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Notice

This document was prepared as an account of work sponsored by an
agency of the United States Government. The views and opinions of the au-
thors expressed herein do not necessarily state or reflect those of the United
States Government. Neither the United States Government, nor any of their
employees, makes any warranty, express or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any
information, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Mention of a commercial company or
product does not constitute an endorsement by NOAA/OAR. Use of infor-
mation from this publication concerning proprietary products or the tests of
such products for publicity or advertising purposes is not authorized.
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Abstract

James Leise of NOAA’s Aircraft Operations Center (AOC) devoted many
years to fundamental analysis and development of wind measurement from
aircraft. When he died in 1990 shortly before completing this thorough docu-
mentation of his work, Jeffrey Masters, who had worked with him completed
the manuscript. Since some of the work was experimental and departed sig-
nificantly from operational practice at AOC, they decided not to publish the
manuscript.

The strong theoretical footing and thorough nature of the work, however,
nurtured the development of wind measurement from small aircraft, begin-
ning in the late 1980s. Much of the document remains relevant still, and pub-
lications in significant and still-growing numbers have cited this manuscript
despite its remaining unpublished (see Appendix I). The recent appearance
of several publications citing the work motivated NOAA’s Air Resources
Laboratory (ARL) to publish the 1993 original verbatim, adding a chapter
of annotations to update the original where appropriate.

Topics covered include geodetic and aircraft coordinate systems, relation
between airflow measured from an airplane and wind experienced on the
ground, relevant thermodynamics, three-component airflow measurements at
high speed by pressure sphere, calibration practices, data acquisition, data
processing, and quality control. The primary lasting value of this work lies
in the background understanding of procedures provided by its theoretical
depth, which is impossible to reach in journal publications except by reference
to work such as this.
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Chapter 1

Annotations to Chapter 2 and
following chapters

1.1 Introduction

This volume documents the life work of the late Dr. James A. Leise of the
Aircraft Operations Center (AOC) of NOAA. Jim Leise (pronounced like
lease) died in August 1990 shortly before completing the work. Jeffrey Mas-
ters completed the work in 1993 with support from the AOC, as he notes
in his acknowledgements section at the end of the main text. In subsequent
review, the AOC determined that the work departed in significant ways from
their practices in measuring wind from aircraft. Thus they decided not to
publish it as a NOAA Technical Memorandum from their organization.

Meanwhile, NOAA’s Air Resources Laboratory (ARL) began developing
an airborne capability in the late 1980s to measure boundary-layer turbulence
and exchange from small single-engine aircraft having mass considerably less
than 1000 kg. This project was inspired and led by the late Dr. Timothy L.
Crawford, branch manager at ARL’s Atmospheric Turbulence and Diffusion
Division (ATDD) in Oak Ridge, Tennessee, and later director of ARL’s Field
Research Division (FRD) in Idaho Falls, Idaho. Crawford’s group, of which
Ronald Dobosy was a member, drew heavily on Leise’s work with its strong
theoretical footing and explicit focus on airborne wind measurement. This
group developed the Best Airborne Turbulence (BAT) probe, collaborating
on later improvements with Dr. Jörg M. Hacker’s group of Flinders University
and Airborne Research Australia, Adelaide SA, Australia (Crawford and
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Dobosy, 1992, 1997; Hacker and Crawford, 1999).
The bat probe is now in use by multiple groups worldwide. Parallel

efforts of other groups to measure boundary-layer turbulence from small air-
craft, with both fixed and rotary wings, have also flourished. The Network of
Airborne Environmental Research Scientists (NAERS) was formed by Craw-
ford and Hacker in January 2002. This Leise and Masters work was put on
the group’s web site and became important source material.

Since the work remained unpublished, however, it was difficult to cite
in publications. Nevertheless, Leise’s clear physical insight, mathematical
rigor, and coverage of a wide range of airborne wind-measurement issues
formed such a rich foundation, especially for the bat probe, that it was
difficult to avoid including Leise’s work by reference. A number of papers
have therefore cited the work. A list of these is provided in Appendix I.
Because of the enduring nature of much of Leise’s theoretical work and the
breadth of his coverage of wind measurement from aircraft, NOAA/ARL has
decided to publish the manuscript verbatim as a Technical Memorandum.
This first chapter was added to provide updates where later development
has superseded or otherwise departed from what is reported in the original
manuscript. This chapter also includes a list of references to subsequent
work. Section numbers and letters in this chapter correspond to chapters
and appendices in the original manuscript in Parts II and III.

Disclaimer: Since much of the work of Leise and Masters in the late 1980s
was experimental, specific formulas and procedures in their manuscript do
not necessarily represent current or past usage by NOAA/Aircraft Operations
Center unless otherwise noted.

1.2 Aircraft kinematics and the wind equa-

tion

Chapter 2 derives expressions to determine airflow relative to the earth (i.e.
wind) from airflow measured relative to a moving vehicle. Leise and Masters
(L&M) use an approach which they call Lagrangian to derive the formula-
tions. Their approach is sound, but the argument leading to (2.7) and (2.8)
needs some tightening. This is provided in Section 1.2.8. An alternate ap-
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proach is sketched in Sections 1.2.6 and 1.2.7 based on reference frames, a
natural and general approach to environmental measurements from aircraft.

The two approaches produce an unfortunate nomenclature clash. In
Chapter 2 L&M use “frame” to indicate a system of axes, and “coordinates”
to mean the ordered triplet of numbers locating a point relative to these
axes. This intuitively helpful usage is also found in geodesy (e.g., Soler and
Hothem, 1988). On the other hand L&M’s argument requires no distiction
between reference frames and axis systems.

In the annotations’ approach, reference frames must be distinct from co-
ordinates. A reference frame is primarily concerned with the perception of
an observer. This can be quantified in any number of axis and coordinate
systems depending on convenience. The annotations, therefore, prefer the
term “reference frame” over “frame.” They sharply distinguish a reference
frame from a coordinate system but do not particularly distinguish coordi-
nates from axis systems. Both the annotations and Chapter 2 will be better
understood by paying attention to the differing definitions of “frame” and
“coordinate” provided in each.

The definitions of the various coordinate systems mentioned by L&M (and
sometimes called “frames”) in Chapter 2 are expanded in the annotations to
better incorporate gps and to address a mismatch of units between local and
global geodetic coordinates in L&M’s (2.7). For background, see Soler and
Hothem (1988) or any basic geodesy text. Section 1.2.8 in this chapter fleshes
out the argument linking L&M’s (2.7) and (2.8) and expands somewhat on
L&M’s approach.

1.2.1 Geocentric Coordinate System (ECEF)

At the time of L&M’s writing, the Global Positioning System (GPS) was
immature. Since then, GPS-based inertial navigation systems (gps/ins)
have become far more effective and less expensive. They are now integral
to airborne wind measurement, even from small Unmanned Aerial Vehicles
(UAV) weighing less than 100 kg (van den Kroonenberg et al., 2008; Thomas
et al., 2012; Reineman et al., 2013). Therefore, the Geocentric or Earth
Centered, Earth Fixed coordinate system (ECEF), in which the satellites
operate, is conceptually useful. The ECEF is rectangular Cartesian with
its origin at the earth’s center of mass (known within a few centimeters).
The zec-axis passes through the Conventional Terrestrial (North) Pole, as
defined by the International Earth Rotation Service (IERS). The xec-axis
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is perpendicular to zec and passes through the IERS-defined zero longitude.
The yec-axis completes a right-hand system. At GPS satellites’ distance from
earth, the surfaces of constant geopotential (“level” surfaces) are very nearly
spherical, centered on the earth’s center of mass.

Wind measurement from aircraft, however, happens on the earth’s sur-
face, still essentially spherical, but not to the required precision. The earth’s
true shape is the business of geodesy (γǫωδαισία geodaisia: division of earth).

1.2.2 Global Geodetic Coordinates (GGC)

Longitude, Latitude, Height (λ, φ, h): The Global Geodetic Coordinate Sys-
tem (GGC) is synonymous with L&M’s Geographic Coordinate System.
Position is usually converted from ECEF to GGC by gps/ins before report-
ing. The coordinate directions are defined relative to a flattened ellipsoid
approximating the earth’s shape. The fit may be optimized for the whole
earth or some favored part.

The earth’s actual shape is taken to be the level surface of geopotential
most closely approximating the mean sea level (and not terrain height). It
is technically called the geoid, but often simply “mean sea level,” whether
over land or sea. Vertical is defined normal to the ellipsoid’s (not the geoid’s)
surface. The horizontal coordinates, latitude and longitude, are also defined
on the ellipsoid, hence constant in this vertical. Under such definitions GGC
are orthogonal in the limit h→ 0.

The geoid model depends on the reference ellipsoid selected. It also
changes over time as the earth slowly changes or new information is ac-
quired. The World Geodetic System (WGS) is an international global stan-
dard, based on a global reference ellipsoid. Its latest revision, WGS 84, dates
from 1984 and was revised in 2004. Since 1987, GPS has used WGS 84 as
its standard model for conversion from ECEF to geodetic coordinates.

The height of mean sea level at a given location, called the geoid height,
may have either sign relative to h = 0. The gravity vector is normal to the
geoid not strictly “vertical.” The small angle between gravity and vertical
defines the shape of the geoid, which is affected by the local distribution of
mass due to mountains (on land or under the sea) or nearby density variations
in the earth. The actual mean ocean surface departs slightly from mean sea
level due to tides, salinity gradients, and atmospheric circulation.

A point’s height h is zero on the ellipsoid and is usefully viewed as the
sum of the geoid height and the height above or below the geoid. Usually the
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gps/ins reports only the height relative to the geoid (i.e., to mean sea level).
Height defined along the geodetic vertical will differ slightly from height
defined parallel to gravity. Likewise the longitude and latitude determined
by celestial methods will differ slightly from these geodetic values.

Quantitative application of these geodesic concepts is rendered transpar-
ent to the user by modern GPS navigation, but awareness of the assumptions
made by the particular system one is using for airborne wind measurement
is important to interpretation of the results.

1.2.3 Local Geodetic Coordinates (LGC)

East, North, Up (x, y, z) in atmospheric science. Local geodetic coordinates
(LGC) correspond to L&M’s geodetic frame. Velocity and attitude are
usually converted from ECEF to LGC by gps/ins before reporting. Likewise,
conversion of velocity and acceleration from PBC (Section 1.2.5) to “earth
coordinates” will always be to LGC. This contrasts with position, which is
normally converted to GGC (Section 1.2.2).

Local Geodetic are the coordinates of everyday experience, a rectangular
Cartesian system measured in meters. They are tangential and normal to the
earth’s surface at a particular location p, given by the GGC’s (λ, φ, h). The
atmospheric science convention, also used by L&M is, however, not universal.
Sometimes (x, y, z) are North, East, and Down or another ordering. L&M
advise alertness in reading the literature, configuring a system, or analyzing
data.

Important to a simple relation between LGC and GGC is the orthogonal-
ity of both. Although GGC are strictly orthogonal only in the limit h → 0
(Featherstone and Cläßens, 2008), tropospheric values of h are small enough
compared to the earth’s radius to justify the assumption for ordinary pur-
poses. Navigation solutions by gps do use the full WGS 84 geoid, but these
are transparent to the general user.

Further simplification for ordinary use is possible. The earth’s equatorial
and polar diameters differ by only 20 km (one part in 300). Ordinary con-
version of infinitessimal displacements from GGC to LGC can safely assume
the earth to be a sphere of radius r = 6370 km. Furthermore, tropospheric
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h/r is smaller yet, allowing to good approximaion r + h→ r. Thus

dx = F(r, φ) dξ (1.2.1)




dx
dy
dz



 =





r cosφ 0 0
0 r 0
0 0 1









dλ
dφ
dh





where dx is in LGC, dξ is in GGC, and F(r, φ) is the spherical approximation
to the conversion matrix at latitude φ. Because the transformation matrix F
is diagonal, its inverse is simply the same matrix with its diagonal elements
inverted.

The convenient diagonal form is the gift of orthogonality of both systems
and the locality of LGC. At its unique location p(λ, φ, h), the LGC can be
rotated to align its coordinates (eastward, northward, upward) with those
of the GGC. Any basis vector in either system is then parallel to exactly
one basis vector in the other system and perpendicular to all other basis
vectors (in either system). The same orthogonality properties hold for the
reference ellipsoid of the GGC but not the full WGS 84 geoid (mean sea
level). That surface is not exactly orthogonal to the geodetic vertical, as
noted in Section 1.2.2. For WGS 84, the last row of F contains a weak but
complicated dependency of dz on λ and φ in the first and second columns.

Note that F is a singular matrix at the North and South Poles, where
cosφ is zero. In operation near a pole this singularity could cause rapid
fluctuation of reported λ if the pole is in or near the gps’s region of horizontal
uncertainty. This region, however, has a diameter only on the order of 10m.
Furthermore, gps-native ECEF have no such singularity. It is an artifact of
the GGC.

Like the velocity, the attitude of the aircraft, hence the probe, is reported
by a gps/ins in LGC. The sign convention used by L&M appears in Sec-
tion 1.2.5 and Figure 2-1. Unfortunately, it again differs from that used by
flux aircraft in the boundary layer, as is evident in Figure 1.1.

Finite displacement in local geodetic coordinates

The discussion above involves only infinitessimal displacement, including ve-
locity. A finite displacement (path) is an integral of velocity over time. Let
xp(t) trace the aircraft’s track over the earth. The unit vector tangent to
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Figure 1.1: Sky-Arrow schematic showing axes of the earth’s (LGC) and probe’s
(PBC) coordinate systems in the earth-science convention. Earth’s coordinates
(b) are East, North, Up: (x, y, z) = zr; r = 1, 2, 3. PBC(a) are Forward, Lateral
(to port), Normal (generally upward): (x̂, ŷ, ẑ) = ẑm;m = 1, 2, 3. Angles are
roll φ, pitch θ, and yaw ψ; attack α and sideslip β. From Hall et al. (2006), see
also Vellinga et al. (2013)
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this path in LGC is

τ =
dxp

dt

(∣

∣

∣

∣

dxp

dt

∣

∣

∣

∣

)

−1

= up

(

ds

dt

)

−1

(1.2.2)

and the path is
∫

C

τds =

∫ tf

ts

τ
ds

dt
dt =

∫ tf

ts

updt (1.2.3)

Here up is the velocity of the aircraft along the track.
Motion along a finite path implies relocation. Because of gravity, this

normally follows the curvature of the earth. It would seem natural, then, to
represent up in the curvilinear GGC. By (1.2.1), however, a unit of length in
GGC changes with location and direction of travel. Most applications require
a uniform length unit. Calculating everything in ECEF would provide this,
but at the sacrifice of GGC’s simpler mathematical forms [e.g., (1.2.1)].

