
above about 1000 m. The sea data, however, indicate that a low-level inversion exists at
200–300 m. This inversion coincides with a sharp decrease in the specific humidity. In
contrast, the inland potential-temperature and humidity profiles suggest well-mixed
conditions at least up to 1000 m. Based on the Long-EZ profiles (including unshown data
with greater vertical resolution), the mixing depth h is estimated to be about 1250 m over
the land and 230 m over the sea. Such a large variation in mixing depth will of course have
a significant influence on exhaust-cloud dispersion, but REEDM currently cannot account
for such variations.

The Indian River data in Fig. 5 are in many respects intermediate between the inland and
sea data. The potential temperature is not constant with height as with the inland data,
but no obvious low-level inversion is present. Similarly, the Indian River and sea specific
humidities are similar below about 200 m, but above this altitude the Indian River and
inland humidities tend to converge. Wind speed over both the Indian River and the sea are
higher than inland.

Figure 6 shows profiles of the velocity standard deviations for the same period as Fig. 5.
The lateral σv and vertical σw standard deviations have already been introduced; σu is the
standard deviation of the along-wind velocity component. For all three components, the
inland values tend to be 2–3 times larger than the sea values. As with the mean profiles,
the Indian River profiles fall between the others.
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Figure 4: Meteorological conditions observed by the Long-EZ on 13 July 1995 while
flying nearly perpendicular to the coast. From the top, the measurements are wind
speed and direction, potential temperature θ, specific humidity q, and turbulent
kinetic energy e. The solid curve was collected at an altitude of 170 m MSL, and
the dashed line was at 1590 m MSL. All variables were computed using 30 s averages.
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Figure 7: Observed inland mixing depths versus Indian River and sea mixing depths.
All available flights from MVP Sessions 2 and 3 are included.

One complicating factor in interpreting Figs. 5 and 6 is that the profiles are not
simultaneous in time. The collection periods for the inland, Indian River and sea data were
respectively 1445–1514 EST, 1520–1550 EST, and 1610–1650 EST. This makes it difficult
to determine how much of the observed differences are due to spatial variability and to
temporal variability. The large thermal mass of the sea means that the temporal variability
for the sea data is likely to be minor. For the inland and Indian River data, however, the
roughly half-hour separation in time may have some influence on the observed profiles.

Although the sea mixing depth h was much smaller than the inland h on 2 November 1995,
this was not always true during MVP. Figure 7 compares the estimated Indian River and
sea h values with the inland values for all available flights in MVP Sessions 2 and 3. The
number of data points in the figure is much smaller than the total number of flights, since
the aircraft did not always fly every flight leg, and sometimes it was difficult to estimate a
mixing depth from the profiles. Generally, the sea h values are smaller than the inland
values, but the scatter is large. The Indian River mixing depths tend to follow the inland
values better.

4.2. Sonic Anemometer Measurements

One drawback of relying solely on measurements from a single aircraft is that there is
always a time lag between measurements taken at different locations. This sometimes
makes it difficult to establish whether observed differences are due to spatial or temporal
variations. Also, aircraft have limited endurance, so data are generally available over
relatively limited time periods. These are areas where continuous tower measurements have
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Figure 8: Positions of sonic anemometers deployed during MVP Session 2. Sonics A,
B and D were on 4 m towers, whereas sonic C was located at 50 m AGL on a taller

tower.

an advantage over aircraft measurements. During the MVP sessions at Cape Canaveral,
the NOAA Atmospheric Turbulence and Diffusion Division (ATDD) operated a series of
sonic anemometers on short towers. These were placed in various locations representing
different types of terrain, and they operated continuously.

The sonic data can be used to investigate the spatial variability of the near-surface
turbulence at Cape Canaveral. Here, the focus will be on the sonic data from Session 2,
because the anemometers were spread over a greater variety of surface types during this
session. ATDD operated four sonic anemometers during Session 2 (Fig. 8), three being
located on 4 m towers and one on a taller tower.

One system (Sonic D) was located near the coast at latitude 28◦ 32′. This was close to the
location where surface releases of SF6 tracer were performed during MVP. Sonic A was
placed in a marshy area on the northern end of the Banana River. The local surface at this
site was somewhat wetter than at Sonic D, and it was also a little further inland from the
coast. A third sonic (Sonic B) was placed much further inland on a ranch about 25 km
northwest of Melbourne. These systems operated more or less continuously from 27
October to 16 November 1995.

Each sonic reported measurements of the velocity standard deviations σu, σv, and σw using
a 30-minute sampling time. To investigate the differences in turbulence characteristics
among the sites, a quantity similar to the mean fractional bias (e.g., Irwin and Smith 1984;
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Figure 9: The fractional bias fb for σv plotted as a function of time. The left plot
compares Sonics A and D, and the right plot compares Sonics B and D.

Tangirala et al. 1992; Eckman 1994b) will be used. Suppose that one of the three velocity
standard deviations is measured at two sonics i and j during the same 30-minute period. If
the observed values are denoted by Oi and Oj, the fractional bias

fb = 2
Oj −Oi

Oj + Oi

(6)

can be used to represent the relative difference between the observations. This is basically
the ratio of the difference between the two observations to their mean value. It can vary
from −2 to +2 (assuming Oi and Oj are always positive), with a value of zero representing
no difference between the pair and a value of ±2 representing a maximum difference.
Equation (6) is defined for a single pair of observations, but mean or median values of fb
can be obtained when many pairs are available.

fb is positive when Oj is larger than Oi and negative when Oi is larger (assuming both
measurements are positive). Sonic i can therefore be considered the “reference” site,
because the sign of fb is related to whether the Sonic j observation is smaller or larger
than the reference. For the MVP measurements, Sonic D is used as the reference, because
it was near the location used for the SF6 releases and is close to the rocket launch pads.

Figure 9 shows the values of fb computed from the sonic σv measurements [with the
Sonic D observations representing Oi in Eq. (6)]. The data are plotted as a function of
local time, using all available Session 2 observations. The plot for Sonics A and D is
relatively constant throughout the day. The turbulence at these sites therefore tends to
follow a similar diurnal pattern. The mean fb for these sites is 0.061, and the median is
0.092. Using a bootstrap resampling technique (Efron and Tibshirani 1993; Hanna 1989)
with 500 resamples, the 95% confidence interval for the mean fb is 0.034 to 0.087; the
corresponding confidence interval for the median is 0.073 to 0.11. The mean and median
are thus different from zero at the 95% confidence level. It can be concluded that the value
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Figure 10: Same as Fig. 9, but for σw.

of σv from Sonic A is on average about 5–10% larger than that at Sonic D. This probably
results from Sonic A being somewhat further inland than D.

