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FOREWORD
James N. Galloway, WATOX Director

(Dept. of Environmental Sciences, University of Virginia,
Charlottesville, VA 22903)

The Western Atlantic Ocean Experiment (WATOX), begun in 1980, is designed
1o determine the amcunt and fate of selected sulfur, nitrogen, metal, and
organic compounds that are advected eastward from North America.

WATOX has two components: long-term and intensive. The long-term
component includes three sites that collect and analyze precipitation on an
event basis. Two of the sites, Harbor Radio Tower, Bermuda, and Lewes,
Delaware, were started in 1980. Another site was added at Adrigole, Ireland,
in 1984. In addition, between 1981 and 1985, during May-October,
precipitation samples were collected on twe ships crulsing on a weekly basis
between New York City, Bermuda, and Nassau.

As a supplement to the long-term program, intensive sampling programs are
held on a regular basis to investigate the processes that control the
transport, transformation, and deposition of materials to the western Atlantic
Ocean. During intensives, which last 1-U4 weeks, instrumentation to determine
atmospheric concentration of gas and aerosol species is used at long-term
sites and on mobile sampling platforms (ships, aircraft;.

The first two intensives (WATOX-82, WATOX-83) occurred in October 1982
and February 1983. Their objectives were to investigate the changes that
occurred in the composition of air parcels during transit from North America
to Bermuda. In addition to the long-term measurments of wet deposition,
measurments of the concentrations of trace gas and aerosol species were made
at Lewes, Delaware, and at High Point, Bermuda. The third intensive (WATOX-
84) used a ship {RV Knorr) to sample gases and aerosols between North America
and Africa to determine the extent of transport across the North Atlantic.

The above three intensives sampled air in the marine boundary layer
during transport over the Atlantic Ocean. An obvious limitation of this
approach is that measurements at sea level give no information about upper-air
transport. To overcome this deficiency, the fourth intensive (WATOX-85)
included an aircraft component. The NOAA King Air research aircraft was used
t0o sample atmospheric gases and aerosols as a function of altitude and
latitude during frontal passage between North American and Bermuda.

The King Air platform provided unique information on the vertical
distribution of a few parameters in the western Atlantic atmosphere. However,
due to its limited payload and range, the data were limited. To compensate
for this problem, WATOX-86 was designed to include two aircraft. A NOAA WP-3D
was based at McGuire Air Force Base, New Jersey, and flew parallel to the
coast between Newfoundland and Florida. The NOAA King Alr was based at
Hanscom Field near Boston, Massachusetts, and flew off Cape Cod,
Massachusetts. Both aircraft had sampling and analytical equipment designed
to determine the vertical and horizontal chemical structure of the
atmosphere. This report contains a summary of the results of the NOAA WP-3D
flights.
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METEOROLOGICAL AND AEROSOL MEASUREMENTS FROM THE NOAA WP-3D AIRCRAFT
DURING WATOX-86, JANUARY #4-9, 1986

Howard Bridgman, Barbara Stunder, Richard Artz, Glenn Rolph,
Russell Schnell, Barry Bodhaine, and Samuel Oltmans

ABSTRACT. On January 4, 6, 8, and 9, 1986, a series of NOAA WP-
3D research flights were conducted over the Western Atlantic
Ocean, 2-300 km off the coast of North America. Flights were
made perpendicular to NW airflow to establish the flux of gas
and aerosol emissions from the east coast of Nor h_%merica, Air
fluxes from the NW ranged from less than 5 kg m E near the
center of a high-pressure system to over U0 kg m™ s Vin strong
NW airflow in the free troposphere on January 4. Representafive
condensation nuclei (CN) concentrations averaged 150-250 cm - in
the free troposphere in clean conditicns, but in atmospheric
layers containing CN transported from long distances,
concentrations reached 6500 cm - (January 4). In the marjine
boundary layer, CN concentrations averaged 500 to 750 cm - under
clean conditions, and 1500 to 3000 cm - in polluted air.
Aerosol scattering extinction (bsp) r%nge? from 70 x 1070 p
the marine boundary layer to 20 x 10"~ m ' in the free
troposphere. Aerosol b, was not as responsive to changes in
atmospheric structure as CN. Aeroscl size spectra in the marine
boundary layer were an order of magnitude higher than those in
the free troposphere. Consistent peaks in the velume spectra
between 8 and 10 ym diameter established the importance of sea
salt as the major aeroscl component. Ozone profiles in the free
troposphere normally in the 30-40 ppb range, exhibited laminae
of enhanced concentrations {up to 70 ppb) at moisture
boundaries, suggesting active ozone production was occurring at
the levels. Ozone concentrations within the marine boundary
layer were generally lower than in the free troposphere. The
following details are presented for each flight: a horizontal
projection of the flight track on a latitude-longitude grid; the
relevant synoptic situation; air-parcel back-trajectories; a
flight log; vertical cross sections of potential temperature,
mixing ratio, and flight track; vertical cross sections of CN
and bS ; and representative aerosol size distributions.

Verticgl cross sections cof potential temperature and mixing
ratio normal to the coast are presented for two flights;
vertical cross sections of potential temperature and mixing
ratico along the coast are presented for cne flight; examples of
the horizontal and vertical variability of aerosols on the small
scale are presented where appropriate.
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INTRODUCTION

On January 4, 6, 8, and 9, 1986, the National Oceanic and Atmospheric
Administration (NOAA) conducted a series of research flights over the western
portion of the North Atlantic Ocean in support of the Western Atlantic Ocean
Experiment (WATOX). This intensive study (WATCX-86) was designed to evaluate,
in three dimensions, the fluxes of air and pollution emissions moving from the
east ccast of North America to the western Atlantic under NW airflow.
Measurements of meteorolcogical and aercsol air quality parameters were made
aboard the NOAA WP-3D aircraft. The plane flew on a NE-SW flight path between
30 and U5°N at a distance of approximately 2-300 km from the coast.

This report presents results of the meteorological, aercsol, and ozone
measurements, including detailed vertical cross secticns for the porticns of
the flight track parallel tc the North American coast. Vertical cross
sections normal to the coast are presented where appropriate. Synoptic
weather maps and discussions are presenfted for each day. Twice daily iscbaric
alr-parcel back-trajectories for six positicns off the coast between Nova
Scotia and South Carolina at 850 and 700 mb were computed with the Gridded
Atmospheric Multilevel Backward Isobaric Trajectories (GAMBIT) model (Harris,
1982). A latitude-longitude plot of each flight track is presented for
geographical orientation. For each flight, a flight log is given describing
the movements of the aircraft, and the observations of clouds and haze.
Meteorclogical wind analyses were used to calculate the flux of air (standard
temperatuwre and pressure, 0°C, 1013 mb) from the continent arriving at 15-
minute intervals along the flight track. Wind was divided intc the U segment,
representing the NW component perpendicular to the idealized flight track
(negative U means SE winds), and the V segment, representing the SW component
parallel to the idealized flight track (negative V means NE winds). The
idealized flight track was defined as being 200-300 km east of the Atlantic
coast of North America on a line running 45° east of north (see Appendix B,
fig. B.1). The U component was ghen used to cglcu%ate 15-min. average air
mass fluxes in units of either m° s | or kg m = s ' (Appendix B).