The long history of navigation gives the resolution. Mariners on sailing
vessels took a fix (found their position) at local noon in GGC by clock,
horizon, and maximum solar elevation. They also measured their course and
speed (relative to the water) in LGC to estimate up in knots. Over the 24hr
until the following noon they determined their position by dead reckoning,
integrating their velocity using (1.2.3) in rectangular coordinates (LGC) or
converting to GGC using (1.2.1) evaluated at their latest fix. With their low
speed and high error tolerance they could plot the track on the sea (GGC)
within acceptable error until their next fix. Over a voyage of N days, their
path over the curved earth in constant units (nautical miles or meters) is
the vector sum of N successive segments, each with its own instance of LGC

determined by the fix at the start time tsi of the each segment:

Pxy(t) =
N
∑

i=1

∫ tfi

tsi

up dt, (1.2.4a)

or in degrees longitude and latitude to plot on a map:

Pλφ(t) =
N
∑

i=1

∫ tfi

tsi

F−1(φ;h = 0)up dt, (1.2.4b)

where F is defined for most practical purposes by (1.2.1). Note that up in
the ith segment is in the LGC of the ith fix.
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In real life, of course, these mariners made many refinements to adjust for
the long time between fixes, especially when they were near shore. Modern
navigation is by brute force. Accurate fixes (samples) come as often as once
per second, each new sample a new instance of LGC. Relative to the radius of
the earth, this displacement of 100m or less between fixes is vanishingly small.
Because of turbulence, aircraft measuring wind normally then interpolate by
dead reckoning to intervals of 10m, or even 1m, measuring the aircraft’s
motion with onboard accelerometers. In mathematical terms, the frequent
accurate fixes form a very fine integration mesh giving the integrated path
to high accuracy. The curvature of the path over the earth is, in fact, a very
slow drift relative to the signal from turbulence. The low error tolerance
primarily serves accurate turbulence measurement. Accurate navigation is
subsumed.

Acceleration in local geodetic coordinates

High-frequency motions (e.g., vibrations) are best measured as acceleration
and integrated. Although the probe is moving over the curved earth during
the measured accelerations, the naive integral

up =

∫ ti

ti−1

dup

dt
dt (1.2.5a)

realized as

up =
N
∑

i=1

u′

p(t)δt (1.2.5b)

where u′

p = dup/dt, produces the expected velocity. Because u′

p is in LGC,
however, each new fix (gps report) is a new position. This implies a new
set of basis vectors, but no basis vectors appear anywhere in the sum. This
may be unsettling, but in fact the velocity and acceleration components here
(1.2.5) and in the previous subsection (1.2.4) are those tangential and normal
to the earth’s surface at each location, much like the surface integrals in
the theorems of Gauss and Stokes. A rigorous proof of (1.2.4) and (1.2.5)
by simple methods rapidly gets messy. More advanced approaches involving
geodesic lines on an ellipsoid (Riemann geometry) are needed. It must suffice
here that the expressions’ validity is demonstrated by centuries of navigation.
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1.2.4 Local Astronomic Coordinates

East, North, Up. These are a right-handed rectangular Cartesian system
differing only slightly from the local geodetic coordinates in that the z axis is
opposite gravity. They are mentioned only for completeness. If the difference
is found to matter, alertness is again appropriate both in the literature and
in setting up the navigation solution for the GPS unit being used. The
“astronomic” label refers to the sextant and plumb bob (or horizon if at sea)
traditionally used to measure position relative to the stars.

1.2.5 Aircraft’s (Probe’s) Coordinates (PBC)

Forward, Port, Up (x̂, ŷ, ẑ): The aircraft’s coordinates PBC form a rectangular
Cartesian system fixed to the aircraft and moving with it. L&M follow the
aeronautical-engineering convention for the axes: Forward, Starboard (pilot’s
right), Down (see Fig. 2.1 in Chapter 2). Flux aircraft in the boundary layer
often use Forward, Port, Up (Figure 1.1), analogous to the earth-science
convention. L&M use cursive (script) font to represent quantities in PBC. In
these annotations they wear hats for want of a suitable cursive font.

1.2.6 Reference Frames

Reference frames are generally associated with Einstein’s Relativity Theory
(e.g., Einstein, 1956). They efficiently express the counter-intuitive implica-
tions of Michelson’s and Morely’s (Michelson and Morley, 1887) demonstra-
tion that the speed of light (in a vacuum) is an absolute constant relative to
any observer moving at whatever speed. Reference frames, however, are also
useful at low speed (compared to light) to account for the differing percep-
tions of observers depending on their position and motion. In particular, the
reference-frame concept is a natural and intuitive approach to finding wind
from aircraft.

A reference frame is defined by a reference object which an associated ob-
server considers fixed (immobile). To an observer on an airplane, the airframe
is such an object, here assumed rigid. Anything attached to the airframe,
such as a wind sensor, is thus also fixed. Any body such as the earth which
moves relative to the airframe is in motion. To an observer on the ground,
the earth is a fixed object, and other objects attached to it (such as wind
sensors) are thus fixed. Air, being attached neither to the earth nor to the
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airframe, is free to move in either reference frame. By Relativity Theory,
physical laws valid in one reference frame are valid in all reference frames.
Thus one may choose the reference frame most convenient for measurement
of a phenomenon and by proper transformation make that information avail-
able in the reference frame most convenient for interpretation. The spatial
structure of wind and turbulence is often productively measured from air-
craft but best interpreted relative to the earth. That is, one seeks to infer
wind velocity in the earth’s1 reference frame from measurements made in the
aircraft’s reference frame.

A reference frame’s definitive “fixed object” is its associated native coor-
dinate system, relative to which all objects’ positions are defined and tracked
in time. Aside from being fixed in the reference frame, the coordinate system
can take any convenient form. Importantly, however, an object’s position and
motion relative to a given reference frame can be described using any coor-
dinate system. That is, transformation of coordinates is a different activity
from change in reference frame.

Coordinate transformations are covered in detail in Chapter 2. Change of
reference frame for “slow” motion relative to light uses Galilean, as opposed
to Lorentz, transformations. As a classic example of Galilean transformation,
suppose a mosquito on a train is flying at a constant v̂(T) = 1 m s−1 toward
the starboard wall. The argument (T) indicates her location in the train’s
reference frame. The hat indicates the train’s coordinates. The mosquito’s
motion viewed from the ground outside the train is then her motion relative
to the train plus the train’s motion relative to the earth.

Suppose the train moves northward at a constant V(E) = 30 m s−1,
where the argument (E) and the unadorned symbol indicate, respectively,
the earth’s reference frame and coordinates. Here the difference between co-
ordinates and reference frames becomes apparent. Adding the two vectors
requires their components to be given in a common set of coordinates, say
the earth’s. Let G be the transformation matrix from the train’s coordinates
to the earth’s. Then Gv̂(T) = v(T) = 1 m s−1 toward east. The mosquito
is still viewed from onboard the train, but her motion is now tracked in the
earth’s coordinates. The mosquito’s motion v(E) viewed from the ground

1Any reference to “earth’s reference frame” or the “earth coordinates” fixed in it always
means LGC (Section 1.2.3).
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outside can now be computed:

v(E) = v(T) +V(E) (1.2.6)
∼= 30.5 m s−1 toward 002◦.

In this example an idealized train moves at constant speed and direction
relative to the earth. A real aircraft’s reference frame is in continual accelera-
tion in six degrees of translational and rotational freedom with respect to the
earth’s reference frame. Reference-frame changes for acceleration are more
complex than for the instantaneous velocity given here. The full procedure,
relying on high-sample-rate specification of the aircraft’s linear and angular
velocity vectors, is sketched in the next section.

1.2.7 Reference frames and wind measured from air-
craft

Wind sensors such as the Rosemount and bat probes directly measure the
airflow v̂a(P ) relative to their sensor heads in the probe’s PBC reference
frame and coordinates.2 Likewise, the aircraft’s (probe’s) instantaneous ve-
locity Up(E) in the ECEF reference frame and coordinates can be directly
determined by measuring the Doppler shifts in the GPS carrier frequency
as the satellites and aircraft move relative to each other. Highly accurate
conversion from ECEF to GGC or LGC is transparent with modern GPS, as
noted at the end of Section 1.2.2.

Returning to (1.2.6) one can substitute

va(E) = va(P) +Up(E), (1.2.7)

where the reference frame has become the wind probe (P), and the mosquito
has become an air parcel va(P) = G(t)v̂a(P). Transformation G(t) is now
between PBC and LGC. Note that the va(P) remains in the probe’s reference
frame. All quantities are now understood to be variable in time, but in
particular the coordinates LGC are not fixed in the PBC reference frame.
This is emphasized by the explicit time argument for G(t).

2Reference frames will be identified by their native coordinate system. Note from
Section 1.2.6, however, that a given quantity need not be expressed in its reference frame’s
native coordinates, e.g., va(P) of (1.2.7) is in the PBC (probe’s) reference frame but the
LGC (earth’s) coordinates
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The probe need not be at the origin of its coordinate system, in which
case it’s more intuitive use the term “aircraft coordinates.” Since an aircraft
has three degrees of rotational freedom about its origin (roll, pitch, yaw),
the velocity of a probe Up(Ep) displaced R̂p from the origin will be the
vector sum of the velocity of the origin Up(E0) and the tangential velocity

of rotation Ωp(E)× [G(t)R̂p] about the origin at R̂p:

Up(Ep) = Up(E0) +Ωp(E)×Rp. (1.2.8)

Location R̂p is a vector constant because the probe is attached to the aircraft.
In earth’s coordinates (asRp) it retains its length, but its orientation depends
on the aircraft’s attitude (bank, elevation, and heading).3 Since the aircraft
is assumed rigid, the rotation of the airframe, Ωp(E), is the same at all points,
hence the generic symbol (E). Substitute (1.2.8) into (1.2.7) to obtain the full
expression to compute wind (air motion in the earth’s reference frame and
coordinates) from measurement of airflow in the aircraft’s reference frame
and coordinates and measurement of the airplane’s own linear and rotational
motion.

va(E) = va(P) +Up(E0) +Ωp(E)×Rp, (1.2.9)

It remains to determine Ωp(E) from the roll, pitch, and heading usually
reported by the gps/ins. This is covered by L&M in Chapter 2 along with
development of the equivalent of (1.2.9) with greater detail and by another
approach.

1.2.8 Lagrangian approach of Leise and Masters

As discussed in the introduction to this Section 1.2, L&M approach wind
measurement from aircraft along a different path to arrive at (1.2.9) without
explicitly invoking reference-frame concepts. Accordingly, they use different
nomenclature from that in Sections 1.2.6 and 1.2.7. In particular, “frame”
means a system of coordinate axes, and “coordinates” means an ordered
triplet locating a point on these axes. The approach is Lagrangian only in
the sense that during the derivation it approximates the wind velocity as the
finite displacement of a single air parcel from one measurement time t0 to
another time t before taking the limit as t0 → t.

3Note that bank, elevation, and heading are used here as nouns while roll, pitch, and
yaw are used as verbs. To roll, for example, is to change bank angle.

14



The general issue is to determine some state quantity at some particular
location on the earth by measuring from an aircraft in flight. A scalar state
such as temperature can be directly measured at any given point, after which
one need only locate that point on the earth. Suppose the aircraft is at point
p(t0) in GGC: (λ, φ, h) when its sampler measures the temperature. The
sampler’s position relative to the aircraft’s origin is fixed and known in the
PBC: (x̂, ŷ, ẑ) = R̂. This can be converted to GGC and added to the origin’s
position to find the sampler’s (and measured parcel’s) position.

ξ(t0) = p(t0) + Gξ[t0,p(t0)]R̂

= p(t0) +R(t0) (1.2.10)

Here R(t0) is the displacement in GGC (∆λ,∆φ,∆h) of the sensor from
the aircraft’s origin. The Gξ[t0,p(t0)] is the coordinate transformation from
PBC to GGC, the GGC being represented by ξ as in (1.2.1). The explicit
dependence of Gξ on p(t0) declares the relation of PBC through LGC to GGC
in conversion to R(t0). The second step, from LGC to GGC, can use the
spherical approximation from [the inverse of] (1.2.1) because of the few me-
ters’ magnitude of R̂(t0). The sensors’ displacement from the origin of PBC,
though significant to the measurement, is small compared to the radius of
the earth. Note that this implies a need for double-precision arithmetic in
conversion between LGC and GGC.

A vector state such as wind velocity, the primary interest of this report,
must be determined both in magnitude and in direction. Wind velocity is a
(directed) displacement of air over the earth during a specified time interval.
Starting with a finite representation of this vector helps physical intuition and
mathematical rigor. It is Lagrangian in that it requires knowing the position
of the same parcel at two different times. The procedure, as for temperature,
is to measure a property of the parcel [its velocity û(t0; t0) relative to the
sensor] at time t0. Since the parcel is at the sensor when measured, its
location in the aircraft’s coordinates is known, and its location ξ(t0; t0) in
the earth’s GGC can be found from (1.2.10). Later, at t = t0+∆t, its position
in the aircraft’s coordinates, which move with the airplane, is estimated as

x̂(t; t0) = R̂+ û(t0; t0)∆t. (1.2.11)

The initial time t0 tags the parcel with its time of measurement by the
sensor. Thus x̂(t; t0) [in PBC] is the position at time t of the parcel that was
measured at time t0. By time t this parcel is somewhere aft of the sensor
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because airflow relative to an aircraft in flight is by definition the airspeed,
typically 50 m s−1 to 100 m s−1, primarily from directly ahead. This second
location corresponds to a second position in GGC, which is computed using
(1.2.10) with two significant differences both due to the aircraft’s own motion
during ∆t:

ξ(t; t0) = p(t) + Gξ[t,p(t)]x̂(t; t0)

= p(t) +R(t; t0). (1.2.12)

This is L&M’s (2.7). Note that p(t) and Gξ[t,p(t)] apply to the current time
and place in GGC and that the parcel’s position in PBC x̂(t; t0) is no longer
the constant R̂.

The wind velocity (over the earth) is obtained by taking the limit

lim
∆t→0

ξ(t; t0)− ξ(t0; t0)

∆t
(1.2.13)

where ξ(t0; t0) comes from (1.2.10) and ξ(t; t0) from (1.2.12). Since we are
following the same parcel between t0 and t, this is straightforward. All quan-
tities in (1.2.12) in this ordinary physical setting (no shock waves or other
discontinuities) are safely assumed differentiable allowing unobstructed pas-
sage to the limit as ∆t→ 0 (and t0 → t). The result after some manipulation
matches L&M’s (2.8) and is equivalent to (1.2.9):

u(t) = U0(t) + G′(t)x̂(t) + G(t)û(t). (1.2.14)

Note that (1.2.14) has been converted to LGC. The time derivative p′(t)
in GGC converts directly to U0(t) in LGC using (1.2.1). The G(t) need con-
vert only from PBC to LGC and can drop subscript ξ. The G′(t) represents
the aircraft’s attitude changes in LGC (the rotation Ωp(E) of Section 1.2.7).
One practical method for its evaluation, if required, is provided in Chapter 2
following (2.9). Although the time-variant G(t) and G′(t) include the neces-
sary adjustments to follow the curvature of the earth’s surface, the dominant
agent of attitude change, especially in the boundary layer, is turbulence (see
discussion in Section 1.2.3). The last term of (1.2.14) uses x̂′(t) = û(t) from
(1.2.11).

In operation, much of (1.2.14) is directly measured at the high frequency
required. The U0(t) is available in LGC from the gps/ins as noted in Sec-
tions 1.2.7 and 1.2.3. The attitude angles required for G(t) likewise come
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directly from the gps/ins. Recall also that û(t) in PBC is directly measured
by the probe.