The pattern in Fig. 9 for Sonics B and D is markedly different. A strong diurnal cycle is
present, with Sonic B tending to have somewhat larger values of σv during the day (i.e.,
fb > 0) and much smaller values (fb < 0) at night. Typically, the σv values at Sonic B are
about 25–30% larger than those at Sonic D during the day. At night, the Sonic B values
are only about one-third as large as those at Sonic D. Strong surface heating over the land
areas of Florida leads to higher turbulence values at Sonic B during the day. A plausible
explanation for the nighttime pattern is that the nearby ocean keeps a strongly stable
boundary layer from developing at Sonic D, so the turbulence levels are higher.

Figure 10 shows the diurnal variations of fb using the sonic σw data. The patterns are
similar to what are observed with σv. For the Sonic A and D comparison, the mean fb is
0.060 and the median is 0.098. Hence, the Sonic A values tend to run about 5–10% greater
than the Sonic D values, just like σv.

Overall, the sonic data demonstrate that the turbulence levels can vary quite markedly
from one location to another at the Cape. Sonics A and B are both strongly affected by
the nearby ocean and therefore have similar turbulence characteristics. Sonic B, in
contrast, has significantly different turbulence characteristics. For launch operations at the
Cape, this means a single turbulence measurement near the launch pads at the coast
cannot be assumed to be representative of conditions further inland.

5. Evaluation of REEDM Turbulence Algorithm

In this section, the REEDM climatological turbulence algorithm is evaluated using the
Long-EZ measurements. The Long-EZ data were processed as described in Section 2. For
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each available measurement of σA and σE from the aircraft, a corresponding estimate was
made with the REEDM algorithm as described in Section 3. The algorithm requires
estimates of solar elevation, cloud cover, cloud ceiling, near-surface wind speed, and the
mixing depth. Solar elevation is readily computed. The other four must be observed.
Cloud cover, ceiling, and wind speed are available on an hourly basis from the official
weather reporting station at Cape Canaveral Air Station (station identifier XMR). These
data were archived in a format called DATSAV2 (USAFETAC 1986). For the period of
MVP Session 2, the XMR data were already available in the MVP data archive. The XMR
data for Session 3 were obtained from the NOAA National Climatic Data Center.

The boundary-layer depth h was estimated by manual inspection of the vertical profiles
obtained from the Long-EZ. Potential temperature and specific humidity were the main
indicators used for the estimates, although wind speed and direction were also used. In
stable conditions, the turbulent kinetic energy profiles were sometimes useful in estimating
h. In cases when h could not be discerned from the Long-EZ data, available rawinsonde
soundings were used instead.

For convective boundary layers, the REEDM algorithm also requires wind-speed profiles for
turbulence estimates above 100 m AGL. As mentioned in the Introduction, there are a
couple of possible data sources for the wind profiles. First, the wind profiles can be
obtained from the Long-EZ. Second, rawinsonde profiles can be used. In theory, the
Long-EZ profiles should result in better performance, because the wind profiles are then
co-located in space and time with the turbulence measurements. However, the rawinsonde
profiles are more representative of what is available operationally. Here, the REEDM
algorithm is tested using both sources.

To evaluate the performance of the REEDM algorithm, the same normalized bias given in
Eq. (6) will be used. If O is a single aircraft observation of σA or σE and P is the
corresponding model estimate (i.e., the model “prediction”), then fb is defined as

fb = 2
P − O

P + O
. (7)

A total of n individual observations of fb will be available for a specified set of conditions.
The primary statistics of interest for this sample of size n will be the mean fb and median
f̃ b. These statistics give an indication of whether the model tends to have an overall bias
in one direction or the other. Small values of fb and f̃ b are numerically equivalent to the
percentage deviation of the model from the observations. A value of 0.05, for example,
means the model overestimates by about 5%. This relation does not hold with larger
values; a value of 0.67 means P is twice as large as O (rather than 67% larger). For
positive O and P , fb falls in the range −2 ≤ fb ≤ 2; this is simply a mathematical
representation of the statement that the difference between two positive numbers cannot
exceed twice their average.

The mean fb and median f̃ b are measures of the central tendency of the fb distribution. In
some cases there will also be interest in the dispersion of the distribution about the center.
The two statistics that will be used for this purpose here are the sample standard deviation
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Σfb and the median absolute deviation MADfb. The standard deviation is well known, and
MADfb is defined as

MADfb = 1.4826 median{|fb− f̃ b|} . (8)

The constant 1.4826 is used so that MADfb ≈ Σfb for normal distributions and large
sample sizes. (Of course, there is no expectation that MADfb ≈ Σfb when these conditions

are not met.) Like f̃ b, MADfb has the advantages that it is nonparametric and less
affected by outliers.

Since fb and f̃ b are sample statistics, they may deviate significantly from the underlying
population mean µ and median µ̃. These sample statistics are therefore incomplete unless
additional information is provided on their expected variability from one sample to
another. The approach taken here is to use the bootstrap resampling technique (Efron and

Tibshirani 1993; Hanna 1989) to estimate standard deviations for fb and f̃ b. Taking f̃ b as
an example, the bootstrap method can be used to estimate the standard deviation s

f̃b
of

f̃ b. A (1− α)100% confidence interval for the population median µ̃ can then be estimated
as (e.g., Hanna 1989)

f̃ b− tα/2 s
f̃b

< µ̃ < f̃b + tα/2 s
f̃b

, (9)

where ta/2 is the t distribution with ν = n− 1 degrees of freedom and α is the significance
level of the test. n is number of observations in the original sample, not the number of
bootstrap resamples.

Bootstrap estimates can also be used to put a confidence interval on the difference µ̃i − µ̃j

between the population medians from two treatments i and j. The difference f̃ bi − f̃ bj will

serve as a point estimator of µ̃i − µ̃j. The variance of f̃ bi − f̃ bj can be estimated as

s2

f̃b;i
+ s2

f̃b;j
, where s

f̃b;i and s
f̃b;j are the standard deviations of f̃ bi and f̃ bj obtained from

the bootstrap procedure. A confidence interval for the difference is then

(f̃ bi − f̃ bj)− tα/2

√
s2

f̃b;i
+ s2

f̃b;j
< µ̃i − µ̃j < (f̃ bi − f̃ bj) + tα/2

√
s2

f̃b;i
+ s2

f̃b;j
. (10)

The degrees of freedom ν for the t distribution are a weighted average based on the values
νi and νj for each treatment:

ν =

(
s2

f̃b;i
+ s2

f̃b;j

)2

s4

f̃b;i
/νi + s4

f̃b;j
/νj

. (11)

Equations (10) and (11) are essentially the same as those used for the difference between
two means (Walpole and Meyers 1978; Sachs 1984). They are based on the assumption that

the bootstrap estimates of f̃ b for each treatment are approximately normally distributed.