ALerosol data are presented as cross sections of condensation nuclei (CN)
conecentration and aeroscol scattering extinction (bS }, and as log dN/dlogD
(number) and log dV/dlogh (volume) spectra of aerosgl size distributions,
where D is diameter. Condensation nuclel were measured with a General
Electric CN Counter, aercosol scattering extinction,corrected for Rayleigh
scattering, was measured by a Meteorology Research, Inc., Model 1591
nephelometer, and aercoscl particle diameters were measured by a Particle
Measuring Systems Active Scattering Aerosol Spectrometer Probe (ASASP) and a
Forward Scattering Spectrometer Probe (FSSP). Aerosol particle diameters were
measured in eight size ranges from 0.615 to 3.12 um (ASASP) and in 15 ranges
between 1 to 15 or 3 to 45 um (FSSP). Aerocsol spectra in the free troposphere
and marine boundary layers were averaged over 10 to 50 minutes. Limited
flight time in the cloud layer required averaging cver periods of 2 to 5
minutes. The ASASP cannot measure aerosols accurately when relative
humidities are greater than 80%, and thus FSSP data are presented for the
cloud layer. Marine boundary layer ASASP data are presented only for air with
humidities less than 80%. The overall gas sampling and aeroscl systems were
described by Schnell (1984 and Schnell et al, 1987). All times and dates are
given in Greenwich Mean Time (GMT).



1. WATOX FLICHT 1, JANUARY 4, 1986
1.1 Flight Track

The aircraft flew SE from McGuire Air Force Base (New Jersey) to latitude
37.5°N, longitude 71.5°W (fig. 1.7). The aircraft then flew NNE to east of
Cape Cod, Massachusetts (42.3°N), and then turned ENE. Upon reaching the end
of the flight track (Lb4ey, 58°W), the aircraft reversed course, returning to
base along the same flight track. During the flight, the aircraft crossed
between the marine boundary layer and free troposphere five times, and reached
a maximum altitude of U566 m (Y3-44°N) while sampling in an elevated haze
layer. Total flight time was 8 hours, 46 minutes.

P3 Fliaht Track January 4, 1986

37 85 I A e 690 ¢, 6 650 63,8 <61.0 -59.6

Figure 1.1.--Horizontal projection of the flight track on a latitude-longitude
grid, on January 4, 1986. The numbers on the flight track are hours (GMT).

1.2 Synoptic Situation

At 0000 GMT on January 5, the closest synoptic summary to flight time, a
weak low-pressure system (1008 mb) was centered over the southern Great Lakes
area (fig. 1.2). From this low, a ccld front extended south along the western
flank of the Appalachian Mountains to scuthern Louisiana, and a warm front was
moving north through Pennsylvania. A strong cyclonic flow extended through
the Canadian Maritime Provinces from a second low near Nova Scotia. Between
fhe low-pressure areas a weak ridge covered the New England and Northern
Ltlantic States, including a major portion of the aircraft flight track. Air
Flow at flight altitude was NW except at the southern limit of the track,
where it became SE.
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Low geopotential heights at 850 mb and 700 mb were present over the Nova
Scotia area, and to a lesser extent, Michigan. Ridging was evident between
these two systems; there was SW flow along the coast south of New York City
and W flow along the New England coast.

1.3 Air-Parcel Back-Trajectories

Iscbaric (850 mb) air-parcel back-trajectories arriving at 0000 GMT
January 5 at six positions off the coast between Nova Scotia and South
Carolina are given in fig. 1.3. Each successive 12-h interval is indicated on
the trajectory. Trajectories A, B, and C c¢learly indicate the presence of low
pressure near Nova Scotia. Air parcels at 850 mb followed a cyclonic path
around the low for at least 24 hours before crossing the flight path. Farther
south, air parcels traveled across the Ohio Valley from the NW for the 24- to
36-h period before arriving at points D and E. Trajectory F indicates flow
across Florida., The 700-mb trajectories (fig. 1.4) show WNW transport
winds. The northern two trajectories, closer to the center of the low, show
NW transport across Canada and New Bngland. Trajectory C c¢rosses the Great
Lakes and New York. Air parcels in southwestern Ohi¢c and near the
Tennessee/Georgia border reach points D and ®, respectively, on a generally SE
path. Trajectory F again indicates flow across Florida.

A comparison of three methods of calculating trajectories is included in
Appendix A.

1.4 Flignht Log, January 4, 1986

1525 GMT Takeoff.

1526-1544 Climb SE to 4465 m, 579 mb, 37°N; air is cloud free and hazy

1610-1651 Encountering stratocumulus (Sc) cloud deck; descend to 897 mb,
1007 m, cirrus (Ci) high overhead.

1620 Turn to a NE flight track.

1648 Within haze lgyer above the 3¢ clouds, 897 mb, 1007 m, 39°N;
CN > 2000 em™ 2.

1701-1727 Climb to_699 mb, 3025 m, 41°N; Sc more scattered, Ci gone; CN
~250 cm”3.

1806 Have now descended through cloud layer into boundary layer,
990 mb, 180 m,I 42.5°N; air is very clean; cloud base 550 m, wind
speed 25 m s~ ' at surface.

1815 Snow showers.

1820-1856 Climb to 709 mb, 2709 m, 43°N; cloud tops 1128 m.



1845 Haze layers clearly visible in free troposphere.

1910 Flying in well-defined haze layer, 727 mb, 2715 m, Y43°N; shallog
altocumulus (Ac) layer exists above the aircraft; CN > SCO0 cm -.

1917-1930 Climb to 572 mb, 4566 m, 43.5°N; flew cut of the top of haze.

1930-2014 Descend through haze layer and boundary layer clouds to 989 mb,
200 m, 43°N; entered clean air at 2001; cloud tops 1205 m.

201 4-2044 Flying S, level in the boundary_layer, 989-1000 m, 43-U41°N;
cloud base 610 m; CN -~ 1000 em 3.

2144-2156 Climb through cloud layer to 814 mb, 1806 m, 41-40°N; cloud tops
815 m.

2208-2218 De§§end into boundary layer to 970 mb, 355 m, 39°N; CN 1500-1800
cm -,

2304 Turn W toward coast.

2349-2357 Climb to 850 mb, 1454 m.

00040011 Descend to surface and land.

1.5 Vertical Profiles Across the Marine Boundary Layer Inversicn

The aircraft collected a wide range of meteorclogical, gas, and aerosocl
data on a continuous basis. Some of these parameters, when plotted against
altitude, reveal much about the structure of the atmosphere affecting the
disftribution and transport of the gases and aercsols. One such profile is
presented in fig. 1.5 for a day when the higher troposphere contained
exceptionally large concentrations of CN. The changes in CN concentration,
bS , ©zone, and relative humidity parameters observed acrcss the marine
bandary layer inversion on this day were typical of all the flights. As
shown in fig. 1.5, there is considerable variation in the fine structure of
the parameters, particularly CN concentraticon, humidity, and ozone, but
certain major features are apparent. For instance, the moist marine boundary
layer with reduced ozone values is a regular feature on all flight profiles
occurring beneath the marine boundary layer temperature inversion.