The discussion by L&M following (2.9) is instructive. Although L&M’s
∆U(t) of (2.9) is recognized as the tangential velocity of the probe in the
earth’s reference frame due to rotation about the PBC’s origin (Section 1.2.7),
its actual computation in practice may be troublesome. L&M offer an ap-
proach they found to produce better accuracy with less computation than
explicit differentiation of G(t). In (2.13), however, the vector dk seems to
come from nowhere. In fact, it is an artificial construction of a vector iden-
tically perpendicular to rk, regardless of the magnitude or directions of rk−1

or rk+1. Since the unit vector ik of (2.12) is already known by the argument
following (2.9) (as well as Subsection 1.2.7) to be perpendicular to rk this
artifice is justified.

1.3 Geometry of relative-wind computation

Relative wind Ûr(t) at a point r̂ is measured by definition in PBC and the
aircraft’s reference frame. Here L&M introduce the important angles α and
β, which define the wind direction relative to the aircraft. They also account
for measuring the magnitude and direction of the relative wind at locations
on the aircraft separate from each other and separate from the origin of the
PBC. The true airspeed ‖Ûr‖, denoted τ , might be measured on a boom
protruding from a wing tip, or remotely by Doppler sodar or lidar. The
direction îr might meanwhile be measured close to the fuselage. With any
rotational motion (roll, pitch, or yaw), measured quantities τ and îr will
then both need to be adjusted to determine the airspeed and direction at the
origin of the PBC.

1.4 Basic atmospheric thermodynamics

This is a very informative treatment of the thermodynamic foundation for
wind measurement from aircraft. This chapter was unique in having a few
editorial errors and other specific issues on which comments are provided in
Table 1.1.
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Table 1.1: Editorial Comments, Chapter 4

Page Paragraph Remark

17 1 288.16 K is 15◦C, about 60◦F, not 70◦F.
17 2 “Specific” generally means normalized by mass, not

by molecular weight. Multiply a “specific” quantity
by molar weight µ to get the “molar” quantity, nor-
malized by the number of moles.

17 3 Last line: replace “more accurately” with “i.e.” The
dw is accurate, just not an exact differential.

18 2 Division by 3 is because only the component < u2η >
normal to any boundary exerts the force on that
boundary. Since molecular motion is random, all
three orthogonal components are equal parts of the
total < u2 >. Multiplication by 2 accounts for
the force required in an elastic (not in-elastic) col-
lision with that boundary. The inbound momentum
changes by twice its magnitude in reversing its direc-
tion.

18 2 In the ideal-gas context, temperature has meaning
at a point as the ensemble-average translational ki-
netic energy over all gas molecules that have non-
zero probability of occupying that point. Boltz-
mann’s constant converts this to normal engineer-
ing units such as Kelvins. Heat is a bulk manifes-
tation of the molecules’ total energy. It can cause in-
crease in any combination of pressure, temperature,
or volume. Changing volume does mechanical work
(think steam engine). Centers of elevated molecu-
lar energy (high temperature) will diffuse that en-
ergy, ultimately through collisions with lower-energy
molecules (conduction).
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1.4.1 Theory of dew point and vapor pressure

Leise and Masters give some practical expressions in Chapter 7, equations
(7.21, 7.22), to find the ambient vapor pressure e given the dewpoint tem-
perature Td, or vice versa. These most closely match expressions reported
by Murray (1967).

It is striking to see how many expressions exist for these computations.
All are evidently empirical in various mathematical forms, some very com-
plex, all of them bristling with significant digits. How can they all be equiva-
lent? Since the issue is fundamentally thermodynamic, a discussion at length
is provided here as an extension to Chapter 4.

Except for the simplest, all expressions including L&M’s (7.21, 7.22) give
results within 1% of each other, perfectly valid for any but the most exact-
ing microphysical applications well beyond the scope of wind measurement
from aircraft. In fact the more esoteric of these expressions amount from a
meteorologist’s standpoint to an overfit, applying specifically to a two-phase
gravity-segregated system consisting of a planar surface of liquid (or solid)
pure water in equilibrium under pure water vapor. Those willing to accept
(7.21 and 7.22) at face value are therefore justified. For those puzzled by the
multiplicity of apparently competing expressions, the following development
should be satisfying.

All expressions relating ambient vapor pressure to the temperature Td
parameterize integrals of the Clapeyron equation

dps
dT

=
δh

Tδv
, (1.4.1)

which describes pressure ps as a function of absolute temperature T in a
multi-phase system (liquid, solid, gas, etc.) at equilibrium (also called satu-
ration) among the phases. The latent heat δh of transition from one phase to
another and the associated change in volume δv are given as molar quantities
(i.e., per mole).

The Clapeyron equation applies to any multi-phase equilibrium, but apart
from high-precision applications (1.4.1) better suits systems restricted to solid
and liquid phases because then δv is approximately constant. A variant
appropriate to atmospheric water, draws on two approximations: 1) Atmo-
spheric water vapor is nearly an ideal gas, and 2) the specific volume of liquid
water or ice is a tiny fraction (0.001) of that of the vapor. Applying these
approximations leads to the Clausius-Clapeyron equation, entirely adequate
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for ordinary meteorology:

d ln(ps)

dT
=

L

RT 2
. (1.4.2)

The molar quantities R [J K−1mol−1] and L [J mol−1] are the universal gas
constant and the (molar) latent heat of evaporation/sublimation from wa-
ter/ice. Note that both (1.4.1) and (1.4.2) are properly seen as mapping the
temperature to the pressure in a multi-phase system at equilibrium. By ther-
modynamic theory, this equilibrium pressure depends on temperature alone.
However, if one abruptly changes the temperature and/or pressure, these ex-
pressions will be violated during an adjustment period to a new equilibrium
state.

Knowing the equilibrium vapor pressure at a convenient temperature, say
the triple point of water (273.16K) one can, in principle, integrate (1.4.2) up-
ward to any atmospheric temperature to determine the saturation (i.e., equi-
librium) vapor pressure at that temperature. Or specifying L to be the latent
heat of sublimation of ice or vaporization of supercooled water, one can inte-
grate downward to any desired sub-freezing temperature. However, beyond
coarse approximation or short integration range, the temperature depen-
dence of L becomes important. Furthermore, water vapor departs slightly,
but significantly from an ideal gas.

The familiar equation of state assumes an ideal gas, having point-like par-
ticles that interact with each other only by elastic collision. Using statistical
mechanics, one may generalize the equation of state to account for the effect
on pressure of additional interactions among two or more particles. This
effect is quantified as a virial expansion, from Latin viris : “manly” strength
or force. This is a power series in density ρ [moleculesm−3] of the form

p

ρkBT
=

pv

RT
= 1 +

∞
∑

r=1

Br+1(T )ρ
r, (1.4.3)

where kB [J K−1] is Boltzmann’s constant. If Na is Avagadro’s number,
R = NakB[JK

−1mol−1] is the universal gas constant, and v [m3mol−1] =
Naρ

−1 is the molar volume. The Br+1(T ) are the virial coefficients, func-
tions in general of temperature. Multiplying by RT specifying Ar+1(T ) =
Na(kBT )

1−rBr+1(T ), and using p = ρkBT provides an equation of state for
saturated water vapor generalized to include particles’ interaction in pairs:

psvs = RT − A2(T )p. (1.4.4)
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Further generalization includes intra-molecular vibrations, small at atmo-
spheric temperatures, but measurable. Interactions in triplets, interactions
with gases of unlike chemical species (e.g., N2, O2), and more can be ac-
counted by higher-order terms if the data show significance.

By mid-Twentieth Century, accurate and detailed measurements were
available of actual water substance over a wide range of temperature. Os-
borne et al. (1939) considered three processes involving carefully measured
input of electrical energy to an otherwise adiabatic calorimeter containing
pure water (no air) in both liquid and vapor phases, which met at a planar
interface. The calorimeter’s pressure and temperature were also carefully
measured. For each process the investigators applied electrical energy and
then, for process α measured the resulting temperature rise; for β main-
tained constant temperature by withdrawing saturated liquid (i.e., liquid in
equilibrium with the vapor); and for γ maintained constant temperature by
withdrawing saturated vapor. Giauque and Stout (1936) obtained similarly
accurate measurements for ice and water vapor.

Goff and Gratch (1946), in a very detailed and thorough study, took
advantage of these measurements to develop semi-empirical closed-form ex-
pressions which fit the measurements within 0.02%—less than these measure-
ments’ own (quite small) uncertainty. The accuracy of the data was sufficient
to describe quantitatively among other things the non-ideal characteristics
of water vapor represented in the second virial coefficient A2(T ) of (1.4.4).

Murphy and Koop (2005) surveyed data and schemes available by the turn
of the present century and proposed new data-based numerically integrated
expressions for saturation vapor pressure over plane surfaces of liquid water,
ice, and for the first time, supercooled water. The numerical results were
well approximated as closed-form functions of T , parameterized by the four
coefficients of the formal integral of the Clausius-Clapeyron equation (1.4.2)
using a second-order polynomial for L(T ):

ln ps = b0 + b1T
−1 + b2 lnT + b3T. (1.4.5)

The parameters were statistically fit to numerical integrations of the more
general Clapeyron equation (1.4.1) using the (very precise) data to specify
the changes in molar enthalpy and molar volume across the phase transition.

For ice, the integration proceded downward from the triple point of water
[(pt, Tt) = (611.657± 0.01Pa, 273.16K)] using the best known measurements
of the molar heat of sublimation and of the molar heat capacity of ice and
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vapor as functions of the temperature. The integration incorporated non-
ideal characteristics of water vapor, including the second virial coefficient
and molecular vibrations. The four-parameter fit,

ln pice = 9.550426− 5723.265T−1 + 3.53068 lnT − 0.00728332T (1.4.6)

T ∈ [110K, 273.16K],

stays within 0.025% of the numerical integration between 111 K and the
triple point, well within the uncertainties of the integration itself. Given the
ambient vapor pressure ea the frost-point temperature is

Tfrost = (1.814625 ln ea + 6190.134)(28.120− ln ea)
−1 T > 115K (1.4.7)

to within ±0.04K for T above 115K.
With liquid water one encounters the possibility of super cooling, where

water remains liquid although the temperature is below, sometimes well be-
low, the triple point. The parameterizations by Goff and Gratch (1946),
Goff (1965), or Hyland and Wexler (1983) applied within 0.02% either to
liquid water above the triple point or to ice below. Parameterization over
supercooled water was impossible for want of measurements. This mete-
orologically significant region had to be covered by risky extrapolation of
liquid-water parameterizations. When measurements became available they
revealed trouble.

The molar heat capacity of supercooled water was found to rise rapidly
with decreasing temperature below about 250K, a feature not found in the
extrapolations. The current measurements extend down to about 235K, be-
low which homogeneous nucleation to crystalline ice has so far been unavoid-
able. Amorphous (noncrystalline) ice can exist below 155K, perhaps because
internal energy is low enough to leave a metastable structure undisturbed.
Between 235K and 155K non-crystalline water is unobtainable. Amorphous
ice is prepared by plunging liquid water through the range between these two
temperatures within a fraction of a millisecond.

At least three hypotheses propose to describe non-crystalline water through
this unstable range, the simplest being thermodynamic continuity. If this
proves true, a curve can be completed between the measured molar heat
capacity of supercooled liquid above 235K and amorphous ice below 155K.
The simplest such curve reaches a maximum just below 235K. Two four-
parameter curves of the form of (1.4.5) can represent the slopes up either side
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toward the maximum. Murphy and Koop (2005) used a hyperbolic-tangent
patch over the maximum to produce a ten-parameter fit from 123K to 332K:

ln pliq = 54.842763− 6763.22T−1 − 4.210 lnT + 0.000367T +

tanh [0.0415(T − 218.8)]× (1.4.8)

(53.878− 1331.22T−1 − 9.44523 lnT + 0.014025T ).

The warm side of this fit continues upward beyond the triple point to
include vapor pressure over liquid water using the results from Wagner and
Pruß (1993). The cold side is less certain, relying on the thermodynamic-
continuity hypothesis to model saturation vapor pressure over supercooled
water and amorphous ice. The range of (1.4.8) covers saturation vapor pres-
sure over liquid water from −150◦C to +60◦C, though its reliability deterio-
rates below 235K (−38◦C).

All data applied to developing the forgoing parameterizations come from
systems of pure water under its own vapor in two phases separated by a pla-
nar interface. In the atmosphere, water is a minority constituent. Further-
more, boundaries between vapor and condensed phases are typically strongly
curved, the condensed phase represented by cloud droplets or crystals of sev-
eral micrometers’ diameter or less. Hydrophilic chemical species present in
aerosols introduce further complexity. Such questions are major issues in
climate dynamics and are currently active topics of research in microphysics
of clouds and aerosols.

For many practical purposes, including most research in the boundary
layer, the primary value of these rather complex expressions is the conve-
nience of their validity over the entire atmospheric temperature range. With
modern computers such expressions are easily evaluated. As noted at the
beginning of this section, all except the simplest give results within 1% of
each other over wide ranges of temperature. The multiplicity of expressions
need not give concern for ordinary use. The expressions (1.4.6–1.4.8) have
advantages of relative simplicity and of grounding in actual data for super-
cooled water, at least above (−38◦C). At their native level of detail, however,
additional processes in the wild introduce uncertainty often well beyond that
of the vapor pressure. These include an air-dominated gas phase, curved
phase boundaries, hydrophilic gases and aerosols, and chemical reactions.

Finally, from an aviation perspective, supercooled water is called “known
icing conditions.” Only large or sophisticated aircraft, such as NOAA’s P-
3 aircraft for which this technical memorandum was originally written, are
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equipped to operate safely in known icing. Small environmental research
aircraft are rarely certified for such operation.

1.5 Theory of true-airspeed measurement

Here the Bernoulli equation is derived in the form of an energy balance by
taking the scalar product of the Euler equation of motion with the wind
velocity. The energy form facilitates imposition of the adiabatic constraint
to simplify the equations. Since a wind probe’s pressure distribution is usu-
ally assumed to be in steady state, the authors express some concern about
the adjustment time to a new equilibrium state after a change in ambient
conditions.

They provided no estimate of the adjustment time, but plausibly the
adjustment time is comparable to the travel time of an idealized gust (step
change in incident velocity) across the probe’s upstream-influence region to
engulf the probe in the new ambient conditions. All quantities here are
given and calculated in the probe’s reference frame and coordinates. That
is, the air is moving relative to a fixed probe. Transient acoustic waves are
expected during the change, but at the small scale of the probe and the
low Mach numbers of the flow they should have low amplitude and should
dissipate quickly. During the change, the state quantities (flow, pressure, and
temperature) around the probe will depart from the steady state assumed
to prevail when deriving the flow velocity from the pressure distribution. If
the adjustment time is short compared to the time scale of encounter with
the significant eddies in the air, the assumption of equilibrium flow over the
probe is justified. Otherwise, the degree of residual dis-equilibrium in the
flow and its effect on the measurements must be determined, a challenge
beyond the current scope.

To attempt a justification of the assumption of equilibrium flow, consider
a somewhat simplified structure where the incident air far upstream (relative
to the probe’s diameter) is moving uniformly. The speed is equal to the
airplane’s true airspeeed. The direction is near but not necessarily on the
probe’s axis. Everything is initially in steady-state equilibrium expressed by

D

Dt
(
1

2
U2 + cpT + g ·X) = 0. (1.5.1)

Here U2 = U ·U and U, T , and X are the (initial) equilibrium values, re-
spectively, of the incident flow velocity, ambient temperature, and position
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vector (probe’s coordinates). The specific heat at constant pressure is cp.
The gravity vector (probe’s coordinates) is g. The D/Dt is the material
derivative, also called the total time derivative (see (5.1) in Chapter 5). The
local time derivative is zero here because of the steady state.