There are, of course, caveats associated with applying Eqs. (9)–(11) to atmospheric
measurements. The statistical theory assumes all the data are independent. (Such an
assumption is used in nearly all standard statistical procedures.) This assumption is
difficult and usually impractical to fulfill in field measurements, because atmospheric
motions retain some correlation over long periods of time. The values of fb collected
during a single Long-EZ flight, for example, will exhibit some correlation depending on the

18



0 0.2 0.4
σ

E
 Observed

0

0.2

0.4

σ E
 R

E
E

D
M

0 0.25 0.5
σ

A
 Observed

0

0.25

0.5

σ A
 R

E
E

D
M

Figure 11: Scatter plots for the aircraft observations and REEDM estimates of σA

and σE. A small number of data points are located outside the bounds of each plot.

separation in both time and space. As discussed by Hanna (1989), this dependence
effectively reduces the degrees of freedom ν below the nominal value of n− 1. The value
n− 1 can therefore be considered to be an upper bound on ν. A lower bound on ν can be
obtained by assuming the observations are independent only if they come from different
aircraft flights. ν would then equal k − 1, with k being the number of separate flights. The
effective value of ν falls somewhere between k − 1 and n− 1.

5.1. Evaluation Using Aircraft Wind Profiles

The first comparison uses the Long-EZ wind profiles as input to the REEDM algorithm.
This represents a “best case” scenario, since the mean wind speed U used as input to the
algorithm comes from the same time and location as the aircraft σA and σE measurements.
Errors due to spatial variations in the mean winds and to using wind profiles that are
possibly hours old should be minimized in this comparison. In all, 781 pairs of aircraft
measurements and REEDM estimates were available from the MVP Sessions.

Scatter plots for all the paired observations and model estimates are shown in Fig. 11. The
scatter for both σA and σE is quite large. Also, REEDM appears to overestimate the
turbulence on the left sides of the plots and to somewhat underestimate on the right sides.
The horizontal rows of data points along the bottoms of the plots are cases when REEDM
went to its default value of 1◦ above the boundary layer. The median value of the observed
σA for all the data is 0.082 rad, whereas the median REEDM estimate is 0.12 rad. For σE,
the median observed and estimated values are 0.072 and 0.086 rad.

Figure 11 is useful as a general overview of the REEDM performance, but the data points
cover a wide range of altitudes, surface types, and stabilities. In a statistical sense, these
various conditions can be considered to be different treatments applied to the turbulence
data. However, unlike textbook statistics in which the experimenter has control over the
treatments applied to the individual samples, the treatments for the MVP turbulence data
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are at the mercy of external factors such as the weather and the scheduling of the MVP
tracer releases.

To further investigate the performance of the REEDM turbulence algorithm, the three
major treatments will be considered to be altitude z, surface type, and the stability class.
For the altitude, the measurements will be separated according to whether they are above
or below the boundary-layer depth h. Surface type will fall into the five categories (inland,
sea, Indian River, Banana River, and Merritt Island) discussed in Section 2. Stability will
be grouped into the A, B, C, D, and E categories of Pasquill (1961). Category A is highly
unstable, D is neutral, and E is stable. REEDM uses one algorithm when the boundary
layer is unstable (categories A–C) and another for neutral and stable conditions (Bjorklund
1990). The surface-type and stability class are only considered for measurements within the
boundary layer, since they by definition should have no effect in the free troposphere above.

In considering the altitude, one question is whether there is a systematic difference in
REEDM performance with height. Figure 12 shows fb plotted as a function of the ratio
z/h. The plot for σA clearly shows a tendency for fb to be greater than zero within the
boundary layer and to be negative above the boundary layer. A similar but less distinct
pattern is present for σE. The distributions in this figure indicate that most of the
REEDM overestimates seen in Fig. 11 are associated with altitudes within the boundary
layer, whereas most of the underestimates are at altitudes above the boundary layer.

Table 2 provides sample statistics for the 215 observations that were collected above the
estimated boundary-layer depth. Standard deviations are provided for some statistics,
based on the bootstrap technique with 500 resamples. As can be seen from the table,
REEDM always defaults to σA = σE = 0.017 rad (i.e., 1◦) above the boundary layer, but
the observations are 40–75% larger. This could be due to errors in the estimates of the
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Table 2: MVP sample statistics for z > h. In column 1, O is an aircraft
observation of σA or σE, and P is the corresponding REEDM estimate.
Means are denoted by an overbar and medians by a tilde. For statistics
followed by a ± symbol, the number after the symbol is the estimated
standard deviation for the statistic. These standard deviations are

based on a bootstrap resampling technique with 500 resamples.

statistic σA σE

n 215 215

O 0.051±0.004 0.041±0.004

P 0.017 0.017

Õ 0.030±0.003 0.024±0.002

P̃ 0.017 0.017

fb -0.61±0.04 -0.40±0.04

f̃ b -0.55±0.08 -0.34±0.09

Σfb 0.59 0.66

MADfb 0.66 0.75

boundary-layer depth h. If h is systematically underestimated, the model estimates would
be too small for altitudes between the estimated and true values of h. However, it is
expected that underestimates in h would cause fb in Fig. 12 to trend towards zero for
z � h; such a pattern is not evident. Another possibility is simply that the default
turbulence level used in REEDM is too small. If this is true, Table 2 indicates that
0.025–0.030 rad may be more representative for σA and σE in the free troposphere than
0.017 rad. A third possibility is that the Long-EZ turbulence observations are artificially
inflated by noise in the data acquisition system; such noise contamination would be more
significant in the light turbulence observed above the boundary layer.

In moving on to the evaluation of the REEDM algorithm for z ≤ h, consideration must be
given to the effects of the surface type and stability. There are 566 Long-EZ observations
that fall within the estimated boundary layer depth. Table 3 shows how these observations
are spread over the surface types and stabilities. About 44% of the observations come from
the inland surface. Comparatively few observations are available for the Banana River and
Merritt Island surfaces, because these flight legs were only flown on certain days during
Session 3. Table 3 also shows the number of individual flights involved in each surface type
and stability.