The zone of elevated CN concentrations in the free troposphere, between
600 and 700 mb, is distinctive, and is matched in part by a relative humidity
increase above 700 mb. It is probable that moisture and CN were transported
together in a relatively cohesive layer from a source region Lo the



A *JE -
TN e

e -57156:

Figure 1.3--850-mb isobaric back-trajectories arriving at points A-F at 0000
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northwest. Aerosol bg, decreased slightly at 750 mb, coincident with a layer
of minimum CN ooncentrgtion.

There i3 a sharp increase in ozone mixing ratio above the marine boundary
layer and the largest ozone values occur just above the temperature
inversion. The lower cozone values in the boundary layer are at concentrations
expected for air modified by destruction of czcne within the layer. There
appears to be some ozone depletion in the free troposphere at 800 mb and
between T00-600 mb, coincident with relatively elevated CN concentrations.
Data from profiles such as theose in fig. 1.5, and data from level aircraft
runs, were used to plet the atmospheric cross sectlons presented in this
report.

1.6 Atmospheric Cross Sections

Latitude-altitude meteorclogical cross sections for a plane approximately
parallel to the ccast were constructed from data recorded by the aircraft for
potential temperature and winds, as shown in fig. 1.6, and for water vapor
mixing ratics, as shown in fig. 1.7. In both figures, dashed lines represent
the aircraft flight track with time of day (@MT); given at se¥eral positions
along the flight track. 1In fig. 1.6 winds are given in m s ' and isentropes
at 2-¥ i?tervals. Figure 1.7 shows lines of constant water vapcor mixing ratio
in g kg . As determined from the isentropes, the top of the boundary layer
was approximately 900 mb, and sleoped down from north to south. As expected,
the atmosphere was more stable above the boundary layer.

The winds were primarily from the W or NW and were stronger to the north
closer to the center of the low-pressure system. The strongest water vapor
mixing-ratio gradient occurred j¥st above the cloud layer. Mixing ratios were
generally less than 1 to 2 g kg ' above 900 mb. Below_ 900 mb and socuth of
oo la%itude, mixing ratios were greater than 4 g kg ', and exceeded

5 g kg near the Gulf Stream south of 38°N.

The spatial distribution of westerly air fluxes perpendicular to the
flight track averaged for 15-min se%men%s is shown in fig. 1.8. The dominant
feature is a flux of 30 to 40 kg m © s ' between 43 and UU°N, above the marine
boundary layer inversion. Westerly fluxes diminish consistently toward the
southern end of the flight track, eventually becoming weak easterly in the
marine boundary layer south of 39°N. The marine boundary layer inversion
appeared to have no influence on the vertical structure of the air fluxes. A
numerical list of the flux calculations is presented in Appendix B.

1.7 Cross Sections of CN Concentration and bSp
Figure 1.9 presents a CN concentration cross section along the flight

track, and includes several distinct features of interest. At 43 to YU°N and
600 to 800 mb, a large patch of visibly dark haze yielded CN concentrations
between 1000 and 6500 cm_3. This layer was nct typlcal of free tropespheric
conditions and probably coriginated from anthropogenic sources in the higher
nerthern latitudes of North America, as suggested by trajectories described in
sec. 1.3. It is associated with the maximum air flux, shown in fig. 1.8. A
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(full barb = 10 m s ') along the WP-3D flight track parallel to the coast,
January 4, 1986. The stippled area represents the cloud layer. The flight
track is shown by the dashed line.
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Figure 1.8--Air fluxes perpendicular to the aircraft flight track, January 4,
1986.

secondary CN peak of 3000 em” 3 occurred at 890 mb and 39°N, and probably was a
remnant of the prgvious day's marine boundary layer. CN concentrations of
less than 500 cm 2 at 42 to 43°N in the boundary layer were associated with
cleaner subsiding air from the upper troposphere. In the marine boundary
layer, higher CN concentrations were measured at the SW end of the transit.
Aside from the two CN peaks in the free troposphere, marine boundary layer CN
concentrations were about 3 times higher than those in the free troposphere.

A cross-section of bg is presented in fig. 1.10. Maximum bS
concentrations were observgd at the SW end of the flight track, prgbably
associated with transport of anthropogenic particulate matter from sources in
the central eastern United States. The spatial pattern of bS in the free
troposphere bears little relationship to the pattern of CN oogoentrations.

1.8 Aerosol Size Distributions
Number and volume spectra of aerosol particles measured by the ASASP and
FSSP probes are presented in fig. 1.11 for the free troposghere, cloud layver,
and marine boundary layer respectively. The measurement locations are

indicated in fig. 1.9 by letters associated with each individual spectrum.

Free troposphere aerosel spectra generally reflect the CN concentration
pattern, in that lowest particle concentrations were observed in the sub-

1M



500—~— : T T

WATOX
JANUARY 4, 1986
500(~— CONDEMSATION NUGLE! {cm™

700

800

Pressure (mb)

900

1000

Washington New York Boston
swW Latitude {deg N) NE
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siding (clean) air at 42°N (curve B) and the nighest concentrations in the
haze layer at 43-U44°N (curve C), particuiarly in the smaller size ranges
(0.645-0,820 um diameter). This haze layer also contained more large
particles (»10 pm) than were observed in background air. The high-altitude
haze layer also exnibits peaks at 7-um diameter and at 30-pm diameter.

Cloud layer droplets exhibit peaks in both number and vclume spectra in
the 10-20 um diamefter range and show little difference between the three
widely separated sampling locations. These distributions are typical for
marine stratus clouds.

Lerosol number-size distribufions in the boundary layer were an order of
magnitude greater than in the free troposphere. The dN/dlogD curves exhibit a
steady decrease with particle size, similar to a theoretical Jungean curve.
There is little difference in the spectra along the flight track. The
dV/dlogh curves exhibit two peaks, one at 8-9 um, probably associated with sea
salt, and another at 30 um {at the northern end of the flight track). The
existence of larger particles in the westerly flow in the northerly region of
the flight most likely reflects increased sea salt injected into the
atmosphere from sea spray generated by strong winds.

14



2. WATOX FLIGHT 2, JANUARY 6, 1986
2.7 Flight Track

The aircraft flew SE from McCuire Air Force Base to 38°N, 73°W, then NE
to the northern end of the flight track at 41.3°N, 66.5°W, by 1400 GMT. The
aireraft then flew SW to 31.5°N, 77°W, before retracing its path NE to 35°N,
72°W and then turning NW to home. During the flight, the aircraft crossed the
boundary between the free troposphere and the marine boundary layer eight
times. Total flight time was 10 hours, 4 minutes.

P3 Flight Track Jonuary 6y 1586

A ibett NI S S— -

Caps
Hattsrag

35'95:........

33-955““"""““‘7""1B' i ....--..'....'

F, Birererannenarerdorcnsninncda e e H

Figure 2.1--Horizontal projection of the flight track on a latitude-longitude
grid, for January 6, 1986. The numbers on the flight track are hours (GMT).

2.2 Synoptic Situation

At 1200 GMT January 6, a cold front, associated with a deep low-pressure
system (976 mb) centered just west of Newfoundland (fig. 2.2), extended over
New York, Pennsylvania, Onhio, and to the west. Strong rressure gradients with
W to SW surface winds prevalled over rnortheastern U.S. and into eastern
Canada. High pressure and weak pressure gradients dominated the southeastern
U.5s.