Expression (1.5.1) is slightly more carefully stated than L&M’s (5.5) and
(5.6). The geopotential term, involving gravity, only appears if the probe is
not horizontal. Then U = DX/Dt has a component parallel to gravity, and
geopotential energy enters the exchange with the kinetic and thermodynamic
energy along the steady flow path.

Suppose this steady state is now altered by the arrival of a strong updraft
typical of the convective boundary layer. The updraft can be modeled as a
step change u perpendicular to the initial equilibrium flow and having mag-
nitude 10% of the initial equilibrium speed. This produces a direction change
of about 6◦ and a speed increase of 5%, amenable to perturbation analysis.
Being bouyant, it also brings an increase, less than 5%, in temperature and
a corresponding decrease in density. Let the gust’s incremental quantities be
expressed in lower-case or primed symbols:
Perturbation Increments
Steady State Add an abrupt

increment

U U+ u wind
ρ ρ+ ρ′ density
P P + p pressure
T T + t temperature
X X+ x position vector, probe’s coordinates

The temperature increment t is a small capital to avoid confusion with time t.
An equation expressing the (non-steady) adjustment to the new equilib-

rium can be computed by using the incremental quantities to expand L&M’s
(5.5) with gz replaced by g ·X. The products of incremental terms can be
ignored as being small, the incremental density ρ ′ likewise, except when it
multiplies gravity (Boussinesq approximation). Subtracting (1.5.1) yields,
after some algebra,

D

Dt
(u ·U+ cpt) + g ·

(

u+
ρ ′

ρ
U

)

+ cpu ·∇T =
1

ρ

∂p

∂t
. (1.5.2)

Being in a non-steady state, these incremental quantities include transient
local change, including ∂p/∂t.
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Numerical, and perhaps analytical, solutions to (1.5.2) could be found,
but a heuristic argument will be considered sufficient here. The gust first
appears far upstream of the probe. Near the probe, u and p, (equivalently
t because adiabatic) are initially zero. As the gust approaches the probe
it begins to move the stagnation point, and its faster air packs against the
probe’s head developing an adverse perturbation-pressure gradient ∇p. This
brings the u, like the equilibrium U, to a stop (relative to the probe) at the
stagnation point, but also generates acoustic waves. While a new equilibrium
pressure pattern is developing, ∂p/∂t > 0 in the region around the probe. In
the new steady state, the incident flow becomes U + u, and the pressure at
the new stagnation point becomes P + p.

The adjustment time ∆t, over which the local pressure tendency is nonzero,
is comparable to the transit time of the initial perturbation across the probe’s
upstream influence region and around the probe’s hemispherical head plus
time for the acoustic waves to dissipate. At a typical Mach number Ma < 0.3,
the acoustic waves’ dissipation time will be assumed small compared to the
transit time. The width of the upstream influence region may be estimated
from potential-flow theory. The transit speed across this upstream region is
estimated as half the incident flow speed because of its steady decrease along
a streamline to become zero at the stagnation point.

In spherical polar coordinates for streaming flow past a sphere of radius
a, having boundary conditions of zero normal flow at the sphere’s surface
(r = a) and uniform flow speed U far from the sphere, the velocity potential
for potential flow is

φ = U

(

r +
a3

2r2

)

cos θ, (1.5.3)

where r is the radial distance from the sphere’s center and θ is the angular
distance around any great circle of the sphere which passes through the
stagnation point at θ = π. The flow is radially symmetrical in any plane
perpendicular to the undisturbed uniform flow. The radial component of the
flow follows

∂φ

∂r
= U

(

1−
a3

r3

)

cos θ. (1.5.4)

At r = 5a, two diameters upstream of the sphere’s center, the normal
velocity on the stagnation streamline (cos θ = −1) is reduced by (U +u)(1−
1/125), about 1%. Since the pressure increase goes as the square of the
velocity, the pressure two diameters upstream is about (P + p)(1 + 2/125)
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or about 2% above ambient. If the base-state airspeed is 60 m s−1, and the
perturbation travels on average 30 m s−1 over the 2.5 probe diameters along
the stagnation streamline, adjustment will require less than 15ms for the
bat probe’s diameter of 0.15m. The Rosemount probes used by noaa/aoc
on the P-3 have a diameter of 0.025m, and the transit speed is on average
50 m s−1, giving an estimate of less than 1.5ms.

During 15ms an airplane at 60 m s−1 travels 0.9m. A sample rate of 50 s−1

minimally detects fluctuations on scales of 2.5m, but operational resolution
is about 6m. The P-3 travels 0.15m in 1.5ms. A sample rate of 50 s−1

corresponds to 4m minimal detection scale and 10m scale operationally.
Most important gusts have larger length scale than this. The concern of
L&M about their (5.6) thus appears unnecessary, but not by a huge margin.

Their other concerns are significant, yet airborne turbulence measurement
works remarkably well. Helping this result are the amazing accuracy of the
GPS, the high capacity of data storage and computer throughput, and the
high sample rate and accuracy of current sensors. Much of this development
has come since the time of L&M’s writing.

1.6 Theory of flow-angle measurement

In Chapter 8 L&M report not being able to utilize the nuanced results of
Chapter Six. This chapter, however, has been enormous help in developing
the bat probe (Crawford and Dobosy, 1992; Eckman, 1999; Dobosy et al.,
2013) and derivative instruments (Eckman et al., 2007). Eckman (1999),
drawing on Chapter 6, derived a method explicit to the bat probe. Later,
Dobosy et al. (2013) and Vellinga et al. (2013) found discernable improve-
ment from modifying Eckman’s scheme to account for the bat probe’s actual
hemisphere-cylinder shape. Our group owes a debt to L&M’s original work,
especially that found in this chapter.

1.7 Calibration of temperature, pressure, and

airspeed

This chapter describes some practical calibration practices developed by Leise
and Masters in the 1990s. New instrumentation, especially gps has enabled
several improvements, but the thought behind these practices is instructive.
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Also in this chapter is the set (7.20) of equations currently used by noaa/aoc
to compute the wind velocity from their P-3s.

1.7.1 Temperature recovery factor

Currently noaa/aoc computes a total temperature offset based on airspeed,
moisture, and altitude, by a process different from that presented here. In
fact, this section’s stated purpose is an in-flight sanity check on the entire

temperature-measurement system. It is not meant for operational use. In
this section L&M simply assume a constant temperature-recovery factor.
The usual temperature sensor’s recovery factor varies with the Mach number
in a way that can only be determined in a wind tunnel. Another discussion of
the recovery factor for a particular temperature sensor, including its variation
with Mach number, is given by Khelif et al. (1999), also in connection with
noaa/aoc’s P-3 aircraft as equipped at the time.

The maneuver described uses a pair of racetracks at two significantly
different known airspeeds. Since direct determination of the airspeed re-
quires knowledge of the ambient air’s temperature, the ground speed on each
straight leg provides a proxy. To achieve the simplest possible relation be-
tween airspeed and ground speed, the patterns are flown directly upwind and
downwind, always at the same altitude. Maintaining constant airspeed is im-
portant as is knowing the wind direction and successfully finding a time and
place of homogeneous wind over the whole pattern. Such a set of conditions
appears difficult to meet.

Small boundary-layer aircraft typically fly at Mach numbers less than 0.2.
Since the adiabatic heating of the air at the temperature sensor depends on
the square of the Mach number, knowledge of the recovery factor only to
within 10% may be acceptable for them (Vellinga et al., 2013).

1.7.2 Ambient pressure measurement

The aircraft’s reported ambient pressure is tested in relation to a cone trailed
on a long tube in undisturbed air behind the aircraft and carrying a pressure
sensor. Khelif et al. (1999) compared the departure of the ambient pressure
reported at the cone to the pressure reported by the aircraft’s ambient (static)
pressure ports as a function of the measured dynamic pressure qm. They fit a
polynomial to sixth order in q0.5m which, apart from density fluctuations, varies
directly with true airspeed τ . noaa/aoc’s current practice in correcting the
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measured ambient pressure fits an empirical expression in altitude as well as
airspeed, also based on trailing-cone measurements from each of their two
P-3 aircraft.

1.7.3 True airspeed computation

The error in dynamic pressure is estimated in flight using racetrack patterns
similar to (or the same as) those used to check the temperature-recovery
factor. Again the ground speed is used as proxy for the unknown airspeed.
The same requirements and complexities apply. System (7.20), however, is
an excellent path from dynamic pressure to true airspeed, which bypasses
the Mach number. It is currently used by noaa/aoc (Damiano, personal
communication, 2012). Our scheme (Dobosy et al., 2013; Vellinga et al.,
2013) uses the Mach number, with which we have similar success.

1.7.4 Dew point and vapor pressure

L&M give practical expressions (7.21) relating the ambient vapor pressure
e to the dewpoint temperature Td. These most closely match expressions
reported by Murray (1967) and are currently in use by noaa/aoc for Td ≥
0◦C. Current noaa/aoc practice for Td < 0◦C is to go the other direction,
determining the vapor pressure from specific humidity measured directly by
laser absorption. The frost point (Td < 0◦C) can then be found from L&M’s
(7.22) or equvalent (Barry Damiano, personal communication, 2013).

More recent work (Murphy and Koop, 2005) incorporates results from
new measurements over supercooled water at least down to −38◦C as noted
in Section 1.4.1. However, aviators read supercooled water as “known icing
conditions.” Only large or sophisticated aircraft, such as NOAA’s P-3 aircraft
for which this technical memorandum was originally written, are equipped
to operate safely in known icing. Furthermore, as stated in Section (1.4.1)
the level of detail in the expression of Murphy and Koop (2005) amounts to
an overfit for measurements in the real atmosphere. Thus either expression
(7.21) of L&M or that of Murphy and Koop (2005) is fully suitable for humid-
ity measurement in all but the most demanding microphysical applications,
beyond the scope of airborne measurement of wind and turbulence.

29



1.7.5 Offsets: Links to ground measurements

L&M note the need for checking offsets as well as scale (slope) parameters and
recommend flying close to fixed measurement sites. In airborne boundary-
layer measurements, this practice is important for two reasons. The first is
the reason given by L&M in this section. The second is a synergy whereby
the fixed surface measurements provide high-resolution, long-term coverage
of the temporal variation at their location, while the airborne measurements
link one location to another. Thus a productive deployment requires both
fixed and airborne measurement even in its normal operation (Crawford and
Dobosy, 2004; Crawford et al., 1996b; Isaac et al., 2004; Kirby et al., 2008;
Vellinga et al., 2010; Zulueta et al., 2011, 2013).

1.8 Calibration of flow angles

Much work has been done in calibration of flow angles. As in 1993, differential
pressure measurements are the normal data from which the flow direction is
determined. Two general approaches are followed.

The first approach was used by L&M in this chapter. It uses forms
derived from L&M’s (B.10) or (6.9) parameterized by slopes Kα and Kβ and
by offsets A0 and B0.

tanα = Kα(δαp/qα) + A0

tan β = Kβ(δβp/qβ) + B0. (1.8.1)

Here δαp and δβp are, respectively, the pressure differences in the aircraft’s
vertical and lateral directions measured over the approximately spherical
head(s) of the wind sensor(s).

Separate sensors are used by noaa/aoc for attack and sideslip angle as
shown in L&M’s Appendix A. The qα and qβ are associated measurement(s)
of dynamic pressure. The parameters Kα, Kβ, A0, and B0 are fit to data from
appropriate flight maneuvers. L&M describe some of these. Barry Damiano
(personal communication 2013) added a third racetrack maneuver at 210 kt
for noaa/aoc’s P-3s around the year 2000. This demonstrably improved
the derived Kα and A0.

Related maneuvers are described by Lenschow (1986); Lenschow et al.
(2007); Khelif et al. (1999); Kalogiros and Wang (2002b). These procedures
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suit airborne systems, typically on larger, more complex aircraft having pres-
sure sensors on a radome (Brown et al., 1983) or along the fuselage (L&M).

The second approach separates the model for the flow over the probe
from the models for the aircraft’s distortion of that flow (Crawford et al.,
1996a,b; Kalogiros and Wang, 2002a; Garman et al., 2008; Vellinga et al.,
2013). This approach suits simpler, smaller aircraft, often explicitly config-
ured to minimize and simplify flow distortion. The two approches have many
flight maneuvers in common, though the analysis is different. Kalogiros and
Wang (2002a) also introduce acceleration maneuvers to address distortion by
thrust.

This second approach allows consideration of the sensor independent of
the aircraft’s distortion. The sensor may then be calibrated in a wind tunnel
(Garman et al., 2006; Dobosy et al., 2013) and can be strongly aspherical
(van den Kroonenberg et al., 2008). If a spherical shape is retained, the
second approach can meaningfully apply the refinements of Chapter 6 [see
L&M, Chapter 8 after (8.5)].

L&M recognize the importance of considering roll. Often, one simply
minimizes roll by flying straight and level. Lenschow et al. (2007), whose
airborne measurements of divergence and vorticity require both nonzero roll
and accuracy at high precision, have developed promising maneuvers and
analysis for calibration considering nonzero roll.

Although noaa/aoc’s P-3s have pressure ports on their radomes (Khelif
et al., 1999), these are not currently used (Damiano, noaa/aoc, personal
communication 2012). They are not configured to provide measurements
during rain or icing, which characterize many of the P-3s’ missions.

1.9 In-flight examples

The stairsteps described by L&M in Chapter 9 provide calibration parame-
ters over a useful range of altitudes, but require considerable time to execute.
If multiple altitudes are impractical, flights should at least be in sufficiently
smooth air (minimal vertical motion) to control contamination of the cali-
brated parameters.

Having GPS navigation makes knowledge of the aircraft’s velocity very
reliable. Accurate knowledge of the vertical component of the aircraft’s veloc-
ity is vital to calibration of the parameters describing the lift-induced upwash
(Crawford et al., 1996a; Vellinga et al., 2013). Accurate knowledge of the
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aircraft’s horizontal velocity relaxes the requirement to fly directly upwind
and downwind to calibrate the direction offset and the error parameter for
dynamic pressure.

The Kβ has proven a relatively awkward parameter in simpler measure-
ment systems than the P-3 (Vellinga et al., 2013), but see Lenschow et al.
(2007), who also have a reliable way to determine B0. Having the angle
sensors farther forward as L&M suggest, however, has been found beneficial
in aircraft so equipped (Kalogiros and Wang, 2002a,b; Khelif et al., 1999;
Lenschow et al., 2007; Vellinga et al., 2013).

1.10 Adiabatic and hydrostatic approxima-

tion

This chapter demonstrates the utility of adiabatic and hydrostatic approxi-
mations to enable sanity checks on quantities derived from calculations com-
plex and hard to interpret in their precise form. Several examples are pre-
sented. They apply to the noaa/aoc P-3s of L&M’s direct interest, but
can be mined for useful concepts more generally. The current ubiquitous use
of the Global Positioning System changes the game considerably. GPS with
carrier-phase differential correction can, for instance, readily determine the
error in the reported static pressure to a few Pascals (0.1m− 0.3m)—given
the hydrostatic approximation.