Table 4 shows how the median f̃ b varies with surface type and stability for σA. The
corresponding statistics for σE are given in Table 5. Bootstrap estimates of s

f̃b
are also

provided in each table.

In considering statistical results such as those given in Tables 4 and 5, a common first step
is to determine whether the various treatments (i.e., surface types and stabilities) produce
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Table 3: Number of observations and flights in each surface type and
stability for z/h < 1. The numbers are presented as n:k, where n is the

number of observations and k is the number of flights.

Surface
Banana Merritt Indian

Stability River Inland Island River Sea Total

A 6:2 0:0 7:1 0:0 0:0 13:2
B 28:5 51:10 32:6 16:5 16:5 143:15
C 5:2 88:18 5:1 39:10 31:10 168:27
D 1:1 68:16 0:0 38:11 67:15 174:25
E 5:1 41:5 0:0 19:4 3:1 68:7

Total 45:7 248:38 44:6 112:25 117:27 566:45

significantly different results. An analysis of variance is often used for this purpose.
However, analysis of variance requires that the underlying populations for all the
treatments are normally distributed and have the same variance. Since fb must fall in the
range from −2 to +2, it is not clear that it will necessarily be normally distributed. The
null hypothesis that all the treatments have the same population variance is commonly
tested using Bartlett’s test. This test produces a test statistic of χ2 = 86 for the σA data in
Table 4 and χ2 = 72 for the σE data in Table 5. The null hypothesis of equal variances is
tested by comparing χ2 with a chi-square distribution. With 18 degrees of freedom and a
95% confidence coefficient, the chi-square distribution has a value of 29. The treatments
thus do not have equal population variances according to this test. A standard analysis of
variance is therefore not appropriate.

A nonparametric alternative to the standard analysis of variance is the H test (Kruskal
and Wallis 1952; Sachs 1984). It does not require equal population variances or that the
data are normally distributed. The test is based on sorting n data points in ascending
order and then assigning each point a rank from 1 to n. The null hypothesis that all the
data come from identical populations is rejected if the test statistic H exceeds a chi-square
value with m− 1 degrees of freedom, where m is the number of treatments. For the fb
data, this test gives H = 245 for σA and H = 220 for σE. Both of these are well above the
chi-square value of 29 for a 95% confidence coefficient. The H test therefore indicates that
some of the differences observed in Tables 4 and 5 represent real differences in the
underlying populations.

To evaluate the REEDM algorithm’s performance, the values of f̃ b in Tables 4 and 5 are
used to determine whether the algorithm is over- or underestimating the turbulence
parameters. The bootstrap standard deviations s

f̃b
can be used to put a confidence interval

on the population medians µ̃ and the differences µ̃i − µ̃j, as in Eqs. (9) and (10). As
discussed above, the effective degrees of freedom νi for treatment i is likely to lie between
ki − 1 and ni − 1, with ki and ni respectively being the number of flights and observations
available for the treatment.
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Table 4: f̃ b computed from σA for each surface type and stability class.
The data are only for z/h < 1.

Surface
Banana Merritt Indian

Stability River Inland Island River Sea

A 0.89± 0.28 — 0.00± 0.26 — —
B 0.73± 0.02 −0.13± 0.06 0.23± 0.06 0.72± 0.07 0.94± 0.22
C 0.53± 0.06 0.25± 0.04 0.30± 0.17 0.63± 0.09 1.02± 0.16
D — 0.07± 0.07 — 0.46± 0.07 0.65± 0.12
E −0.44± 0.45 −0.04± 0.11 — −0.35± 0.09 −1.03± 0.25

All 0.72± 0.03 0.06± 0.02 0.19± 0.06 0.48± 0.05 0.79± 0.07

Table 5: Same as Table 4, but for σE.

Surface
Banana Merritt Indian

Stability River Inland Island River Sea

A 0.48± 0.29 — −0.55± 0.24 — —
B 0.62± 0.03 −0.42± 0.06 −0.11± 0.07 0.39± 0.10 0.65± 0.28
C 0.31± 0.09 0.08± 0.05 0.00± 0.10 0.45± 0.08 0.77± 0.18
D — −0.24± 0.08 — 0.24± 0.11 0.51± 0.11
E −0.57± 0.67 0.04± 0.08 — −0.22± 0.12 −1.21± 0.33

All 0.53± 0.06 −0.13± 0.04 −0.11± 0.07 0.33± 0.05 0.55± 0.08
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In Tables 4 and 5, the last row contains summary statistics for all the stability classes. For
σA, the inland surface is seen to have the smallest overall bias. Equation (9) gives
0.02 < µ̃ < 0.10 for this case, given the more conservative ν = k − 1 and a 95% confidence
coefficient. The sea surface has the worst performance for σA, with 0.65 < µ̃ < 0.93. This
makes sense, given that the REEDM algorithm is based on data collected over land. The
other surface types tend to fall between the inland and sea surfaces. The pattern observed
for the last row in Table 5 is similar to that for σA, except that each median is shifted
downward by roughly 0.2. For the σE values over land, the 95% confidence interval for the
median is −0.21 < µ̃ < −0.05, and for the sea it is 0.39 < µ̃ < 0.71.

The summary rows in Tables 4 and 5 indicate that the REEDM algorithm has a relatively
small overall bias over land and a large positive bias over the sea. The REEDM estimates
of σA over the sea were typically at least a factor of two greater than the observations. For
σE, the REEDM overestimation over the sea was about 75%. Caution must be exercised,
however, in drawing more detailed conclusions from the bottom rows in the two tables.
The measurements for each surface type are distributed unevenly over the stability classes
(Table 3), so the f̃ b differences observed in the bottom rows may be partly due to stability
and not surface type.

Tables 4 and 5 show that even within a single surface type, the REEDM algorithm’s
performance can vary strongly with stability. For inland data in Table 4, f̃ b goes from
-0.13 for stability class B to 0.25 for class C and then back down to -0.04 for class E. Using
Eq. (9) and a 95% confidence coefficient, the -0.13 for class B is significantly different from

zero using ν = n− 1, but not using the more conservative ν = k − 1. Neither f̃ b = 0.07 for
class D nor f̃ b = −0.04 for class E are significantly different from zero. The 0.38 difference
in f̃ b between classes B and C is strongly significant based on Eq. (10), as is the 0.18
difference between classes C and D.