The 850- and 700-mb charts exhibited a similar airflow pattern, with a

closed low over the Guli of 3t. Lawrence. Strong W winds prevailed throughout
the lower troposrhere over much of the eastern U.S.

15
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2.3 Air-Parcel Back-Trajectories

Tsobaric (850 mb and 700 mb) air-parcel back-trajectories arriving at
points A to F at 1200 GMT January 6 are given in figs. 2.3 and 2.4. At 850
mo, trajectories A and B came from more southerly locations than the other
trajectories. Trajectory C crossed northeastern Ohio. Trajectories D-F
suggest the air parcels were in the Ohio River Valley region about 12 to 24
hours before reaching their end points. The T00-mb trajectories are fairly
uniform, crossing south of the Great Lakes on an easterly course and extending
off the coast. Greater wind speeds were evident to the north, closer to the
center of the low, for the 12-h period before arriving at peints A-F. Air
parcels from over the Ohio River Valley region reached the trajectory starting
points in 12 to 18 hours.

A comparison of results {rom three trajectory methods is presented in
Appendix A.

2.4 Flight Log, January 6, 1986
1270 GMT  Takeoff
1210-1225 Climb SE to 571 mb; 4581 m; clear skies, light to moderate winds.
1248 Flight track now NE, 37°N.

1257-1326 Descend to bottom of cloud layer, 887 mb, 1100 m, 39.5°N; cloud
tops 2700 m; cloud base above 1100 m; higher CN patches, 1250 cm_3.

1336-1350 Climb through cloud layer to 3066 m, 695 mb; air much cleaner.
1401 Flight track turns SW, 41°N.

1403-1423 Descend to 985 mb, 238 m, 41°N, in boundary layer; cloud tops
2200 m; cloud base 850-880 m.

1423-1600 In boundary layer, 40.5-37°N; CN 800-1300 cm S.

1600-1617 Climb through boundary layer to 778 mb, 2165 m, 37°N; cloud base
1800 m; cloud tops 2040 m; clouds dissipating to south.

1622-1638 Descend into boundary layer to 998 mb, 122 m, 36°N; clouds
scattered with tops 1950 m.

1638~1830 In boundary layer 35.5-32°S; CN 900-1200 om_3; 900-1000 mb; flight
track varies SE to SW.

1830-1852 Climb to 704 mb, 2963 m, 32°N; flight track changes to NE; few
seattered stratocumulus between 1220 and 1370 m.

2000 Flight track NW.
2011 Plane level at 799 mb, 2135 m, 35.5°N; Jjust above cloud tops.

2032-2056 Climb to 696 mb, 3047 m, 37°N.

17



Figure 2.3--850-mb isobaric back-trajectories arriving at point A-F at 1200
MT, January 6, 1986. Successive symbols indicate 12-h intervals.

) | o F . T00mb
et m«mp\ | ] o j;J.Aw-GTﬁse?

Figure 2.4--700-mb isobaric back-trajectories arriving at points A-F at 1200
GMT, January 6, 1986. Successive symbols indicate 12-h intervals.
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2056-2116 Descend to 992 mb, 170 m; few stratocumulus clouds and high cirrus.

2125-2133 Climb to 755 mb, 2407 m.

2200-2214 Descend to surface and land.

2.5 Vertical Profiles Across the Marine Boundary Layer Inversion

Profiles of CN concentration, bS , 0OZone, wind speed, wind direction, and
relative humidity at 37°N on January B exhibited a distinet change upon
crossing the boundary layer inversion. As observed in Tig. 2.5, relative
humidity dropped from greater than 90% at the top of the boundary %ayer to 10%
in ghe space of 100 m, and CN concentrations dropped from 1600 cm - to 200

cm - over the same distance. The temperature profile indicates that this
inversion was slightly weaker than that observed c¢n Jaggar¥1u. herosol bSp
al§8 d§$reases across the inversion from about 50 x 10 ¥ m ' to 30 x

10 Y m .

The variations in ozone are similar to those observed on January 4 (fig.
1.5). At 800 mb, above the boundary layer inversion, there is a narrow layer
of higher ozone, about 15% greater than that found in the boundary layer.
Above 2 km, the ozone decreases to near bowumdary layer values again. Two
profiles slightly to the north which also penetrated the cloud layer, also
show an increase of ozone at the same altitude, but on the order of 3-5%.

700 3
_’a WATOX H H —
E asgmwome {'CN E
W 800 32 TA™ - L~ 2 X
[ia i L4
=2 = |
900 £ =
24 o
a. <
1000 ] | 1 'l 1 L L L '] 1 .  \ i
0O 20 40 60 80. 100 10 20 30 40 50 60 70
RH (%) bgp (x10°m")
E '] L 3 L L | i N 1 1 1
0 10 20 30 40 50 20 30 40 50
WS (m s OZ (ppb)
i L. : { L 1 1 i L L L | L ]
~40 -30 -20 -10 O 10 100 200 500 1000 10000
TA {°C) CN (cm®)

Figure 2,5--An example of vertical profiles of relative humidity, ambient
temperature, wind speed, CN concentration, bsp’ and ozone, January 6, 1986.
The shaded region represents the cloud layer, capped by the marine-boundary
layer inversion.
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2.6 Atmospheric Cross Sections

Latitude-altitude cross sections of potential temperature, wind speed,
and water vapor mixing ratio approximately parallel to the coast were
constructed from dropwindsonde and aircraft data along the flight track, as
shown in figs. 2.6 and 2.7. The top of the boundary layer increased from
about 880 mb at the south end of the track to about 780 mb at the north end.
West winds dominated the area throughout the flignt and were strongest in the
nerth, closer to the center of the low-pressure system. The cloud layer at
the top of the boundary layer was quite shallow except at the northern end of
the flight track. The strong water vapor mixing ratio gradient occurred above
the cloud layer except in the so¥thern portion of the flight. Mixing ratios
were gg?erally less than 1 g kg ' above the boundary layer and great?r than
2 g kg in the boundary layer. The largest mixing ratio of 6 g kg
observed near the surface over the Gulf Stream at 33°N latitude. A relatlvely
dry area was observed near the top of the boundary layer, and also near 33°N
latitude.

Westerly air fluxes (kg m? s at STP) perpendicular to the flight track
are presented in fig. 2.8 for January 6, 1986. For latitudes 36°N ang hlgher,
fluxes increase relatively uniformly with height, peaking at 31 kg m
the free troposphere at 700 mb, 37.7°N. Fluxes diminish toward the southern
end of the flight track, as also observed on January U4 (fig. 1.8). Overall
flgxes of air in the northern half of the flight track were 10 to 15 kg

“ s~ less than on January 4. A tabular list of calculated fluxes is
presented in Appendix B.