1.11 P-3 data acquisition

Discussion starts with filters and sampling, including aliasing of samples.
This chapter does not describe noaa/aoc’s current real-time data-acquisition
system, which has been upgraded since L&M’s writing. The issues and con-
cepts are, however, still relevant. The topic of computational aliasing is little
discussed or covered in data acquisition, at least among atmospheric scien-
tists. That was true in L&M’s time and is likely still true. Nonlinear com-
putations introduce additional frequencies above those present in the input
signals. Even if the input is free of aliased components, these new frequen-
cies may be above the input’s Nyquist frequency and appear as alias modes
below the Nyquist frequency. For practical use L&M recommend an addi-
tional filter having a response that vanishes at the Nyquist frequency of the
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digital sample. This removes additional aliased components and mitigates
computational aliasing. However, they also offer procedures of interpolation
and filtering in Appendix D that are more effective and likely practical with
current computing power. Again, however, these do not explicitly reflect
current practice at noaa/aoc.

1.12 Corrections with filters

This is a very important chapter about more than corrections. Current stan-
dard procedure is to mix the signal from an instrument accurately responsive
to high frequencies with the signal from an instrument accurately drift free
at low frequencies to obtain an output signal of broad band width (Crawford
and Dobosy, 2004, 1997). We used Leise’s cubic mirror-image replacement fil-
ter, Appendix F, in this service for many years and found it to work very well.
L&M addressed filter optimization and several other important issues: shot
noise, boundaries, and missing data. They also include Appendices C-F with
details of filtering and its applications, including the filter in Appendix F.

1.13 Horizontal wind computation

This chapter is largely obsolete, but historically interesting. The recommen-
dations L&M make at the end of it are basically the way horizontal winds are
now measured. GPS and fast computers have completely changed the game
and produced major improvements in wind-measurement accuracy. Sub-
sequent developments in (relatively) low-cost single-antenna gps/ins have
conquered the Schuler oscillation. Obtaining a high-precision heading-angle
reference still requires multi-antenna GPS, as L&M foresaw. See the more
extensive discussion in Appendix G, also Vellinga et al. (2013); Dobosy et al.
(2013).

1.14 Vertical wind computation

noaa/aoc normally uses the method of Jorgensen and LeMone (1989) to
determine the vertical wind (B. Damiano, Personal communication, 2012),
entirely sufficient for their missions. With GPS now fully three-dimensional
and capable of direct measurement of velocity from the Doppler shift on the
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carrier wave, all three components of the probe’s motion can be determined
to high precision by the same computation. There is no need to separate
horizontal from vertical wind. The issues of complementary filtering and
phase matching discussed by L&M in this chapter remain, however. See also
Section 1.12.

1.15 Flow distortion and phase

Flow distortion can be treated in bulk as in the approach using the two
parameters discussed by L&M in Chapter 8. This can be quite serviceable
for horizontal wind, if all the instruments are physically near each other and
away from locations of serious flow distortion. As L&M show, however, the
synchrony between instruments should not be taken for granted, but should
be tested to the extent possible.

The second approach mentioned in the annotation to Chapter 8 models
the most important contributions to flow distortion directly. Using the sec-
ond approach requires explicit treatment of the flow distortion. This may
become quite complex unless the instrument configuration simplifies the flow
distortion as much as possible (Crawford and Dobosy, 1992; Crawford et al.,
1996a,b; Kalogiros and Wang, 2002a). A good configuration has the probe
centered laterally as far forward from both engines and wings as possible. A
pusher configuration is nearly ideal because the propeller is behind the wing,
leaving the nose clean for mounting the wind sensor on a boom. The center
of mass, hence the wing, is aftward allowing the nose to protrude farther
forward of both thrust and lift. A twin-engine tractor aircraft at least moves
the center of thrust off the aircraft’s longitudinal axis and frees the nose. The
four-engine P-3 has this same advantage if the probe can be mounted on a
boom ahead of the nose. Flow distortion for pusher aircraft has been treated
by Crawford et al. (1996a); Vellinga et al. (2013) and for a twin tractor by
Kalogiros and Wang (2002a).

1.16 Conclusions and Recommendations

Many of these have been adopted and/or superseded. This chapter, however,
is interesting for historical reasons.
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1.17 Appendices

These appendices contain a wealth of detailed background information that
can be mined for useful insights into important aspects of airborne-data
processing and quality control.

1.A P-3 Instrumentation

1.B Incompressible flow past a sphere

This section provides theoretical justification for ignoring the flow accelera-
tion in determining the relative wind from pressure-sphere measurements. It
is basically a restatement for incompressible potential flow of the problem of
local pressure tendency handled in Section 1.5 for adiabatic flow.

1.C Digital filters and symmetry

Many toolkits for building digital filters exist, but this appendix helps de-
velop a basic understanding of how filters work and how their properties are
analysed.

1.D Sampling and interpolation

This appendix addresses aliasing and gap filling, helping theoretical under-
standing of what is happening. Current practice at noaa/aoc has, of course,
progressed independently since this writing.

1.E Enhanced triangle filters

With ready filter-building kits and fast computers, these may be old fash-
ioned. They are, however, very efficient filters. This appendix also provides
background to understanding Leise’s Cubic Mirror-Image Filter, which is
powerful, efficient, and not likely found in a filter toolbox.
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1.F A mirror-image filter algorithm

Here the Cubic Mirror-Image Filter itself is described in detail with its al-
gorithm worked out in Fortran. Developing this algorithm required a major
balancing act. Having it explicitly worked out saves a lot of tedious detailed
work for someone who would use the filter.

1.G Filtered interpolation

Here several interpolation schemes are analysed theoretically providing the-
oretical understanding and potentially saving a lot of tedious work.

1.H Statistical editing

We have called such algorithms as these despikers. Spikes in data must be
removed before any filtering or they will be propagated widely, rendering
many good data useless. Often the spikes are simply single missed samples,
but spike removal in general is one of the more difficult issues in data pro-
cessing. Wavelet theory, not covered by L&M is a powerful tool as well, if
one properly understands and applies it.
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2. AIRCRAFT KINEMATICS AND THE WIND EQUATION

In this section, we analyze required geometry and motion compensation 

associated with aircraft measurement. Of special importance is the wind 
equation used to compute ambient wind from aircraft velocity and the relative 

wind" Our approach is to derive this equation in Lagrangian coordinates before 

converting to Eulerian coordinates .  An advantage of this approach is that 

corrections to compensate for spatial separation of sensors are derived in a 

rigorous way. Finally, an algorithm for required motion compensation is 

presented along with a FORTRAN subroutine. 

We begin with a discussion of coordinate systems. Of central importance is 

the familiar geographic coordinate system in which a vector position p is

given as a latitude, a longitude, and an elevation above mean sea level; in

principle, these quantities are referenced to the earth geoid. Velocities 

require additional structure; they are tangent vectors to curves and must be 

referenced to a Euclidean frame that moves with geographic position p. In

meteorology (and other earth sciences), the convention is for the x, y, and z 

axes to have unit direction vectors i (p), i (p), and i (p) that point towardE N Z 
geodetic east, north, and up respectively. This is called the geodetic frame. 
We remark that in navigation, there is an alternate convention (that goes by 

the same name) in which the x, y, and z axes point north, east, and down. 
Needless to say, some care must be exercised in using the literature. In any 

case, the geodetic frame is . used to measure positions and velocities relative 

to the geographic position p. It is a right-hand system and so the local

vertical iz (p) is the vector product of iE (p) and iN (p): iz (p) = iE (p) X iN (p).
The plane spanned by iE(p) and iN(p) is the (local) horizontal

On board an aircraft, geographic position p is obtained from navigation

equipment, principally the inertial navigation system (INS). Note, however, 

that with the advent of sophisticated Global Positioning System (GPS) 

receivers and high precision accelerometers, it is possible to make the 

required extemely precise measurements of p required for aircraft science

without an INS (Crawford and Dobosy, 1992). In either case, it is natural to 

equate aircraft parameters with the navigation equipment used. Thus, the 

ongm of the geodetic frame is the position of the navigation 

instrumentation, and aircraft velocity is the velocity of the navigation 

instrumentation. In straight and level flight, all points on an aircraft move 

at the same speed; however, in maneuvers, this is not the case. For example, 

in a turn, the outside wing tip moves faster than the inside wing tip. Thus, 
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2. Aircraft Kinematics and the Wind Equation

Fig. 2-1. Aircraft coordinates i, j. /c, and their relation to pitch angle (J
and roll angle �· · 

corrections must be made to aircraft measurements made at locations other than 
that of the navigation equipment. We study this next. 

The aircraft frame (also the platform frame) is another Euclidean frame 
that is rigidly attached to the aircraft and moves with it; the origin is 
again taken as the INS. Aircraft coordinates (also platform coordinates) are 
the positions in this frame. This can be confusing insofar as the geographic 
position p is still required for a complete description. We adopt the 
convention of using script for quantities measured in aircraft coordinates; in 
particular i, j, . and A denote the unit direction vectors; i points forward
along the axis of the fuselage, j points in the direction of the right wing
(relative to the pilot), and lc points down (under normal flight conditions) as 
shown in Fig. 2-1. Again, this is a right-hand system A=ixj. To help see the
relationship to the geodetic frame, suppose an observer on the ground sees a 
cloud as stationary; its geographic position stays the same. However, when 
viewed from inside an aircraft, the cloud is seen to go by at the speed of the 
aircraft; in this situation, the cloud has a vector velocity in the aircraft 
frame that is precisely the negative of the aircraft velocity in the geodetic 
frame. 

Because most aircraft measurement is done in the aircraft frame, data must 
be transformed to the geodetic frame. Parameters used consist of three 
attitude angles: the yaw or heading 'If, the pitch IJ, and the roll �; these 
angles are supplied by the INS. Heading tells us the horizontal direction of 
flight; pitch tells us how much the nose is pointed up (or down), and roll 
tells us how much the aircraft is banked (e.g. when turning). Pitch and roll 
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2. Aircraft Kinematics and the Wind Equation 

are also illustrated in Fig. 2-1 . 

The transformation required to convert observed data between frames is 

computed in factored form by sequentially removing the dependence on roll, 

pitch, and heading together with a relabeling of axes . The way in which these 

angles are expressed is a matter of convention. Heading is measured clockwise 

from geodetic north, like on a compass; pitch is measured from the local 

horizontal to a line through the fuselage, it is positive when the nose is 

pointed up; finally, roll is measured in the j-1: plane, it is positive in a

right-hand, clockwise turn (right wing down) . 

The first rotation T 1 (9>) removes roll; it is a rotation about the i axis

with matrix representation: 

(2 .1) 
[ 1 0 0 l

T 1 (9>) = 0 cos 9> -s i n9>
0 s i n9> cos 9> 

Thus, a vector position �0 observed in the aircraft frame is transformed into

a new position �1=T1(9>)�0 computed as the product of a matrix and a column

vector; it is the hypothetical position that would be observed if the aircraft

was flying without roll (wings horizontal). To check orientation, an aircraft 

flying to the north and on its side t/>=n/2 (right wing down), will result in

the �axis pointing west; after rotation, positions west will be off the left

wing and will have negative values as required by (2.1). 
The next rotation T ifJ) removes the pitch: 

(2.2) 
[ cosO 0 s i nO ]

T 2(0) = 0 1 0 . 
-s inO 0 cosO 

Now, �2=T 2(0)�1 is  the position observed from a hypothetical aircraft flying 

horizontally (no pitch and no roll) . 

The last rotation T 3(lf/) removes the heading: [ cos lfl -s in  llf 
(2.3) Tilfl) = s inf/1 COSf/1

0 0 

Now �3=T 3('11)�2 is the position observed by a hypothetical aircraft flying

horizontally and due north. This would be the answer except that the axes are 

reversed; present coordinates of the hypothetical aircraft frame point north,

east, and down, and must be transformed to east, north and up. This is done 

with the permutation T 4: 
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2. Aircraft Kinematics and the Wind Equation

(2.4) 
[ 0 1 0 l 

T4 = 1 0 0 .0 0 -1 
Thus, the wanted position in the geodetic frame is r=T 4-t-3

• Sometimes, these
last two transformations are combined into f 3(11f):

SUBROUTI NE TRAN(XA,XG,C S,SN,MODE) 
C *********************************Jim L eise 6/85. 
C Transform position data XA( 3) from the aircraft frame to the 
C geodetic frame XG( 3) using the rotation implicit in the 
C direction cosines C S( 3) and sines SN( 3). Mode specifies 
C the transformation or its inverse. 
C MODE= 1 ... Aircraft==> Geodetic ... XA ==> XG. 
C MODE=-1 ... Geodetic ==> Aircraft ... XG ==> XA. 
C Also, the code is configured so that the replacement implicit 
C in "C AL L TRAN(Z,Z,C S,SN,MODE)" is valid. 

DIMENSION XA( 3) ,XG(3) ,C S( 3) ,SN( 3) 
c 

I F(MODE.EQ.1)THEN 
C .... Aircraft==> Geodetic. 

c 

c 

c ... . 

c 

c 

XRL= XA(1) 
YRL= C S(1)*XA(2) - SN(1)*XA( 3) 
ZRL = SN(1)*XA( 2) + C S(1)*XA( 3) 

ELSE 

XPC= C S( 2)*XRL + SN( 2)*ZRL 
YPC= YRL 
ZPC=-SN( 2)*XRL + C S(2)*ZRL 

XG(1)= SN(3)*XPC + C S( 3)*YPC 
XG( 2)= C S(3)*XPC - SN(3)*YPC 
XG(3)= -ZPC 

Geodetic ==> Aircraft. 
XPC= SN(3)*XG(1) + C S(3)*XG( 2) 
YPC= C S(3)*XG(1) - SN(3)*XG( 2) 
ZPC= -XG(3) 

XRL= C S( 2)*XPC - SN( 2)*ZPC 
YRL= YPC 
ZRL = SN( 2)*XPC + C S( 2)*ZPC 

XA(1)= XRL 
XA( 2)= C S(1)*YRL + SN(1)*ZRL 
XA(3)=-SN(1)*YRL + C S(1)*ZRL 

END I F
END 

Take out the roll. 

Take out the pitch. 

Take out the heading 
& flip vertical. 

Put in the heading 
& flip vertical. 

Put in the pitch. 

P ut in the roll. 

Fig. 2-2. FORTRAN listing of basic transformation relating aicraft 
coordinates to earth coordinates. 
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2. Aircraft Kinematics and the Wind Equation

(2.5) 

which has the slight computational advantage of saving a step. In any case, 

the total transformation G between frames is the matrix product:

(2.6) 

Thus , an observed position -t-0 in the aircraft frame is transformed to the

vector position r=G-t-0 in the geodetic frame.

A FORTRAN subroutine for (2.6) together with the inverse is given in 

Fig. 2-2 ; in this code, attitude angles are given in trigonometric form, that 

is,  

CS( 1 )=COS(tP) 
CS(2)=COS(8) 
CS(3 )=COS( 'If) 

SN( 1 )=SIN(tP) 
SN(2)=SIN(8) 
SN(3)=SIN( 'If) 

which helps avoid redundant computation and saves time. 