The inland statistics in Table 4 support the conclusion that the REEDM algorithm
produces relatively unbiased estimates of σA for D and E stabilities and overestimates by
about 30% for stability C. The statistical support for the underestimation in class B is
weaker. To investigate these patterns further, Fig. 13 shows how fb varies with height for
the four stability classes. The data for class C are near zero at small z/h, but they trend
higher with height. The overestimation for this class thus appears to result from the
REEDM algorithm increasing σA too rapidly with height. For class B, the data in the
figure are consistently on the negative side at all heights. The weak underestimation for
class B therefore is more related to the near-surface estimates of σA being too small.

The sea data in Table 4 indicate consistent overestimation except for stability class E.
However, the class E f̃ b has very little statistical significance since there are only three
values from one flight. All three f̃ b values for classes B–D are significantly different from
zero but are not significantly different from each other. From these results, one can
conclude that the REEDM algorithm overestimates σA by a factor of two or more over the
sea in near-neutral and unstable conditions.
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Figure 13: fb height for σA and the inland surface type. The four
stability classes are denoted by different symbols.

The pattern of f̃ b for the Indian River surface in Table 4 is similar to that for sea, but the
degree of overestimation appears to be less. For stability classes B–D, the values of f̃ b are
all significantly different from zero, but only the difference of 0.26 between classes B and D
is significant. The value of -0.35 for class E produces a 95% confidence interval of
−0.64 < µ̃ < −0.06 using the lower-limit of ν = 3. This f̃ b for class E is significantly
different from the class D value.

All the Indian River f̃ b values are significantly different from the corresponding inland
values, although for class E the difference is only significant using the upper ν limits based
on n. In comparing Indian River and sea, only the difference between the class C values is
statistically significant. The REEDM algorithm therefore appears to overestimate the
values of σA over the Indian River in near-neutral and unstable conditions, as is the case
over the sea. This overestimation is somewhat less than that for the sea (at least for class
C). Still, the estimated values of σA are typically high by nearly a factor of two.

For the Banana River and Merritt Island surfaces, only stability class B has significant
sample sizes. The Banana River data are statistically not different from the sea and Indian
River data for this stability. The Banana River is close enough to the coast that the values
of σA are similar to what is observed over the sea. Merritt Island is a land surface and is
therefore expected to have some similarity to the inland surface. However, its value of
f̃ b = 0.23 for stability B is significantly different from the other surfaces. Merritt Island is
close enough to the coast that the observed values of σA are somewhere between the inland
inland values and the values observed over the three water surfaces.
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Figure 14: Same as Fig. 13, but for σE.

In turning now to the σE values of f̃ b in Table 5, it is noticed that overall the relative
differences follow a pattern similar to what is observed with σA. The individual values for
each treatment are generally smaller in Table 5 than in Table 4.

For the inland surface in Table 5, there are significant negative biases for classes B and D,
but no significant bias for the other two classes. Unlike the case with σA, the REEDM
algorithm does not appear to overestimate σE in C stability. Figure 14 shows that the bias
for class B is fairly consistent with height, suggesting that the problem lies with the
near-surface estimation of σE . The class D bias is also fairly steady with height. The
class C bias does tend to have a trend with height, but it is weaker than in Fig. 13. The
low value of f̃ b for this class my therefore be fortuitous in that underestimates at small z/h
are balanced by overestimates at higher altitudes.

The sea values in Table 5 show a consistent level of overestimation, but the degree of
overestimation is less than with σA. For stability classes B–D, the overestimation is close to
a factor of two. Class E has too few observations to make any conclusions.

The Indian River surface typically shows overestimations around 45% for σE in unstable
and near-neutral conditions. These values of f̃ b are significantly different from zero,
although the 0.24 for stability class D is only marginally significant. The −0.22 for class E
is not significantly different from zero at a 95% confidence level due to the small sample
size. Using Eq. (10), the Indian River σE values of f̃ b are significantly different from the
inland values but not from the sea values.
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As stated above, only stability class B has significant sample sizes for the Banana River
and Merritt Island surfaces. The Banana River value of 0.62 in Table 5 is significantly
different from zero, and it shows a level of overestimation similar to sea. The f̃ b = −0.11
for Merritt Island is not significantly different from zero, but the differences between its f̃ b
and those for inland and sea are significant. This is consistent with the results for σA.

5.2. Evaluation Using Rawinsonde Wind Profiles

In this section, the REEDM turbulence estimates are based on available rawinsonde wind
profiles rather than the Long-EZ profiles. This more closely replicates what is available at
Cape Canaveral during launch operations. It is expected that the use of the rawinsonde
data should lead to some degradation in the REEDM algorithm’s performance, since the
rawinsonde release point can be many kilometers away from the locations where the σA

and σE measurements were taken. Also, the most recent rawinsonde may have been
released hours before the time of the Long-EZ turbulence measurements. Even with these
issues, the reduction in performance resulting from the use of rawinsonde winds is not
expected to be major, since the need for a wind profile in REEDM’s turbulence algorithm
is fairly limited. As discussed in Section 3., the algorithm requires a wind profile only in
convective conditions at altitudes between 100 m AGL and the boundary-layer height h.
For near-neutral and stable conditions or any altitude below 100 m AGL, only a 10 m
reference wind speed is required. (REEDM does use a wind profile to compute a dispersion
contribution due to wind shear, but this is not part of the turbulence algorithm.)

For each Long-EZ flight, the MVP data archive was searched to find a rawinsonde
sounding that took place just before the flight. Generally, the soundings were considered
acceptable if they were no more than about four hours old at the time of the flight. In a
couple cases, a sounding was available just after a flight started, and it was used in the
computations. If a rawinsonde sounding was not available within a reasonable period
before a flight, that flight was excluded from the analysis.

For the remaining Long-EZ flights with available rawinsonde data, the rawinsonde wind
profiles were used in the REEDM algorithm when needed. The rawinsonde data was also
used to compute the 10 m reference wind speed used in REEDM’s lookup tables (see
Section 3.). In Section 5.1., this reference speed was instead extracted from the
station XMR data, because the Long-EZ did not fly low enough to provide a good estimate
of the 10 m wind speed.

In all, 541 individual REEDM estimates of σA and σE were computed using the rawinsonde
winds. Table 6 shows the fb statistics for these estimates. For comparison, the same
statistics are shown for the REEDM estimates based on the Long-EZ winds. As expected,
the differences between the REEDM estimates based on rawinsonde winds and Long-EZ
winds in Table 6 are fairly small. The rawinsonde statistics do trend slightly higher. Both
a paired t test and the Wilcoxon test for paired data (Sachs 1984) indicate that the

observed differences in fb and f̃ b are significant with a 95% confidence coefficient. The use
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Table 6: Statistics comparing REEDM turbulence estimates based on
rawinsonde winds and Long-EZ winds for z/h < 1.