2.7 Cross Sections of CN Concentration and bSp

Figure 2.9 presents the spatial distribution of CN along the main NE to
SW flight track, between 39 and U42°N. CN_concentrations in the free
troposphere ranggd from less than 200 cm_3 at the SW end of the flight track
to about 500 em 2 at some altitudes at 32-41°N. Unlike January U4, there were
no visib%e haze layers. Between 36 and 41°N, CN concentrations greater than
1000 em ~ occurred just above the maréne boundary layer inversion, and the
highest CN concentration of >1500 cm - was observed at the top of the cloud
layer at 35.9°N. The streaky pattern of the higher CN concentrations in the
cloud layer is probably indicative of anthropogenic plume sources from the
continent. Marine boundary layer CN concentrations were measured at 1000 2
200 cm ~ along most of the flight track; slightly lower concentrations were
measured at 34-35°N and slightly higher concentrations at 37°N.

Aerosol b {(fig. 2.10) generally decreased with altitude, with the
exception of a gllghtly elevated area between 750 and 850 mb at 33 to 35°N.
The higher concentration areas in the ¢loud and boundary layers that were
observed for CN were not observed for bSp

20
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1986,

2.8 Aferosol Size Distributions

Aerosol size distributions in the free troposphere on January 6 (fig.
2.11) were similar to those outside the haze layers on January 4 (fig.
1.11). The letters on the size distribution spectra refer to locations on
fig. 2.9, There is a small but distinet indication of a spatial variation in
" particle concentration along the flight track represented by higher
concentrations in the central region at 36 tc 37°N (curve B), and lower
concentrations at either end of the track (curves A and C). This is roughly
similar to the CN spatial distribution. Both number and volume spectra show
considerable variation in aeroscl numbers by diamefer range. The main peak in
the volume spactra occurs at 10-um diameter.

Cloud layer spectra exhibit a weak bimodal distribution. The mode
associated with smaller droplets is typical of a partially evaporating cloud
in which entrainment of drier air will diminish the smallest cloud droplets
first. The mode at 10 um represents older, more stable cloud droplets,
developad during passage to the tecp of the c¢loud.

Aerosol size distributions in the marine boundary layer exhibif a
distinet spatial pattern, increasing in concentration from south to north
(curves F to D). All spectra retain similar shape characteristics, and volume
shows a peak at 8-9 um, most likely sea salt, reflecting higher wind speeds
and a more agitated sea state in the north.
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Figure 2.93--NE-SW cross section of CN concentration over the western Atlantic
Ocean, January 6, 1986. Letters and brackets on the flight track indicate
measurement locations for fig. 2.11.
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3. WATOX FLICHT 3, JANUARY 8, 1986

3.1 Flight Track

The WP-3D aircraft flew NE from McCuire Alr Force Base to near Boston,

where an in-flight instrument intercomparison was conducted with the NOAA King
Air. The WP-3D then flew SE to 41°N, 67°W.

After turning SW it flew a long
leg to 33°N, 74°W. It then reversed direction, flying NE to 39°N, 70°W, and
from there SW to 37.5°N, 71.5°W. It then flew NW to base. The aircraft

crossed from the free troposphere to marine boundary layer only once, at the
southern end of the flight track. Flight time was 9 hours, 46 minutes,

45, 0w ELELISNE Track January 8, 1986
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Figure 3.1--Horizontal projection of the flight track cn a latitude-longitude
grid, January 8, 1986. The numbers on the flight track are hours (GMT)

3.2 Synoptic Situatiocn
At 1200 GMT January 8 the predominant surface feature was a strong high-
pressure system (1045 mb) centered over Illincis (fig. 3.2).

Winds were N to
NW along the east coast and were stronger over New England than to the
south. A frontal zone lay about 1000 km off the east coast.

The 850 mb chart indicates strong NW flow over New England and weak winds
over the southeastern states.

The pattern is similar at 700 mb except that
the region of strong NW winds extends farther south than at 850 mb.
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3.3 Air—Paréel Back-Trajectories

Isobaric (850 mb and 700 mb) air-parcel back-trajectories arriving at
1200 GMT January 8 are given in figs. 3.3 and 3.4. 1In general the flow for
both pressure levels was from the N or NW. Air parcels arriving at points A4,
B, and C generally traveled over New England; those arriving at points D and E
generally traveled over Chio, Pennsylvania, or New York, coming from the N or
NW. Air parcels arriving at point F came from the W over North Carclina and
South Carolina at 850 mb, and from the W over South Carolina and Georgia at
700 mb. A comparison of results from three trajectory methods is presented in
Appendix A.

3.#1 Flight Log, January 8, 1986
1239 GMI  Takeoff.
1239-1256 Climb to 587 mb, 4364 m; E-NE flight track; no clouds.
1337 Of fshore near Boston.

1338-1358 Descend to 860 mb, 1358 m, 43°N; intercomparison with King Air;
scattered stratocumulus (sc) at 975 m.

1426 Flight track now WSW, 42.9°N.
1428-1433 Descend through cloud deck to 972 mb, 341 m, 42.9°N.

1502-1528 Climb through cloud deck to 699 mb, 3015 m, 42.5°N; flight track SE
at 1506; remained in free troposphere between 699 and 795 mb until

1819,
1547 Flight track SE, Y41°N.
1605 Cloud tops 1830 m, 40°N.
1700 Cloud tops 2440 m, 37.7°N.
1730 Cloud tops 2590 m, 36°N.
1818 Flight track N.

1819-1830 Descend into boundary layer to 925 mb, 757 m,_33°N; remain below
925 mb until 2128; CN peak in cloud >3000 cm 3.

1830 Cloud tops 2225 m, 33.6°N.

1841 Cloud base just above 760 m; flight track NE.

1905 Intermittent light clouds.

1914 Flight track N, then NE, 35°N.

1922 Intermittent light showers; flight track variations to avoid
showers
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Figure 3.3--850-mb isobaric back-trajectories arriving at points A-F at 1200
GMT, January 8, 1986. Successive symbols indicate 12-h intervals.
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Figure 3.4--700-mb isobaric back-trajectories arriving at points A~F at 1200
GMT, January 8, 1986. Successive symbols indicate 12-h intervals.
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1440 Cloud base 686-m, 36.3°N.

2039 Flight track SW, 39°N.
20471 Cloud base 595 m, 38.9°N.
2113 Flight track NW, 37.6°N.

2128-2139 Climb to 754 mb, 2429 m, 38°N; cloud base 854 m; cloud tops 1677 m.

2203-2225 Descend to base.

3.5 Atmospheric Cross Sections

Latitude-altitude cross sections of potential temperature and water vapor
mixing ratio approximately parallel to the coast were constructed from
dropwindsonde and aircraft data along the main part of the flight track off
the coast as shown in figs. 3.5 and 3.6. The winds were N to NW and generally
weaker to the south in the region of the high-pressure system. Winds were
weaker than for the first two WP-3D [light days. The cloud layer was
relatively deep, having a thickness of nearly 1 km. The water vapor mixing
ratio gradient capping the cloud layer was weaker than in the first two
fll%hts Above the cloud layer the mixing ratio was generally less than 1 g

Within the boundary layer, the mixing ratio was ?etween 1 and 3
g kg over much of the cross section, and 3 to 4 g kg' ' for the southern part
of the flight, near the Gulf Stream.

As shown in fig. 3.7 air fluxes (kg me s ! at STP) generally increase
regularly with height and are lower in the marine boundary layer south of 35°N
than on any other portion of the flight track. A tabular list of calculated
fluxes is included in Appendix B.