Analysis of Lagrangian Motions We denote the Lagrangian position of an

air parcel observed in aircraft co�rdinates as x(t;t0). Note that geographic

position p as well as attitude angles depend on time t, and the parameter t0
is used to distinguish a parcel as "arriving" at a given position -t when t=t0,
that is, -t.=x(t0;t0). To fix ideas, suppose that -t. is the position (in aircraft

coordinates) of a boom on the left wing tip as illustrated in Fig. 2-3 . The 

sensor will pass through the given air parcel at time t=t0• Then the

Lagrangian trajectory of this parcel, relative to the earth, is

(2.7) I x(t;t0) = p(t) + G(t)x(t;t0) I· 
This equation uses the flat earth approximation insofar as p(t) is geographic

position on a curved earth while G(t)x(t;t0) is a vector in a Euclidean frame,

and addition requires a common set of units. A velocity equation then results

by differentiating (2. 7) with respect to time 

. 

(2. 8) u(t;t0) =U0(t) + G(t)x(t;t0) + G(t)u(t;t0) . 

where u(t;t0)=x(t;t0) is the (true) parcel velocity as observed from the

ground;  U0(t)=p(t) is the aircraft velocity supplied by the INS, and

u(t;t0)=X(t;t0) is the parcel velocity observed from the aircraft frame. Note

that, although we started from an approximation (2.7), this equation is exact 
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2. Aircraft Kinematics and the Wind Equation 
Wing tip 

INS 

Sensor"' .._ Relative Wind 
---------- ------------

Llt=t -t0 = time to 
parcel 

Air Parcel 
x(t;t0)

Fig. 2-3. Illustration of the Lagrangian position of an air parcel observed in 
aircraft coordinates. The wingtip sensor (at position -t. in aircraft 

coordinates) passes through an air parcel located at �(t ; t0) at time t0. 

because velocities are tangent vectors in the geodetic frame. 

Now, at time t=t0, the relative wind vector flr(t) measured at -t. on the

boom is the parcel velocity fl r<t0)=U(t0;t0). Aiso, at time t=t0, the

incremental velocity of the wing tip due to changing attitude angles 
. . 

isLIU(t0)=G(t0�t0;t0)=G(t0)-t. The important observation is that by 

changingthe indexing time t0, all measured winds flr(t0) are accounted for. In 
other words, every parcel of air that intersects the wing tip can be described 

as being part of a trajectory indexed by some t0. The deduced ambient wind

resulting from such measurement is then abbreviated u(t0)=u(t0;t0). At this

point, subscript notation is superfluous, and we change t0 to t. Substitution

into (2.8) then gives the wind equation used to compute the ambient-wind

vector u(t) at the point of relative-wind measurement:

(2.9) f u(t) =U0(t) + Ur
(t) + .llU(t) f 

where, as above, · U0(t)=p(t) is the aircraft velocity 
. 

supplied by the INS,

U . (t)=G(t)fl (t) is the relative wind vector and LIU(t)=G(t)-t. is the incremental
r r 

velocity of a sensor located at -t.. Ideally, this sensor is located next to the

INS (-t. :a:o) and LIU(t) can be neglected. Unfortunately, this is often not the

case. For example, if as on the P-3's, the velocity sensor is located on the 

left wing tip which extends, say, 15m from the fuselage (where the INS is 

located), then in a maneuver consisting of a two minute circle (bank angle 

30°), the incremental velocity L1U(t) is in excess of SO cm/s which is

competitive with desired accuracy. 
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2. Aircraft Kinematics and the Wind Equation

At this point we need some matrix and vector-space concepts. First, a 
(square) matrix A· is orthogonal if its inverse is the matrix transpose A -1=A T; 
thus, AA T=A T A=l where I is the identity matrix. It is easily verified that the
above T k are orthogonal; consequently, so is the total transformation G of
(2.6). In passing, it is worth observing that the rotation matrices T 1, T 2,
and T 3 also have the (group) properties:

T k(w1 +w2) =T k(w1)T k(w2) and T�1(w) =T k(-w) ; k=1,2,3

which are properties not shared by f 3('1/).
Recall that the dot (or inner) product x•y of two (column) vectors of real

numbers x=(x1,x2,x3) T and y=(y1 'y2,y3l is defined 

(2.10) x•y =x Ty =x1y1+x2y2+x3y3 ,
and the Euclidean length (or norm) is llx ll=v'x•x .  It follows that for any set

of attitude angles that IIG�II= II�II . This is because G is orthogonal, and

orthogonal transformations always preserve dot products: 

G�·G6- =(G�)TG6- =(�TG T )G6- =�T(GTG)6- =�TI6- =�·6- • 

We remark that the distinction between row and column vectors is only 

relevant in matrix calculations; vectors are usually given as row vectors. 

With this background, we now estimate tbe incremental velocity 
. 

LIU(t)=G(t)�. One way to do this is to differentiate G(t) by parts. However, it

is more direct to difference positions r(t)=G(t)� directly: L1U(t)=r(t). Thus,
numerical estimates of L1U(tk) can be obtained from the (3-point) difference

(2.11) L1U(tk) =rk == (rk+1-rk-1)/(tk+1-tk-1)

where r k =G(tkH and r k =G(tk )�. This is a difference of vectors and two kinds

of errors can occur, errors ·in amplitude and errors in direction. Of the two, 
errors in direction are the more serious because incremental velocities in the 

horizontal could end up in the vertical. It is therefore useful to model the 

velocity estimate as 

(2.12) 

where the amplitude IIL1U(tk)ll is computed from (2.11) and the direction vector

i k is yet to be determined. A better estimate of ik can be obtained from the

condition that ik be orthogonal to rk, that is, ik •rk =O. To understand this

condition, first observe from (2.12) that ik should point in the same

direction as rk=L1U(tk); consequently, ik•rk=O <=> rk•rk=O. But G(t) is
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orthogonal and preserves lengths; hence, 

r(t)•r(t) =� �[r(t)•r(t)] =� �[�·�] =0 '

and the conclusion ·. ik •r k =O follows. A good estimate of ik can then be
constructed as the following linear combination of rk+l and rk-l:

(2.13) 

Indeed, a simple calculation verifies that ik •rk =o. Should the denominator
lldkll vanish, it is consistent to simply set ik =0. In turn, this direction is
used in (2.12) to complete the estimate of LIU(tk). While this may seem unduly

complicated, it is still considerably easier and less prone to error than 

differentiating G(t) by parts. We remark that this same procedure is well 

suited for real-time application, i.e., applicati<?ns which use data only from

the past, say, at times tk and tk._1. In this case, formulas are obtained by

simply setting k+l to k in (2.11) and (2.12) . Clearly, orthogonality has a 

stronger effect in this situation. 

A FORTRAN listing for such a real-time algorithm in given in Fig. 2-4. 

This subroutine in tandem with the transformation of Fig. 2-2, form the basis 

of all motion compensation presented in this work. However, note that this 

motion compensation is incomplete insofar as it cannot correct for the 
vertical bobbing motion of a wing, or other vibrations of the aircraft. The 

best solution for motion compensation is not to have to do any at all, by 

mounting all of one's sensors at the location of the navigation 

instrumentation. This approach has been used by Crawford and Dobosy [1992]. 
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SUBROUTINE VROT(PROBE,PL AST, UROT,C S,SN) 
* **************************************Jim Leise 6/85.
Real- time method for computing rotational velocities due 
to  changing attitude angles. This algorithm uses the 
c ondition that velocity direction is orthogonal to position. 

PROBE(3) =Probe position in aircraft coordinates. 
P L AST(3) =Stored value from last call. 
UROT(3) =Answer: rotational velocity in earth coordinates.
CS(3) =Attitude cosines. 

SN (3) =Attitude sines. 
DIMENSI ON P ROBE(3),P L AST(3) ,UROT(3) ,CS(3),SN (3), Pnow(3) 

C • • . . F irst, rotate the PROBE position to geodetic coordinates. 
c = ============================ 

CAL L TRAN(P ROBE, P now,C S,SN,1) 
c = = =========================== 
c 
C.... Store velocity energy (=amp**2) in Vamp. 

c 

P dot=O. Initialize. 
P mag=O. 
Vamp=O. 

·no 10 K=1, 3
Pdot=P dot+Pnow(K)•PL AST(K) Compute inner product. 
Pmag=Pmag+Pnow(K)••2 Used to orthogonalize. 

10 Vamp=Vamp+ (Pnow(K)-PL AST(K))** 2 Get velocity energy. 

c .... Get orthogonal direction UROT. 
Erot=O. 

20 
c 

00 20 K=1,3 
UROT(K)=Pdot•Pnow(K)- Pmag•PL AST(K) 
Erot=Erot+UROT(K)**2 

C • • • . Put amplitude and direction together. 

c 

V norm=O. 
I F(Erot.GT.O.)Vnorm=SQRT(Vamp/Erot) 
DO 30 K=1,3 
UROT(K) =Vnorm•UROT(K) 

30 P L AST(K)=Pnow(K) 

END 

Orthogonalize. 
Used to normalize. 

Default. 
Get normalization.

Do normalization. 
Save: Pnow ==> PL AST. 

Fig. 2- 4. FORTRAN listing of subroutine used to compute rotational
velociti es caused by changing attitude angles. 

�-
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3. GEOMETRY OF RELATIVE-WIND COMPUTATION

Recall that the relative wind U (t) at a point 1- (aircraft coordinates) is r 
the parcel motion relative to the aircraft frame. With in-situ measurement, -t 
is a point on (or near) the aircraft, and the relative wind is the motion of 

the airstream in the immediate vicinity of the aircraft; with remote 

measurement, say from a Doppler radar or lidar, 1- is some distance away. 
Although measurement techniques vary, there is much overlap in the equations 

and analysis. 

The scheme of interest here is one in which the amplitude and direction 

are measured independently. The amplitude IIU (t)ll is called true airspeed and
r 

will be denoted T; the vector direction is i =?l !IIU II and satisfies r r r 
U (t)=T(t)i (t). The standard way to measure T is indirect; it is inferred r r 
from dynamic pressure using Bernoulli's equation for an ideal gas (derived 

latter in Sec. 5). Direct measurement of T can be achieved with Doppler lidar;

as a direct measurement there is no theoretical limitation on accuracy. 

The standard way of obtaining the direction i is with flow-angle sensorsr 
that measure the pressure gradient field. Although flow-angle measurement is 

also model dependent, it is more direct than using Bernoulli's equation. In 

any case, two angles are required to resolve direction: the attack angle a and

the slip angle p; both are measured in aircraft coordinates as illustrated in
Fig. 3-1. 

Fig. 3-1. Aircraft attack angle a, slip angle p, and aircraft coordinate axes
i, -i, and /;. used to compute relative wind U . r r .
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3. Geometry of Relative-Wind Computation

In straight and level flight, the attack angle is measured in the same 
vertical plane as the pitch angle. Untler normal flight conditions and with no 
ambient wind, pitch and attack are nearly the same; in particular, they have 
the same sign. 

To understand slip, we need the track angle {which is the angle (measured
clockwise in the horizontal) between geodetic north and the direction of 
horizontal aircraft velocity UH=(U0, V0, 0) as shown in Fig. 3-2; more
precisely, '=tan-1(U0/V0). The polar form Uu

=Uuii,: of horizontal velocity is
also useful where UH =11 Uuii=(U�+V�1/2 is the horizontal groundspeed, and ic:;
is the track direction ic:; =UiUu =sin{iE+cos{iN. 

For present purposes, track is needed to describe the drift angle d which
is computed as the difference between track and heading d=,-lfl. Note that 
under normal flight conditions and with no ambient wind, drift and slip are 
nearly the same; in particular they also have the same sign. 

Now suppose that ambient wind is changing and/or the aircraft is in a 
maneuver. Then the attack and slip will depart from the pitch and drift. This 
is due to such things as aircraft inertia and related flight characteristics. 
For example, when an aircraft is "shocked", say with a turbulent updraft, the 
effect on the flow angles is immediate; however it takes some time for other 
parameters to adjust. 

Fig. 3-2. Geometrical relationship of aircraft heading angle If/, slip angle P,
drift angled, and track angle {to horizontal aircraft velocity (groundspeed) 
U , and relative wind.H . 
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3. Geometry of Relative-Wind Computation

In more detail, attack angle a is the angle between the fuselage direction 

e and the projection of the relative wind onto the ?A, plane. The slip angle p 
is the angle between e and the projection of the relative wind onto the ij 
plane. If we expand the the relative-wind vector fl in terms of its vectorr 
components: 

(3 .1) u =OJt e+r -i+rN 1:-,r r rr r 
the attack and slip angles must satisfy: 

(3 .2) 

Note that sign conventions for a and P are implicit in these equations .  

Consider an aircraft to flying nose up with (small) positive pitch in a quiet 

atmosphere; the relative wind will be observed as coming primarily from the 

front ( OJt <0) and slightly from below ( tH <0) , and (3 .2) requires attack a to ber r 
positive. T)tus , as stated above, attack and pitch generally have the same

sign. 

Now,  because 6Jt < 0, the vector ?l I dlt =( dJt I t1lt , r I dlt , rJf I OJt ) hasr r r r r r  r r r 
direction opposite to fl ; thus, normalization and a change of sign gives ther 
direction of . the relative wind 

(3.3) e r =-(e + tanPj + tant:u�)/D

I 
2 2 ' 

where D = 1+tan P+tan a 

Note that D is simply the normalization required for a unit vector.

Doppler We next consider the case where true airspeed is (implicitly)

measured using back scatter from a Doppler radar or lidar. To flx ideas,

suppose that a CW lidar with a fued beam is focused a few meters in front of 

the aircraft . Such a sensor can only measure the radial velocity component 

(i.e . , velocity in the direction of the transmission beam). In other words, if 

the beam direction is e (aircraft coordinates), then the measured DopplerD 
velocity r is the projection of the relative wind onto ; ; thus, r =fl .; . D D D r D 
If, in addition, we know e from flow-angle sensors, then the equationr 
obtained from the dot product of the relative wind ?I =re with e can ber r D 
solved for true airspeed r=?l r •e0 I er •e0. Thus, true airspeed can be computed

from the Doppler velocity � as
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(3 .4) 

3. Geometry of Relative-Wind Computation

-r = r l(i •i ) j D r D 

Note, that although i is a fiXed direction, both r and i vary with time t .  D D r 
Motion Compensation So far, we have been working with the tacit

assumption that the true airspeed t" and the direction i are both measured inr 
the same place, from a single sensor. We now consider the situation where this 

is not the case. To fix ideas , suppose that true airspeed is measured from a 

boom mounted on the left wing tip at position -t. (relative to the INS). Alsow 
suppose that the vector direction is measured near the nose of the aircraft at 

position -t. • To help visualize the problem, note that in a tum, true airspeed 
n 

measured at the wing tip and at the nose are not the same. Consequently, the 

true airspeed must be adjusted before it can be combined with the vector 

direction. Because spurious or unwanted motion is the source of the problem, 

this adjustment is an example of what is generally referred to as motion 

compensation. 

Recall that in the wind equation (2.9), the incremental velocity AU 

(computed in geodetic coordinates) is the velocity adjustment for differences 

in sensor location; computational formulas were given in (2.11) and (2.13). 