σA σE

Stat Long-EZ Rawin Long-EZ Rawin

n 541 541 541 541

fb 0.29±0.02 0.35±0.02 0.11±0.02 0.18±0.03

f̃ b 0.30±0.03 0.34±0.04 0.10±0.03 0.15±0.03
Σfb 0.56 0.56 0.59 0.60

MADfb 0.54 0.54 0.59 0.64

Table 7: Statistics comparing REEDM turbulence estimates based on
rawinsonde winds and Long-EZ winds for z/h < 1. Only inland flight

legs are included.

σA σE

Stat Long-EZ Rawin Long-EZ Rawin

n 235 235 235 235

fb 0.06±0.03 0.15±0.03 -0.13±0.03 -0.01±0.04

f̃ b 0.06±0.02 0.13±0.04 -0.13±0.04 -0.06±0.03
Σfb 0.46 0.49 0.49 0.54

MADfb 0.39 0.44 0.44 0.48

of rawinsonde winds therefore appears to lead to a small but statistically significant
increase in both fb and f̃ b. The effect of the rawinsonde winds on the model precision, as
indicated by Σfb and MADfb, is also small.

Of course, the statistical tests performed in Section 5.1. indicated that the REEDM
algorithm worked significantly better over land. The results in Table 6 may therefore be
affected by the poor performance over water. Table 7 shows the statistics for the inland
flight legs only. For both σA and σE, the statistics for the rawinsonde-based estimates have
somewhat larger values than those based on the Long-EZ winds. For σE this actually leads
to a somewhat lower bias for the rawinsonde estimates. However, the Long-EZ estimates
appear to be slightly more precise, as measured by Σfb and MADfb.

The results in Tables 6 and 7 suggest that the rawinsonde-based estimates of σA and σE

are consistently larger than those based on a combination of the Long-EZ wind profiles and
XMR 10 m reference winds. One reason for this is that, on average, the stability class
computed from the rawinsonde winds is slightly more unstable than that computed with
the reference wind from the XMR station. This can only happen if the near-surface
rawinsonde wind speed is slightly lower on average than the XMR wind speed. Another
factor is that the rawinsonde wind profiles often show a local wind-speed maximum near
100 m AGL, which in convective conditions causes the REEDM algorithm to produce larger
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values of σA and σE at altitudes above 100 m (see Section 3.). It is unclear whether this
speed maximum is physically real or an artifact of the rawinsonde wind measurements.

6. Vertical Extrapolation of Near-Surface Turbulence Measurements

The REEDM climatological turbulence algorithm is designed for use at a location where no
direct turbulence measurements are available. The turbulence estimates are thus based on
a few stability classes that can be determined from easily available measurements such as
wind speed, cloud cover, etc. Algorithms of this type are still in common use for
operational purposes, although the meteorological community has increasingly advocated
the use of on-site turbulence measurements for dispersion modeling (e.g., Hanna et al.
1977, 1982; Irwin 1983). Turbulence instruments such as sonic anemometers and sodars
have become relatively low-cost and reliable. On-site measurements have therefore become
much easier to obtain than in the past.

With the MVP data archive, it is possible to test whether on-site turbulence measurements
may provide significant improvements in turbulence estimates at Cape Canaveral. As was
discussed in Section 4.2., the NOAA Atmospheric Turbulence and Diffusion Division
operated several sonic anemometers during the MVP sessions at the Cape. These sonic
anemometer turbulence measurements are in this section extrapolated upward and
compared with the Long-EZ measurements.

Since direct measurements of the friction velocity u∗ and the Monin-Obukhov length L are
available from the sonic anemometers, it was decided to base the vertical extrapolation of
the sonic turbulence measurements on standard algorithms available in the scientific
literature. Different algorithms are required for different atmospheric stabilities, so the first
task is to decide when the boundary layer is convective, near-neutral, and stable. Following
Holtslag and Nieuwstadt (1986), this separation is based on the ratio between the
boundary-layer depth h and the Monin-Obukhov length L. The boundary layer is assumed
to be convective when h/L < −5 and stable when h/L > 1. Intermediate values are
assumed to indicate near-neutral conditions.

Measurements have consistently indicated that the standard deviation σv of the lateral
velocity component is nearly constant with height in the convective boundary layer
(Panofsky et al. 1977; Caughey and Palmer 1979; Panofsky and Dutton 1984; Hicks 1985).
The sonic measurements of σv were therefore used as a constant for all heights between the
surface and 0.8h. For 0.8h ≤ z < h, σv was reduced linearly with height, but was not
allowed to go below a value σv = 0.026U ; this value corresponds to the assumed turbulence
intensity of σA = 1.5◦ for heights above the boundary layer.

The variation of the vertical-component standard deviation σw in convective conditions is
more complex. Within the surface layer (z < 0.1h), σw tends to increase with height
(Panofsky et al. 1977; Panofsky and Dutton 1984). For these heights, the sonic
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measurements are extrapolated using the equation (Panofsky et al. 1977)

σw

u∗

= 1.25
[
1− 3

z

L

]1/3

. (12)

The sonic extrapolation actually requires only the proportionality σw ∝ (1− 3z/L)1/3, since
σw is already known at the height of the sonic anemometer. Above z = 0.1h, σw is assumed
to behave similarly to σv. Specifically, it is assumed to be constant with height in the range
0.1h ≤ z < 0.8h and to decrease linearly with height within the top 20% of the boundary
layer. This structure agrees with both measurements (Caughey and Palmer 1979; Panofsky
and Dutton 1984) and with modeling based on large-eddy simulations (Moeng and Sullivan
1994).

The vertical variation of the turbulence in stable conditions is based on Lenschow et al.
(1988). They found that both σv and σw can be modeled with the relation

σv, σw ∝ [1− z/h]7/8 . (13)

This proportionality is used at all heights in the stable boundary layer. In near-neutral
conditions, both σv and σw are assumed to be constant with height within the surface layer
(Panofsky and Dutton 1984). Between 0.1h and h, the standard deviations are assumed to
drop off linearly with height. This fits the results of Moeng and Sullivan (1994) fairly well
for a shear-driven boundary layer.

For all stabilities, the σv and σw estimates were converted to σA and σE using Eqs. (1) and
(2). The mean wind speed from the Long-EZ was used in these equations. The algorithms
given above assume that the turbulence decreases to zero at the top of the boundary layer.
An additional requirement was added to require that σA and σE be no less than 1.5◦. This
is the assumed turbulence level in the free troposphere above the boundary layer.