It was possible to construct additional atmospheric cross sections from
coastal rawinsonde sites and aircraft data for the part of the flight track
along the coast, upwind of the cross section shown in fig, 3.5. The
information from one set of these additional cross sections, shown in figs.
3.8 and 3.9, should provide a tool for determining the gradients of
meteorclogical and chemical quantities off the east oopast using measured
rather than modeled quantities. One important difference between the
meteorclogical conditions along the coast and farther out is that no clouds
were present along the coast. Another difference is that the surface—based
inversion is much more shallow along the coast than 200-300 km offshore. ?
fthe flight along the coast, water vap?r mixing ratios were less than 1 g kg
compared with a range of 2 to 4 g kg ' to the southeast over the open sea.

The longitude-altitude cross sections of potential temperature and mixing
ratio for the flight track normal to the coast (41-43°N) are given in figs.
3.10 and 3.11. This information may be useful in judging the reliability of
isentropic and isobaric back-trajectories generated for this region of the
flignt. Again, the winds were N to NW. Mixing ratios were at most 1.4 g kg
along the flight track and the cloud layer at 950 mb was quite shallow. The
layer between about 900 mb and 750 mb was less stable than at either higher or
lower altitudes.
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3.6 Cross Sections of CN Ceoncentration and bSp

On this day the aircraft crossed from free troposphere to boundary layer
only once, at the southern end of the flight track. Thus, although dropwind-
sondes helped establish the locaticn of the cloud, cross section information
on CN and b is more limited. As depicted in fig. 3.12, CN concentrations
decreased fa?rly regularly with increased altitude from about 1000 cm < in the
marine boundary layer to 100 cm - in the frae troposphere. At the southern
end of the flight track (3§°N) a sharp CN gradient existed between hé ‘
concentrations of 3000 em 2 at 800 mb in the cloud layer and 200 cm - at 770
mb 1n much cleaner air.

As on the previous days, b (fig. 3.13) exhibited higner concentrations
in the marine boundary layer, greasing with gltlgude. The CN peak at 8C0O mb
and 33°N was matched by a by Deak of 50 = 1G , brobably indicative of
transport of anthropogenic eg1331ons castward from the continent.
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Figure 3.12--NE-SW cross section of CN concentration over the western Atlantic
Ocean, dJanuary 8, 1986.
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Figure 3.13--NE-SW cross section of by, January 8, 1986.
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4, WATOY FLIGHT 4, JANUARY G, 1986
4.1 Flight Track

The aircraft flew E and then SE from McGuire Air Force Base to 37.5°N,
71.5%°W, then flew S and SW into a region of high pressure to a southern point
of 31.5°N, 74°W. The aircraft then reversed course to 37.5°N, 71.5°W
northeast to 40°N, 68.5°W and back to 37.5°N, 71.5°W before returning to base
on a NW course. During the flight, the aircraft crossed hetween the free
troposphere and marine boundary layer seven times. It reached a maximum
altitude of 7600 m a2t 39°N while searching for haze layers in the free
troposphere. Total fliight time was 7 hours, 25 minutes.

P3.Flight Track Jenuary 9y 1986

5.0
FL, Qirermemreeremmrenrns e LU SR SRR O
~76.0 -74.8 =72.8 -78.0 -63.9

Figure 4,1--Horizontal projection of the flight track on a latitude-longitude,
grid, January 9, 1986. The numbers on the flight track are hours (CGMT).

4,2 Synoptic Situation

At 1200 GMT January 9 a large area of high pressure was centered over the
Carolinas, extending to Texas (fig. 4.2). The pressure gradient was weak
south of New Jersey. There were light W winds at the northern part of the WP-
3D's flight track and E winds at the southern part. Both the 850-mb and 700-
mb charts indicate relatively light W to NW flow off the coast from New Jersey
to the south. Winds were weaker to the south.
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700 mb 12 GMT JAN 9, 1986

850 mb 12 GMT JAN 9, 1986

SURFACE 12 GMT JAN @, 1986

Figure 4.2--Surface (pressure, mb), and 850- and 700-mb (geopotential height, decameters)
synoptic analyses for 1200 @MT, January 9, 1986. The flight track is shown by the dashed line

on the surface map.



4.3 Alr-Parcel Back-Trajectories
Isobaric (850 and 700 mb) air-parcel back-trajectories arriving at 1200
CMT January 9 at points & through F are given in figs. 4.3 and 4.4, Clearly,
the transport was generally from the NW. The 850-mb trajectories arriving at
points A-F do not extend west of a line between Sault Sainte Marie, Ontario
and central Pennsylvania. Similarly those at 700 mb do not extend west of a
line between Minnesota and South Carolina. In general, for both 850 mb and
700 mb trajectories arriving at points E and F at 1200 OGMT, the transport
winds are more N as compared with more W for points A-D.
A comparison of results from three trajectory methods is presented in
Appendix A.
4.4 Flight Log, January 9, 1986
1436 GMT  Takeoff,
1436-1459 Climb to 538 mb, 5019 m, 40°N; flight track E.
1501 Flight track S, 39.7°N.
1509-1536 Descend to 824 mb, 1701 m, 38.5°N.

1546-1605 Descend through clouds to boundary layer, 1012 mb, 10 m, 36°N;
cloud tops 1675 m; cloud base 1065 m.

1609 Flight track SW, 36°N.

1615-1637 Climb to 737 mb, 2598 m, 34.5°N; cloud base 1220 m; cloud tops
2040 m.

1707-1734 Descend to 1011 mb,_22 m, 32°N; cloud tops 1950 m; cloud base
1295 m; CN <200 cm o; flight track NE, 1716.

1741-1805 Climb to 727 mb, 2715 m, 32.7°N; cloud base 1295 m; cloud tops

1830-1921 m.
1821 Flight track N, 35°N,
1830 Cloud tops 1980 m.

1840-1903 Descend to 1006 mb, 57 m, 36°N; cloud tops 1525 m; CN >1250 cm 3
in lower boundary layer; flight track NE, 1901,

1910-2007 Climb to 377 mb, 7600 m, 38-39°N; c%oud base 10%0 m; cloud top,
1465 m; sharp CN drop from 1500 cm - to 400 cm 2 at cloud top.

1953 Flight track SW.

2008-2052 Descend to 1006 mb, 60 m, 38°-39°N; cloud tops 1340 m; cloud
bases 914 m.
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Figure 4.3--850-mb isobaric back-trajectories arriving at points A-F at 1200
GMT, January 9, 1986. Successive symbols indicate 12-h intervals.
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Figure 4,4--700-mb isobaric back-trajectories arriving at points A-F at 1200
GMT, January 9, 1986. Successive symbols indicate 12-h intervals.
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2048 Flight track NW, L40°N.
2102-2107 Climb to 723 mb, 2754 m, 38°N.

2142-2200 Descend to base.

4.5 Vertical Profiles Across the Marine Boundary Layer Inversion

The vertical profiles of CN concentration, ozone, bg,, and meteorclegical
variables obtained at the northern end of the flight track are shown in fig.
4.5. As observed on previous occasions {January 4, fig. 1.5; January 6, fig.
2.5), CN concentration and relative humidity decrease strongly above the
marine boundary layer inversion; CN concentration and b.. decrease rapidly
with height in the free troposphere. In contrast to Jantary Y, the moist
layer between 500 and 650 mb on this day contained only slightly higher CN
concentrations.