These same incremental velocities will now be used to adjust for lack of 

spatial contiguity in the true airspeed and direction measurements. To begin, 

suppose that �wU is the incremental velocity of the position -t.w on the left

wing tip and � U is the incremental velocity of the position -t. near the nose. 
n n 

Then � U=� U-� U is the velocity of position -t. relative to position -t. • To wn w n w n 
use this correction, the direction vector ir n measured at -t.n must be

' 

transformed to the geodetic frame i =Gi where G is the transformation r,n r,n
(2.6); because G preserves lengths ,  i is also a direction vector. Supposer,n 
next that t" is the measured true airspeed at -t. and f is the (unknown) truew w n 
airspeed at -t. • Then t" =IIU II is the amplitude of the relative wind at -t. ,

n w r,w w 
and U =f i is the relative wind at -t. • Finally, an equation relating

r,n n r,n n 
these quantities can be derived from the wind equation (2.9). To do this , we 

model the ambient wind u measured on the wing tip and on the nose as being the 

same; thus, 

(3 .5) 

u =U +U +� U =U +U +A U => U -U +(� U-L1 U) =00 r,w w 0 r,n n r,w r,n w n 

=> U = U -LI U
r,w r,n wn 

where, as above, � U=� U-� U. This equation relates the relative wind at any wn w n 
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3. ·Geometry of Relative-Wind Computation

two points .t.w and .t.0 on (or near) the aircraft; the wing tip and nose have

been used as an aid to exposition. A true airspeed equation then results by 

taking am.pijtudes: 

(3.6) -r2 = IIU 112 = uu -L1 Ull2 = llii -L1 Ull2 w r,w r,n wn r,n wn 

=(i i -L1 U)•(i i -L1 U)n r ,n wn n r ,n wn 

=i2 -21 (i •L1 U) +IIL1 Ull2 n n r,n wn wn 

which is a quadratic equation in i with exact solutions ;  all othern 
quantities: T , i , and L1 U are known. A good approximation isw r,n wn 

(3.7) T = T +(i • L1  U) n w r,n wn 

which will be further analyzed in Sec. 10. As a check on signs, note that in 

a right turn the left wing tip will be traveling faster than the nose 

T >T '. w n 
and L1 U will be in the direction of aircraft motion U0• Because i is wn r� 
opposite to U0 , it follows that (i •L1 U)<O and (3.7) is consistent. In anyr,n wn 
case, the relative wind at the nose can now be computed as U =i i and r,n n r,n 
the ambient wind (at .t. ) is obtained from the wind equation (2.9) as u(t) n 
=U0(t)+U (t)+L1 u.r,n n 

Doppler Measurement The last level of complexity is to replace the

true-airspeed sensor with a Doppler sensor . If , as above, the sensor is 

located on the wing tip, then the true-airspeed computation -r =1" 1(2 •i)w D r,w D 
also requires the relative-wind direction 2 on the wing tip. Again, wer,w 
convert to geodetic coordinates .  Because G is orthogonal, it preserves dot

products and so -r = r /(l •i ) where i =G 2 and i =Gi . Withw D r,w D r,w r,w D D 
notation as above, measured parameters on the wing tip and on the nose still 

satisfy (3 .5) and substitution gives

(3.8) 
A A A • 

1" i /( i •i ) = T I - L1 UD r ,w r ,w D n r ,n wn 

The unknowns ,  i and T , (together) comprise three degrees of freedom. As ar,w n 
vector equation, (3.8) consists of three equations,  and the (nonlinear)

problem of computing both i and T , although nonlinear, is well posed.r,w n 
While a closed-form solution appears unlikely, a convergent sequence of 

approximations can be obtained with iterative "improvement" of i and i . In r,w n 

L 
r 
l 
! 
f 

� ! 
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3. Geometry of Relative-Wind Computation

any case, putting a Doppler sensor on the wing tip is not very realistic. In 

practice, such a sensor would be put closer to the flow-angle sensor, in which 

case (3 . 8) might not even ·be needed.

A question of some relevance is "Do sensors at different locations really

measure the same thing?" The problem here is one of scale sizes. For a nominal

airspeed of lOOmis and data acquired at 1 Hz (one sample per second), a 

separation between sensors up to about 20m could be expected to give

meaningful results .  That is, provided features smaller that lOOm are filtered 

out in the data acquisition. In effect, this means that data must be acquired

at rates significantly higher than 1Hz and then prefiltered or averaged to 

the 1-Hz rate. Increasing the sample rate changes these numbers 

proportionally; for 10Hz data, sensors should not be separated by more than

about 2m.  To achieve high data rates with a CW lidar focused, say, 10m in

front of the aircraft, it is possible to simply delay or phase shift acquired 

data by 0.1 s before combining with directional data near the aircraft nose.

In this situation, the relevant separation distance is the distance between 

the air parcel illuminated by the lidar and the air parcel that will, in fact,

impact the flow-angle sensors 0.1 s later. 
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4. BASIC ATMOSPHERIC THERMODYNAMICS

Because of the elusive nature of thermodynamic reasoning, we here review 

basic concepts and ideas relevant to airborne science. Much of the following 

material is based on Dutton (1976) . It is here useful to use the units 

decagrams (da g) for density and hecto-Pascals (hPa) for pressures (1 hPa = 1

millibar) . A natural place to begin is with the ideal gas law 
(Boyle's-Charles'  law) which states that pressure p (hPa) is proportional to 

density p (da g/m3
) times temperature T (°K):

(4.1) 

where R (I /kg-mole-°K) is the, material dependent, gas constant. It is related

to the universal gas constant R
* 

=8.314 x 103 I/CX by the equation R=R
*

/p 

where J.l (kg-mole) is the molar weight (kg x molecular weight) . The odd units 

da g/m3 for density is an artifact of using millibars (hPa) for pressure. For

example, the molecular weight of dry air is 28.968 which gives 287.04 

I/ (kg-mole-'X) for the gas constant R .  Thus on a "standard" day, p=1013 .3h Pa

at sea level and T=288.16 °K (�70°F) , density p is computed from (4.1) with

stated units as 1.225kg/m3•

Another useful form of the gas law is pa=RT where the ratio a=llp is 

called the specific volume; it is the (average) volume per unit mass . In
general, " specific" means that quantities are normalized by molar weight J.l. 

The first law of thermodynamics states that heat is a form of energy and

that specific energy e, heat q, and mechanical work w are differentially

related as 

(4.2) de =dq-dw I 
Here, de is a total differential (as a function of the state variables p, p
and T); however, dq and dw generally are not. For a gas , work is realized

through changes in volume; more accurately, dw=pda. 

Thermodynamics can be confusing because variables are defmed 

qualitatively, making theoretical distinction more difficult. For example, 

"What is the fundamental difference between temperature and heat?" In 
classical thermodynamics ,  temperature is elusive, defined implicitly through 

more sensible variables. CUriously, this situation is somewhat reversed in the 

kinetic theory of gases . Here, temperature is related to particle motion by 

�mu2-�kT where m is the molecular weight of a particle moving with speed u, 

f 

� 
f 
' 

- t 
T 
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4. Basic Atmospheric Thermodynamics

and k is Boltzmann's universal constant, 1.380x 10-23J/(molecule.:.°K). Simply 
stated, this equation says that temperature is proportional to translational
kinetic energy. 

This result can be interpreted in terms of the ideal gas law (4.1). 
According to kinetic theory, pressure is . p -� [�p<u2>] -�p<u2> where
brackets <•> denote the ensemble mean or average. Note that the included term
�p<u2> is kinetic energy per unit volume which just happens to have units of
force per unit area. The division by 3 is the result of projecting what is 
generally a vector force in any of three directions onto the direction normal 
to a (hypothetical) surface, and the multiplication by 2 is to account for 
inelastic collisions with a (hypothetical) surface. In any case, substitution 
into (4.1) gives <u2>=3RT whic� is the same as imu2-;kT because R=klm.
Consequently, the ideal gas law (4.1) is a statement about translational
kinetic energy. 

So what is heat? Unlike temperature, heat only has meaning as a global or 
statistical quantity. It has the properties of a temperature density. A volume 
of water vapor has a higher capacity for heat than an equal volume of dry air; 
more energy in the form of heat is required to raise the temperature. The 
thermodynamic way of saying this is through change; two dependencies are 

(4.-3) dq=cvdT 
dq=cPdT 

( gas at constant volume) 

{ gas at constant pressure) 

where cv (Jikg-°K) and cP (J/kg-°K) are material "constants" called the
specific beat capacities at constant volume and pressure respectively.
However, these relations are only a part of the story. The important 
relationship between heat and temperature is the heat equation 

(4.4) dq=Tds I 
where s is (specific) entropy. Entropy is generally viewed as a measure of
statistical disorder. The second Ia w of thermodynamics says that, in a closed
system, entropy can only increase with time. As a consequence, order cannot be 
restored from disorder and time cannot be reversed. In particular, heat can 
only flow from hot regions to cold ones. An important source of entropy is 
diffusion. Diffusion in a gas is, basically, the result of the chaotic motion 
of molecules (at microscopic scales); it is a mixing process that generally 
increases entropy and moves thermodynamic systems toward statis�ical 
equilibrium. Processes in which there is no exchange of heat have constant 

59



4. Basic Atmospheric Thermodynamics

entropy (ds=o) and are called adiabatic. The earth's boundary layer, being

well mixed, is often modeled in this way. 

Without additional structure,  ideal gases are not very useful. The fmal 

hypothesis that makes ideal-gas theory work is that internal energy e depends 
only on temperature. In this case, (I) c and c also depend only onv p 
temperature, (II) R=cP -cv, and (III) de=cv

dT. To help understand the energy

relation (III) ,  we return to kinetic theory. Recall that temperature is 

proportional to the (mean) kinetic energy of translation. But molecules can 

also have internal kinetic energy due to rotation and vibration. Related 

degrees of freedom are, however, subject to quantum effects and only become 

available in discrete units as energy is increased. Nonetheless, when

available, the principle of equipartition of energy states that kinetic energy

must be equally balanced among all such degrees of freedom. In this context, 

the energy equation de=c
v

dT begins to take on meaning; it is a statement as 

to how translational kinetic energy is related to total kinetic energy. In 
particular, cv must reflect the availability of energy states with increasing

temperature. 

Fortunately, for 

simplifies. At typical 

application to atmospheric science, the situation 

atmospheric temperatures, vibration of air molecules 

can be neglected and there is only one excitation state available for rotation 

(the ground state). Thus, available degrees of freedom I depend solely on 

molecular geometry; there are three translational degrees of freedom plus 

rotational degrees of freedom. Monatomic gases (He, Ne, A, ... ) ,  are symmetric

and have no rotational degrees of freedom, so 1-3 ;  diatomic gases 

(H2, N2, 02, ... ), because of their dumbbell shape, have two rotational

degrees of freedom, so f 5; gases with no special symmetry have three 

rotational degrees of freedom, so 1-6. Now, because specific quantities are 

normalized by molar weight, �<u
2> is the specific translational kinetic energy

and represents three degrees of freedom. Because energy is equally 

partitioned, a gas with I degrees of freedom then has specific energy 

e =l [.!<u
2>] =[RT 

3 2 2 

However, for an ideal gas , cv =deldT and cP =R+cv; thus ,

(4.5) c =[R and c = [1+l] Rv 2 p 2 
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4. Basic Atmospheric Thermodynamics

We arrive at the important conclusion that at atmospheric temperatures, cv and
cP are related to the gas constant R by molecular geometry.

With this background, we return to entropy and adiabatic gases. Of 
importance to the theory of ideal gases is that ds, as (implicitly) defmed by 
the he_at equation (4.4), is a total differential of the state parameters p, p,
and T. Indeed, from the first law (4.2) dh=de+dw=cvdT+pda and
da=d(llp)=-dplp

2
• Substitution, together with an application of the ideal gas

law (4.1), gives the stated result 

ds =dq/T =c (dT/1) -(plp1)(dplp) =d[ c ln(1)-Rln(p)] .v v . 
In turn, this equation can

. 
be integrated (with constant of integration s0): 

s-s0 =cvlog(1)-R log(p) =cPlog [(rc/cP) (P-R/cP)] .

The term in brackets is called the potential temperature (} and can be further
simplified with ( 4.1) 

(4.6) 

where p0 is a reference pressure (usually 1000 hPa), obtained by redefming 
the integration constant s0. Also, y=c/cv is Poisson's constant; note that
(y-1)/y=Ric . Kinetic theory provides another representation of Poisson's p 
constant, y=(/+2)/f where f is the number of degrees. of freedom used in (4.5). 
Because a dry atmosphere consists primarily of diatomic molecules, the value 
y=7/5=1.4 can be used; by contrast, water vapor is polyatomic and 
y=S/6=1.333. Needless to say, but something to remember, is that Poisson's 
constant is "more constant" than the material constants: cv, cP, and R. In
this sense, physical equations that depend only on y are more fundamental. 

Recall that in an adiabatic process there is no exchange of heat or 
entropy. Also, potential temperature satisfies s=s0+cPlog(0), and so
ds=cPd(}/(}; consequently, ds=O ==> d(}=O and shows that in an adiabatic process,
potential temperature must be constant. In addition, the adiabatic condition 
can be put into differential form 

(4.7) dp =pcPdT =yRTdp

which are equations useful for fluid dynamics. In passing, it is worth 
observing that c

2
=yRT is the speed of sound squared. Because waves do not, 

generally, alter the propagation media, there is little change in entropy, and 
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4. Basic Atmospheric Thermodynamics

sound propagation can be modeled as a pressure-density disturbance. 
The final topic to be reviewed here is mixing theory. The atmosphere

consists of many different kinds of gases and we need to know how to deduce 
properties of this mixture from its constituents. This task simplifies because 
atmospheric molecules can be divided into two basic groups, the diatomic 
molecules of dry air and the polyatomic molecules of water vapor. Thus, our 
exposition will focus on mixing dry air with water vapor to produce moist air. 

We begin with Dalton's law which states that the total pressure of a gas
is the sum of the partial pressures of its constituents and each constituent 
obeys its equation of state as if the others were not present 

(4.8) p d =p dRdTd and e =pvRvTv .

Here, e is the standard notation for vapor pressure (not to be confused with 
specific energy above), and subscripts " d " and "v" stand for dry and vapor 
respectively. 

Next, equipartition of energy applies to gas mixtures and, consequently, 
statistical equilibrium requires that different species of gas molecules wili,
as a group, have the same average temperature. As a consequence Td=Tv and
subscripts on temperature can, and should, be omitted. According to Dalton's 
law, the moist-air pressure p then is s 

(4.9) p8 -pd+e =(pdRd+pvR)T

To complete this development, we need to know how densities mix. The 
answer is provided by Avogadro's law (1811) which states that under the same
external conditions of pressure and temperature� all gas molecules occupy the 
same space. To say this another way, "Under standard conditions, a mole of gas 
always contains the same number of molecules. " This number is called 
Avogadro's number N0; it is 6.023 x 1026molecules/kg-mole and relates the
universal gas constant R* with Boltzmann's constant k, R* =N0k. For present
application, the important observation is that moist-air density p s is the sum
of the partial densities p =pd+p . The moist-air gas constant R is now easilys v s 
deduced from (4.9) as 

(4.10) R =(pdRd+p R )l(pd+p )s v v v 

Likewise, the specific heats cP and cv satisfy the same mixing rule. At this
point, it is convenient to introduce the mixing ratio Tf=P/Pd; from (4.8), it
can be expressed 1(=(RiRv)[el(p s -e)] which is useful because p s and e are
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4. Basic Atmospheric ThermodyMmics 

available from measurement. With this notation, the moist-air gas constants 
are, fmally, computed as 

(4.11) R5 =(Rd+l'fRv)l(t+tt)

c =(c d+1fc )/(1+1f) P,s P, P,V 
c =(c d+1fc )/(1+1f) v,s- v, v,v 

In closing, we give the following "standard" values, in units of (J/kg-°K). 