The first set of measurements to be evaluated comes from Sonic B, which was referred to in
Section 4.2. and Fig. 8. This site was about 25 km northwest of Melbourne, and was in
operation only during MVP Session 2. A short tower was used at the site, and the sonic
anemometer was at about 4 m AGL.

Sonic B is representative of conditions well inland from the coast. Extrapolated turbulence
profiles from this site are therefore compared with the Long-EZ turbulence measurements
taken on the inland legs in Fig. 2. Table 8 shows the fb statistics for this comparison.
Only measurements with z/h < 1 are included. The corresponding statistics from
REEDM’s climatological algorithm are also shown.

The statistics in Table 8 are based on a sample size of 111. Of these, 89 were unstable
(h/L < −5), 22 were stable (h/L > 1), and none were near-neutral. The unstable and
stable cases are listed separately in the table. For σA, the fb statistics for the sonic
extrapolation are consistently smaller than those for REEDM. Using a paired t test, the
0.06 difference in fb for the σA unstable case is not significant with a 95% confidence
coefficient, but it is significant with a 90% confidence coefficient. A Wilcoxon signed-rank
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Table 8: Statistics comparing turbulence profiles based on Sonic B
extrapolations with Long-EZ observations. For comparison, the
statistics from the REEDM turbulence algorithm are also shown. Only
Long-EZ measurements from the inland flight legs and within the

boundary layer are included.

σA σE

Stat Sonic REEDM Sonic REEDM

fb, unstable 0.06±0.04 0.12±0.04 0.16±0.03 -0.10±0.04

fb, stable 0.07±0.09 0.39±0.07 -0.07±0.12 0.19±0.08

f̃ b, unstable 0.09±0.04 0.15±0.05 0.13±0.03 -0.09±0.06

f̃ b, stable 0.00±0.12 0.47±0.09 -0.24±0.19 0.22±0.09
Σfb, unstable 0.35 0.40 0.32 0.38
Σfb, stable 0.41 0.34 0.56 0.39

MADfb, unstable 0.28 0.32 0.30 0.37
MADfb, stable 0.33 0.41 0.58 0.35

test indicates that the 0.06 difference for f̃ b in the σA unstable case is significant with a
95% confidence coefficient. In the stable case for σA, the statistics suggest that the sonic
extrapolation has substantially better performance, although the sample size is small in
this case.

For σE , the sonic and REEDM statistics in Table 8 are nearly antisymmetric. The sonic
estimates tend to overestimate in unstable conditions and underestimate in stable
conditions; the REEDM estimates are just the opposite. Given the inconsistent
performance of both approaches for σE, it is difficult to claim that one approach is better
than the other.

It appears that the sonic measurements produce significantly better profiles of σA over land
compared to the REEDM algorithm, but the results for σE are ambiguous. Since σv tends
to be constant with height in a convective boundary layer whereas σw is not, one would
expect a vertical extrapolation of σw to be more error prone. For example, an error in the
estimation of L will directly affect σw and σE through Eq. (12), but would not affect σv

and σA in the same manner. This could explain why estimating turbulence aloft based on
surface measurements may often work better for the horizontal fluctuations than for the
vertical fluctuations.

During the Cape MVP sessions, sonic anemometers were also located near the coast. These
can in principal be used to estimate the turbulence levels over the ocean and coastal
waterways. It has already been demonstrated in Section 5.1. that the REEDM algorithm
consistently overestimates the turbulence in these areas except under stable conditions.

To test the utility of turbulence measurements near the coast, turbulence profiles were
extrapolated vertically using Sonic C in Fig. 8, which was located on Tower 110 during
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Table 9: Test statistics comparing the extrapolation of Sonic C with the
REEDM algorithm for z/h < 1. The statistics are based on Long-EZ

turbulence observations collected over the sea.

σA σE

Stat Sonic REEDM Sonic REEDM

n 89 89 89 89

fb 0.33±0.06 0.67±0.07 0.23±0.08 0.48±0.08

f̃ b 0.26±0.10 0.75±0.13 0.26±0.16 0.57±0.11
Σfb 0.59 0.67 0.77 0.74

MADfb 0.65 0.76 0.95 0.83

Table 10: Test statistics for extrapolation of Sonic C data for onshore
and offshore cases. The statistics are based on Long-EZ measurements

collected over the sea.

σA σE

Stat Onshore Offshore Onshore Offshore

n 23 66 23 66

fb 0.24±0.11 0.36±0.07 0.13±0.16 0.26±0.10

f̃ b 0.12±0.19 0.28±0.11 0.09±0.17 0.36±0.22
Σfb 0.52 0.61 0.77 0.77

MADfb 0.53 0.69 0.78 0.96

Sessions 2 and 3. The anemometer was placed on the tower at 50 m AGL. The vertical
extrapolation to the Long-EZ flight altitudes was done using the procedure described at
the top of this section.

Table 9 shows the test statistics comparing both the Sonic C extrapolations and the
REEDM algorithm with Long-EZ measurements over the sea. The sonic estimates show a
significant reduction in overall bias—about half of that observed with the REEDM
algorithm. They are still too large compared to the Long-EZ measurements, however. One
explanation for this is that the Tower 110 measurements should be more representative of
sea conditions for onshore winds. The data were therefore separated into onshore cases
with wind directions between 30◦ and 150◦, and offshore cases for other directions. The
statistics for the onshore and offshore cases are given in Table 10.

Onshore winds do seem to produce lower biases. Differences between the onshore and
offshore cases can be tested for significance using a standard t test (Sachs 1984,
section 3.6.2) and the nonparametric U test (Sachs 1984, section 3.9.4). Both tests indicate
that the onshore-offshore differences are not significant with a 95% confidence coefficient.
This lack is significance is partly due to the relatively small number of samples that are
available.
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Table 11: Same as Table 9, but for the Indian River data.

σA σE

Stat Sonic REEDM Sonic REEDM

n 94 94 94 94

fb -0.06±0.04 0.41±0.05 -0.05±0.04 0.27±0.05

f̃ b 0.00±0.043 0.52±0.04 -0.01±0.08 0.35±0.05
Σfb 0.40 0.48 0.44 0.47

MADfb 0.38 0.43 0.40 0.42

Table 12: Same as Table 10, but for the Indian River data.