An enhanced ozone layer between the top of the marine boundary layer and
the top of the dry layer at about 675 mb was consistently seen in all profiles
on this day, although it was most pronounced in the profile shown.

The dry, warm layer above the boundary layer correlates well with this
layer of enhanced ozone. This layer of air appears to be subsiding along its
path from a scurce relatively rich in ozone, but of low CN concentration.
Such a region might be found at somewhat higher altitudes in the tropospnere,
at more northerly latitudes where air richer in ozone and lower in aerocsols
was mixed down from the stratosphere. The boundary layer has ozone mixing
ratios slightly greater than those measured above 675 mb.

The role of chemical production of ozone in air into which precursors
have been injected and transported cannof be clearly determined on the basis
of data given here. It is expected that ozone production would be slow during
this time of year, buf over longer distances enough production may occur to
contribute to the ozone budget and produce a thin layer as seen in fig. 4.5.
This layering, apparent in most of the profiles during WATOX, might indicate a
more dramatic creation of ozone layers than that envisioned by a slow
photochemical production process.

4.6 Atmospheric Cross Sections

Latitude~altitude cross sections of potential temperature, wind speed,
and water vapor mixing ratio approximately parallel to the coast were
constructed from dropwindsonde and aircralft data along the {light track, as
shown in figs. 4.6 and 4.7. Of the four WP-3D flights, the aircraft flew the
highest on this flight, reaching above 400 mb. Compared with the WP-3D flight
on January 8 (fig. 3.5), the winds were weaker and the cloud layer thinner on
this day. The winds were E at the southernmost end of the flight and W during
the rest of the flight. Water vapor mixing ratios were generally less than 2
g kg“1 above the cloud layer, and had a relative maximum at 650 mb, 39°N
latitude. Mixing ra%ios in the boundary layer were relatively high, e.g.,
greater than 4 g kg~ ' over much of the cross section.
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Figure 4.5--An example of vertical profiles of relative humidity, ambient
temperature, wind speed, CN concentration, b.., and ozone, January 9, 1986.
The shaded region represents the cloud layer, capped by the marine boundary
layer inversion.

Air fluxes on January 9, shown in fig. 4.8, were generally lower than on
the cther three days. The spatial pattern of higher values farther north
continued. Fluxes in the marine boundary layer at 32°N were easterly. The
decrease in fluxes compared with the other days and the more even spread of
values with latitude reflect the position of the high-pressure system.
Tabular calculations of fluxes in 15-min segments are included in Appendix B.

Longitude-altitude cross sections of petential temperature and mixing
ratio approximately normal to the coast were constructed from the Atlantic
City rawinsonde, aircraft dropwindsondes and from the data recorded by the
aircraft aleng the first and last segments of the flight track. As with the
third flight, these normal cross sections (see figs. 4.9 and 4.10) should aid
in Jjudging the reliability of trajectories calculated for this period of the
flight. The atmospheric stability near the surface was greater closer to the
cnast than along the main part of the flight track. Winds were also W while
the airecraft flew approximately normal tc the coast. Water vapor mixing
ratios at the surface were smaller closer te the coast. A relative maximum
was observed near 675 mb, 73°W longitude shown in fig. 4.10. No clouds were -
present along the flight segments normal to the coast.
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Figure 4.6--Latitude-altitude cross section of petential temperature (K) and
wind (full barb = 10m s ') aleng the WP-3D flight track parallel to the
coast, January 9, 1986. The stippled area represents the cloud layer. The
flight track is shown by the dashed line.
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Figure M.7—~Latitude—§%titude cross section of water vapor mixing ratio and
wind (full barb = m s ') January 9, 1986. The flight track is shown by the
dashed line.
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flight track, January 9, 1986,

4.7 Cross Sections of CN Concentration and bSp
On this day the lowest CN concentrations were observed in the cloud layer
and marine boundary laver at the southern end of the flight track (32°N)
within the high-pressure system, as shown in fig. 4.11. Here, subsiding air
from the middle troposphere plus E winds from ocean sources contributed to the
clean air. CN concentrations increased steadily at more northerly locations,
attaining levels of more than 1250 cm - in the marine boundary layer at 37-
38°N, probably associated with increased strength of the NW airflow. CN
concentrations in the 'ree troposphere exhibited little variation except
occasional patches of higher values between 37 and 39°N at high elevations.
At 38.2°N the top of the cloud layer was well defined, and there was a sharp
gradient in CN concentration, changing from 1500 em 2 to 400 cm -*

Aerosol by, again exhibited generally decreasing values with altitude
(fig 4.12). Thgre is a slight trend toward higher values to the NE,
particularly with altitude in the free troposphere at 38°N, but neither the
impact of the high-pressure system nor the vertical variations evident in the
CN cross sections are apparent in the bSp data.
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Figure 4,11-NE-SW cross section of CN concentration over the western Atlantic
Ocean, January 9, 1986. Letters and brackets on the flight track indicate
measurement locations for fig. 4.13.
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Figure 4.12--NE-SW cross section of bsp’ January 9, 1986.
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4,8 ARerosol Size Distributions

Aerosol size distributions measured on January 9, shown in fig. 4.13,
were broadly similar to those on previous days, but exhibited smaller
variations with location along the flignht track. Letters associated with each
curve indicate locations on fig. Y4.11. 1In the free troposphere (fig. 4.13),
size distributions in the center of the high-pressure system {curves A and B)
were essentially the same as those in the NW airflow farther north {(curve C),

Size distributions in the cloud layer show a well-mixed situation, having
a peak in the number and volume spectra at 8-9 um diameter, and some
evaporation of the smallest droplets, typical of small marine stratus
clouds.

In the marine boundary layer the higher CN area on the northern end of
the flight track (curve F) is matched by a slightly greater overall size
spectrum compared with the locations farther south (curves E and F). The
volume peak at 8-um diameter, suggests that a sea-salt component dominates the
aerosol spectra.
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Appendix A
ATR PARCEL BACK-TRAJECTORY SUMMARY FOR WATOX-86
A.1 Introduction

In addition to the isobariec trajectories presented in the main text,
three other types of back-trajectories have been caliculated for particular
heights and locations for WATOX-86 WP-3D intensives. The three trajectory
models and their appropriate references are (1) the Branching Atmospheric
Trajectory (BAT) model run in default mode (Heffter, 1983), (2) the BAT model
run in the modified mode (Heffter, NOAA ARL, personal communication, 1987) and
the Geophysical Monitoring for Climatic Change (GMCC) Isentropic Trajectory
model (Harris and Bodhaine, 1983).

A.2 Model Descriptions
4.2.1 ARL Branching Atmospheric Trajectory (BAT) Model in Default Mode
The default mode of the BAT model incorporates the following features:

(1) Three tropospheric layers identified as surface (lowest 300 m),
boundary (variable as determined by the model), and upper.

(2) Transport backward or forward in time at 000C, C&0C, 1200, or 1800
GMT.

(3) Transport using the average of observed winds in a layer and inverse
distance squared wind weighting.

(4) Branching trajectories at day/night transitions {0300 GMT and 1500
GMT).