σA σE

Stat Onshore Offshore Onshore Offshore

n 19 75 19 75

fb 0.13±0.069 -0.11±0.047 0.018±0.086 -0.073±0.055

f̃ b 0.15±0.07 -0.065±0.06 0.16±0.14 -0.054±0.09
Σfb 0.31 0.41 0.37 0.45

MADfb 0.27 0.40 0.29 0.43

The Sonic C data can also be tested with the Indian River data set. The statistics for this
case are given in Table 11. In this case, the use of the sonic data has eliminated much of
the bias seen in the REEDM estimates. In Table 12, the Indian River statistics are
separated into onshore and offshore cases, based on the same criteria discussed previously.
These results are rather ambiguous, although there is some evidence of overestimation for
the onshore cases and underestimation for the offshore cases. Only the onshore-offshore
differences for σA are statistically significant.

7. Conclusions

The turbulence data collected by the Long-EZ aircraft at Cape Canaveral has been used in
this report to evaluate the climatological turbulence algorithm that comes with the
REEDM dispersion model. This algorithm is still used for operations during rocket
launches at the Cape. Based on the statistical comparisons of the algorithm and an
evaluation of the spatial variability of the turbulence at the Cape, the following results
were obtained.

• The boundary-layer structure and turbulence levels at Cape Canaveral can show
large spatial variations. The depth of the boundary layer over the sea can be far
different than over the land, and daytime turbulence levels over the sea can be
smaller by a factor of two or more than those over the land. At night, the situation
can be reversed, with higher turbulence levels over the sea.
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• Above the boundary layer, the REEDM algorithm uses a default value of 1◦ for both
σA and σE. The measured values for the Long-EZ were about 50% larger—closer to
1.5◦. One caveat with this result is that any noise present in the Long-EZ system will
have proportionally greater influence when the turbulence is light. Hence, it is
possible that system noise has somewhat inflated the Long-EZ measurements.

• Superficially, the REEDM algorithm appears to perform fairly well over the inland
portions of the Florida Peninsula. Further inspection reveals, however, that this
result is partly due to a cancellation of errors rather than consistent performance.
For σA, the algorithm tended to overestimate by about 30% in stability class C
(slightly unstable). This was partially canceled by underestimation for B (moderately
unstable) and E (stable) stability classes. For σE, the model showed large
underestimates for classes B and D (near-neutral), which were partially offset by
small overestimates for the other stability classes.

• Over the ocean and the Indian River near Titusville, the REEDM algorithm
consistently overestimated the turbulence in all stabilities but class E. This
overestimation was in the range of 60–200% for σA and 30–125% for σE.

• The limited amount of data for stable conditions (class E) makes it difficult to draw
conclusions. However, there is a tendency for the REEDM algorithm to
underestimate the turbulence over water under these conditions. This is expected
given that the algorithm is designed for use over land.

• The REEDM algorithm’s turbulence estimates were slightly higher when using a
rawinsonde wind profiles rather than a combination of data from the Long-EZ aircraft
and the XMR tower. This was due partly to slightly lower near-surface wind speeds
and partly to the rawinsonde winds often showing a wind-speed maximum near 100 m
AGL. The overall influence of using the rawinsonde winds was fairly small, however.

• Over the inland portion of the Florida Peninsula, significantly better estimates of σA

were obtained by extrapolating sonic anemometer measurements upward rather than
using the REEDM algorithm. The use of sonic measurements did not significantly
improve the σE estimates. One explanation for this is that σw has a more
complicated variation with height in the boundary layer than σv, and thus it is more
sensitive to errors in the vertical extrapolation.

• When the turbulence over the sea near the Cape was estimated using a sonic
anemometer near the coast, the bias in the estimates was only about half of that
obtained using the REEDM algorithm. When only onshore winds were considered,
the bias in the sonic estimates was reduced even further. However, the differences
between the onshore and offshore cases was not statistically significant at a 95%
confidence level, mainly because the sample size was rather small.

• The sonic near the coast was significantly better than the REEDM algorithm at
estimating the turbulence over the Indian River near Titusville. In fact, the overall
bias was near zero for these sonic estimates. Comparison of onshore and offshore
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cases suggest that the sonic extrapolations overestimate slightly for onshore winds
and underestimate slightly for offshore winds, but these differences were not
statistically significant.

Overall, these findings suggest that the REEDM algorithm performs rather poorly at the
Cape, particularly over water bodies. The sonic anemometer estimates almost always were
superior in estimating σA and were also superior in estimating σE over the water. This
supports the contention that on-site turbulence measurements are superior to
stability-class algorithms at Cape Canaveral and also supports the recommendation made
by Eckman et al. (1996) that turbulence instrumentation be installed at the Cape.

The on-site tests performed in this report were based solely on near-surface sonic
anemometer measurements. Assumptions were therefore required to extrapolate upward
through the boundary layer. These assumptions could be eliminated if profiling instruments
such as sodars were installed at the Cape. Careful tests would be required, however, to
ensure that such instruments provide an accurate portrayal of the turbulence field over the
Cape. The data discussed in this report demonstrate that the turbulence near the Cape
shows significant spatial variability, so the proper placement of turbulence instruments is
crucial. Another issue to be considered is that the data sampling rate and averaging time
limit the range of eddy scales that can be resolved with an instrument. When turbulence
measurements from this instrument are used in a dispersion model, care must be taken to
ensure that the resolved range of scales is consistent with the model’s assumptions.

Although the sonic estimates performed better than the REEDM algorithm in estimating
turbulence over the ocean, they still systematically overestimated σA and σE during neutral
and unstable conditions. This overestimation was somewhat smaller for onshore flows, but
it was still present. Better estimates over the ocean could of course be obtained by placing
a turbulence instrument on a platform off the coast, but this is likely to be prohibitively
expensive. One possible alternative, which could be considered as a future extension to the
work discussed here, is to attempt to develop an algorithm for estimating turbulence levels
over the sea based on measurements near the shoreline.

The evaluations in this report have also pointed out some of the shortcomings of the
REEDM model itself. The model assumes that a single vertical turbulence profile is valid
for the entire model domain and as a corollary that the boundary-layer depth does not
vary with location. Both assumptions are frequently invalid at the Cape. Spatial variations
in the wind speed and direction were not investigated in this report, but they will also
cause errors in the REEDM dispersion estimates.

The spatial turbulence variations at the Cape were not limited to a narrow region at the
coast. For example, the turbulence levels observed over the Indian River near Titusville
were typically in between those observed over the ocean and those observed inland towards
Orlando. Much of REEDM’s total domain is therefore part of a boundary-layer transitional
region between oceanic conditions and conditions over inland Florida.
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