The symbols used for the BAT branching trajectories represent the
vertical extent of the transporf layers and the percentage of the original air
mass along the trajectory. Figure A.1 depicts these layers (1N, 2N, 3N, 2D,
3D}, where N is a night layer and D is a day layer. Table A.1 defines each
symbol with a layer or percentage of original mass.

Table A.1--BAT trajectory layers and
percentages of original mass

Type of layer Percent of start mass
Layer Symbol % Symbol
2 === 80-100 A
3D . 0C000 60-80 B
1N eoo000 40-60 C
2N - - - 20-40 D
3N ‘ ST 5-20 E
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A.2.2 ARL Branching Atmospheric Trajectory (BAT) Model in Modified Mode
The modified mode of the BAT model incorporates the following features:
(1) A single tropospheric layer specified by the user.

(2) Transport backward or forward in time at 0000, 0600, 1200, or 1800
MT.

(3) Transport using the average of observed winds in a layer and inverse
distance squared wind weighting.

(4) No branching or other treatment of vertical motion.

A.2.3 GMCC Isentropic Trajectory Model

The default mode of the GMCC Isentropic Trajectory model inéorporates the
following features:

(1) Trajectories calculated on potential temperature surfaces
interpolated from gridded wind components at mandatory pressure levels
produced by a National Meteorological Center global atmospheric model.

(2) Transport backward or forward in time at 0000 or 1200 GMT.

A.3 Trajectories That Were Run and Graphical Depictions of Each

Table A.2 lists all the back-trajectories that were run during WATOX in
January 1986 and includes the model parameters desired, as well as the model
parameters actually chosen. Figures A.2-A.9 are examples of each of the
trajectories with the appropriate flight track for January 4, 6, 8, and 9,
1986.

MULTIPLE LAYERS

3000
D/DAY
HANGHT

UPPEN

CRITICAL INVERSION

HEIGHT Z {M}

BOUNDANY 2N

Jo0
l ! SURFACE N
| 1 [

POTENTIAL TEMPENMATURE &

Figure A.1--Multiple atmospheric layers in the BAT model . Critical inversion
criteria are 1) AG/AZ 2 .005 K/m. 2) Op -~ 0 2 XK.
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Figure A.2~-Backward BAT (modified) trajectory (dashed, 290C-3100 m layer,
1800 GMT on January 4, 1986) and backward isentropic trajectory (solid, @ =

290 K, 0000 GMT on January 5, 1986), originating at 41.24°N, 66.88°.

tick mark represents 12 hours (0.5 days).

Each

Figure A.3--Backward BAT trajectory (run in default mode and allowed to
branch) originating at 2100 GMT on January 4, 1986, from 42.86°N, 63.31°W.

Letters represent 12 hours (0.5 days).
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Figure A.l4--Backward BAT (modified) trajectory (dashed, 2800-3000 m layer,

1200 GMT on January 6, 1986) and backward isentropic trajectory (solid, © =
290 K, CO0C GMT on January 7, 1986), criginating at 4C.79°N, 67.24°W.

tick mark represents 12 nhours (0.5 days).

Each

Figure A.5--Backward BAT trajectory (run in default mode

branch) originating at 1500 GMT January 6, 1986, from 38.

Letters represent 12 hours (0.5 days).
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Figure A.6--Backward BAT (modified) trajectory (dashed, 4200-8400 m layer,
1200 GMT on January 8, 1986) and backward isentropic trajectory (solid, © =
290 K, 1200 GMT on January 8, 1986), originating at U40.33°N, 72.89°W. Each
tick mark represents 12 hours (0.5 days).

Figure A.7--Backward BAT trajectory (run in default mode and allowed to
branch) originating at 2100 GMT on January 8, 1986, from 37.37°N, 71.70°.
Letters represent 12 hours (0.5 days).
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Figure A.8--Backward BAT {modified) trajectory {(dashed, 1900-2100 m layer,
1500 GMT on January 9, 1986) and backward isentropic trajectory (solid, 0 =
290 K, 1200 GMT on January ‘9, 1986), originating at 33.97°N, 72.L42°W. Each
tick mark represents 12 hours (0.5 days).

Figure A.9--Backward BAT trajectory (run in default mode and allowed to
branch) originating at 1500 GMT on January 9, 1986, from 34.T74°N, 71.91°W.
Letters represent 12 hours (0.5 days).
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Appendix B
WATOX AIR FLUX CALCULATIONS

B.1 Introduction
Air fluxes perpendicular to the WP-3D flight track were calculated and

tabulated on approximately 15-min-average segments. In addition, spatial
distributions were prepared for the U and V wind components relative to the

idealized NW-SE flight track.

Figure B.1--Parameterization of the U and V air fluxes relative to an
idealized WATOX flight track.

B.2 Definitions of Terms in the Tables.

TIME S Start time, hours, minutes, seconds, of the averaging segment.
TIME E End time, hours, minutes, seconds, of the averaging segment.
LAT S Starting latitude (°N) of the averaging segment.

LAT E Ending latitude (°N) of the averaging segment.

LAT AVE Average latitude of the segment.

LON S Starting longitude (°W) of the averaging segment.

LON E Ending longitude (°W) of the averaging segment.

P Average pressure (mb) of each segment.

PS5 Starting pressure level {(mb) of each segment.
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PE Ending pressure level (mb) of each segment

RALT S Starting radar altitude (m) of segment.

RALT E Ending radar altitude (m) of segment.

T Average temperature (°C) of each segment.

U Average northwesterly component of the wind for each segment. -U

means scutheasterly wind component.

v Average southwesterly component of the wind for each segment.
-V means northeasterly wind component.

FLUX Northwesterly flux (kilograms per square meter per second) of
STP > 1 air for the segment intc the flight track adjusted to standard
(kg m < s ') temperature (25°C) and pressure (1013 mb).

FLUX Northwesterly flux (kilograms per square meter per second) of
AMBIE _ air for the segment into the flight track for ambient (un-
(kg m = s ') adjusted conditions.

FLUX Northwesterly flux (cubic meters per second) of air for the

S 1 segment into the flight track adjusted to standard tempera-
(m~ s~ ") ture (25°C) and pressure (1013 mb).

FLUX Northwesterly flux (cubic meters per second) of air for the
AM%IENT segment into the flight track for ambient (unadjusted)

(m” s ") conditions.

MAX FLUX Maximum northwesterly flux (kilograms per square meter per
STP 5 1 second) of air for the segment adjusted to standard tempera-
(kg m < s~ ') ture and pressure.

MIN FLUX Minimum northwesterly flux (kilograms per square meter per
STP 5 1 square meter per second} of air for the segment adjusted to
(kg m < s~ ') standard temperature and pressure.

FLUX STD Standard deviaticn of the northwesterly flux (kilograms per
STP square meter per second) of air for the segment

(kg m=2 s adjusted to standard temperature and pressure.

B.3 Tables of Air Flux and Meteorological Values, and Spatial
Distributions of U and V Wind Components

Tabular calculations of air flux perpendicular to the WP-3D flight track
are presented here for January 4, 6, 8, and 9, 1986, plus relevant
meteorological information in approximately 15-min-average segments. Spatial
distributions of the U and V wind components are alsc included for each day,
relative Yo the idealized NW-SE flight track shown in fig. B.1.
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