(4.12) c d=1004.64, P, => Rd=287 .04 

c =1846.00, cv =1384.04 => Rv=461.96P,V ,v 
=Y 11 =0.62135·e/(p5-e) 

Equations (4.11) together with the constants (4.12) are used for P-3 data 
processing. 
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S. THEORY OF TRUE-AIRSPEED :MEASUREMENT 
To apply thermodynamics to fluids , change must proceed in an orderly 

fashion, slow enough to keep statistical equilibrium locally intact. This is 

not as restrictive as it might seem because the numbers are enormous. A cubic

centimeter of air contains more than 1019 molecules traveling with a mean

velocity in
! 

excess of the speed of sound (-350m/s) . However, because 

interactions are on the order of 109 collisions per second, molecular drift or

diffusion associated with Brownian motion is only several meters per second. 

Fluid dynamics uses the model of a continuum; required derivatives always 

exist as continuous functions.  If x(t )=(x(t) ,y(t) ,z(t) ) is the position of a

particle as a function of time, then as time varies, the set of related 

positions is a Lagrangian trajectory. The time derivative of position is the 

particle velocity u(t)=x(t) . A variable, say density p,  that "goes with the

flow" is parameterized p(x(t) ,t) and the total time derivative is computed

from the chain rule: 

(5.1) 

dp =� + ap dx + ap tjy_ +  ap dz
(If . Of Oilfi oy7fl Oiat 

=ap + ap u +ap v +ap w
Of Ox Oy Oi 

=� + u•Vp

where u • V p is the dot product of u=(u, v, w) with the gradient V p :

Vp =ap i + ap j + ap k Ox Oy Oi .

Time derivatives of this kind are called material derivatives and are denoted

D/Dt; thus, Dp/Dt=aptat +u•V p .  
Of central importance i s  the momentum equation which i s  a modified version

of Newton's  second law (f=ma) . The most informative statement has integral 

form: 

(5.2) � fp (x ,t ) u(x ,t) dv = - fp ( x , t ) n(x ) da
xe V( t ) xe a V( t) 

The volume integral on the left has units of momentum; consequently, the time 

derivative is a force. Here, the volume V(t) can change in both size and shape

as it moves with the flow. The integral on the right is a surface integral 
over the (smooth) boundary aV(t) of V(t ) ;  n(x ) is the outward unit normal at

xeaV(t) .  Consequently, (5 .2) says that momentum change in V(t) is opposed to

� 
l 
r i 
r.­
� 
• r 
l [ 
l 
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5. Theory of True-Airspeed Measurement

the net, outward pressure force on the surface ()V(t) ; the negative sign is 

· required because motion is towards regions of low pressure. In view of the 

kinematic theory of gases , modeling pressure as a normal force is very 

reasonable. However, in a real fluid or gas there are other (tangential) 

forces due to friction, and can be modeled into the surface integral (as 

stresses) . For present purposes , friction will be neglected. 

Although informative, (5 .2) is not very useful for computation, and must 

be converted to a differential equation. This is a purely mathematical 

procedure requiring the transport theorem and the divergence theorem. The end 

result is the Euler equation: 

(5 .3) 

where gravitational acceleration g=9. 80665 m/s2 has been added to the force

balance. Again, the derivative on the left is the material derivative. Fluids 

that satisfy (5 .3) are called in viscid . .  
To derive Bernoulli's equation, first apply the dot product of velocity u 

to (5 .3) 

P.u·E� = -u •Vp +pu•g 

which is mathematically equivalent to 

(5 .4) 

where u2=u•u.  

D 1 2 1M 1* 
�< -u + gz) = -- +-v� 2 p t p t 

To continue, we need the adiabatic condition. To help understand this 

model, picture an ideal aircraft (say a glider) going through the air so 

smoothly that after the flow has been parted, it comes together again as if 

nothing had happened. In particular, there has been no change in entropy, and 

flow close to the aircraft must be adiabatic. Also, to reduce friction, 

aircraft are designed to be as entropy free as possible. 

When applied to fluids, the condition of "no entropy change" ds=O can be

modified to "no entropy change for a parcel" Ds/Dt=O. In this case, flow is

called isentropic; thus , isentropic flow has adiabatic parcels and the

adiabatic condition (4.7) becomes: 

1 Dp DT 
piJt = cP 1Jt . 
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5. Theory of True-Airspeed Measurement

Substitution into (5 .4) gives an intermediate equation, useful for analysis:

(5.5) 

When the right side is zero, oplot=o, this equation can be integrated to get 

Bernoulli's equation for isentropic flow: 

(5.6) �u2 + cPT+ gz = constant along flow lines 

which says that specific energy will be conserved along flow lines, provided 

entropy does not change and pressure is stationary. 

At this point, we need to distinguish between ambient or static values p , s 

p s' and T
8 

existing in a hypothetical, quiescent atmosphere from total ones 

Pt' Pt' and Tt observed in the aircraft frame; the difference is due to

aircraft motion and ambient wind. The· pressures most often measured are the 

static pressure p and the dynamic pressure q =pt-p (" c" is for s c s 

compressible). This is advantageous because dynamic pressure can be obtained

with better precision when measured directly as a differential pressure. 

Nonetheless, P
t 

is usually more accurate than either p or q . This is becauses c 
measurement of p is more difficult, requiring special flow conditions;s 
related errors get passed on to q , but cancel in the computation of Pt c . 

True airspeed can now be computed from Bernoulli's equation by balancing 

energies: 

(5.7) 

and solving for -r: 

(5.8) -r = / 2c (Tt
-T )' .p s 

But, Bernoulli's equation is a statement about change along flow lines, while 

(5.8) is a statement about change resulting from aircraft motion. So what is 

going on? One explanation is to consider the flow as being generated 

artificially, as in a wind tunnel. In this case, flow around the aircraft has

an unambiguous interpretation, and the balance (5.7) can be viewed as 

conservation of (specific) energy. 

Another explanation is provided by kinetic theory. Here� the increase in 
pressure Jp due to organized motion is Jp-�pu2

• If, in addition, change is

�-
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5. Theory of True-Airspeed Measurement

adiabatic then Jp=pcPJT, and �u2=cPJT . Finally, setting u='t' and JT=Tt-T8, we

arrive at the same equation (5.8). Thus, adiabatic heating can be interpreted 

as a "thermodynamic" property of organized motion. Should this be exactly

true, the requirement of stationary pressure in (5.5) is superfluous. 

Next, T8 is computed from potential temperature (4. 6) which is constant

under adiabatic conditions: 

=> 

T (p /p /Y-1) /y = T (p / p ) (y-1) /y
s 0 s t 0 t 

T = T (p /p ) (y-1) /y
s t s t . 

=> T -T = P T t s .., t

where P
.., 

= 1-(p 
8/pt) (y-1) /y and substitution into (5.8) gives 

(5.9) I � = hcpPyTt ' I· 
This calculation is often organized to include the Mach number M defmed 

(5. 10) 

(5. 11) 

k? = 2- [(p /p ) (y-1) /y_t ] y-1 t s 

=> I � =I yRT � M ·I 
which is the same calculation, but in different form. Note that the Mach

number is the ratio of true airspeed to the speed of sound c = (yRT )112• 
s s 

Although this is the more standard computation, we prefer (5.9) because it is 

better suited to both approximation (Sec. 10) and calibration (Sec. 7). 

A useful estimate of (5. 11) is the indicated airspeed 't'1 obtained by 

modeling the speed of sound; specifically, with y=7/5 for dry air and T =0°C
s 

(273.16°K), the speed of sound is 331.32m/s. However, because 't'1 is used

mostly as an operational parameter, it is here expressed in knots (1 m/s

=1.94 kt); 

(5. 12) 't' = 1477 [(p lp )217-1]112 kt
I t s 

We remark that this estimate could be improved with a constant lapse rate

model T
8 
=T0-rz (see Sec. 10).

Limitations? In closing this topic, we review possible limitations of the

true-airspeed measurement. First, there are some difficulties with the 
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5. Theory of True-Airspeed Measurement

inference model. Bernoulli's equation (5 .6) requires that (static) pressure be 

stationary and possible effects of a changing pressure field are largely 

unknown. Moreover, possible effects due to friction and/or turbulence are 

difficult to even address. Second, there are practical difficulties in having

to combine different types of measurements. The calculation requires three 

pressures p , q , and p along with total· temperature Tt. Each of these
s c v 

measurements is difficult, requiring in-flight calibration; related analysis 

is nonlinear and elusive. In addition, such things as dust and water droplets

are known to cause problems, especially with temperature. 
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6. THEORY OF FLOW-ANGLE MEASUREMENT

We now apply preceding results to flow-angle measurement. The basic idea 

is to measure differential pressures on the surface of a sphere; preceding 

theory can then be used to infer incidence angles of the relative wind. In the 

sequel, three different methods will be analyzed; two are supported by 

Rosemount, the other, developed by Brown, et.al. [1983], is used at the 

National Center for Atmospheric Research (NCAR). In particular, we compute 

exact, closed-form solutions for the three cases; again, solutions are for 

potential flow past a sphere. 

A good place to begin is with the 858 flow-angle probe manufactured by

Rosemount. These probes are about 5" long and 0.5" in diameter, made of hard 

metal. There are two versions, model 858AJ for mounting on a nose boom, and 

model 858Y for mounting on the fuselage. The essential feature is that the 

nose of the probe is spherically shaped. When viewed from the front, there are 

five holes or ports, a center port and four outside ones; they are aligned 

(relative to aircraft coordinates j, A) as shown:

• p4

• 
P1• 

I' 

�ro 
• p3

• p2
where the pk are the (total) pressures at the respective ports. In turn,

differential pressures c\P are defined

(6.1) t5kf=p0-pk; k=l,2,3,4.

Pressure differences of this kind can be measured directly, using differential 

transducers. 

This geometry also applies to radome sensors which are, basically, scaled 

up versions of the 858 probe. The idea is to drill similar holes in the nose 

radome to function as pressure ports; everything else is the same. This, of 

course, assumes that the front part of the radome is spherically shaped. An 

obvious question is, "Why go to the trouble?" Recall that with the 858 probe 

there are two places to mount it, on a boom and on the fuselage. However, 

booms tend to resonate and bob around; additionally, when mounted near the 
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6. Theory of Flow-Angle Measurement

nose, they can interfere with other instrumentation such as radar, and when

mounted on a wing, data must be corrected for spatial displacement and 

extraneous motions. 

If, on the other hand, the 858 probe is mounted on the fuselage, there is

flow distortion to contend with. To help visualize the problem, think of flow 

distortion ·over a wing. The wing parts the air; airfoil causes the flow to 

move faster across the top, pressure is reduced, and lift results.
· 

This basic 

flow behavior is happening everywhere along the skin of the aircraft. Flow

distortion of any kind, for any reason, translates to changes in the pressure 

field, and it is such change that flow-angle sensors monitor. Now, flow 

distortion along the fuselage is largely unintuitive (stagnation points 

provide a nice example). By contrast, radomes occupy a position of (flow) 

symmetry and meet the air first; also, as was seen in the previous section,

flow past a
' 

"spherically-shaped" nose is largely predictable. As an added 

bonus, there are no metal parts to interfere with nose radars. In short, the

radome sensor converts the liability of flow distortion into ·an asset. 

High-Resolution Method Rosemount gives two basic methods for computing 

attack and slip. These methods can be characterized as having high and low 

resolution (more about this later). In the high-resolution method, attack a 
and slip P are estimated as 

(6.2a) 

(6. 2b) 

where K1 and L1 are calibration constants called sensitivity coefficients.

Implicitly, these quotients indicate two slightly different procedures of data 

acquisition. The left quotients (Rosemount's), use differential pressures 

(p1-p3), (p2-p4), (p0-p2>, and (p0-p1); the right ones use the J.,p. 
Nonetheless, these procedures are mathematically equivalent. 

Low-Resolution Method By contrast, in the low-resolution method, another 

(6.3a) 

70



6. Theory of Flow-Angle Measurement

(6.3b) fJ = p 1-p3 = J3p-t51p
L2qc L2qc 

The advantage here is that qc is often measured anyway (for true airspeed),

and less hardware is required. However, as we shall see, · K2 " and £2 are

generally not the same as K1 and £1•
NCAR Method This scheme is somewhere in between the high-resolution 

method of (6.2) and the low-resolution method of (6.3) .  It is most easily

visualized as being the low-resolution method, but with q replaced withc 
(po-ps) 
(6.4a) p2-p4 J4 p -t52 p a = -

K3 (p0-ps) Kipo-Ps)

P = p1-p3 J3 p -J1 p-(6.4b) 

L3 (po-Ps) Lipo-ps) 
The pressure p0 still comes from the probe; but now, the static pressure p8 is

imported from another source. For good precision, the difference (p 0 -p 8) must

still be measured directly as a differential pressure. In principle, the 

sensitivity coefficients K3 and £3 should agree with K2 and L�.
We remark that for application to the P-3's, this method has the 

limitation of requiring long pressure lines. This is because (p 0 -p 8) is best

. measured as a differential pressure, and static pressure along the fuselage is 

measured aft of the wing, some 30 m behind the radome. Because the speed of 

sound is about 340 m/s, static pressure is delayed in the pressure lines by 

about 0 . 1 s .  Additionally, for a nominal airspeed of lOOnvs, it takes about

0 .3  s for an air parcel to "move" from the nose to the static port. Even for

slow, 1Hz data this is unacceptable.

Geometric Preliminaries We begin our investigation by setting up needed 

geometry. Positions are specified with unit direction vectors nk that point

outward from the center of the sphere as illustrated in Fig. 6-L (Again, 

script· is used to emphasize aircraft coordinates .)  Equally important, are the 

subtended angles between ports, also measured from the center of the sphere. 

It is useful to think of these angles as design parameters and to treat the 

vertical and horizontal cases. independently. Thus, the two (equal) angles

subtending adjacent vertical ports will be denoted 8; they are related to the·

direction vectors as follows :  
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6. Theory of Flow-Angle Measurement

Fig. 6-1. Geometry of flow angle measurement on an aircraft nose radome. The 
angle between adjacent ports is 8; R is the radius of the spherical radome. 
Normals �0• �2• �4 point outward from their respective radome pressure ports. 

(6.5) �0·n2 =n0·�4 =cos8; �2·n4 =cos28; 1�2·n4=2sin28. 

Similarly, the two horizontal angles will be denoted </J and satisfy

(6.6) �0 •n1 =n0 •n3 =cos <IJ; n1·�3 =cos2�; 1-n1•n3 =2sin2</J • 
Next, radome geometry must be linked to aircraft coordinates i, j, and 1:. 

By design, flow-angle probes are aligned with these coordinates, and they 

should · be in precise agreement with navigation instrumentation. But, then

there must be constants �e1 and 1C � so that

<6·7) i =�o; I =�e/�t-�3); 1: =Kin2-n4)

where an ·easy calculation shows 

1e. = l/(2sinf/J) and TC� = l/(2sin8) .
. , 

Note that Crawford and Dobosy [1992] align their flow angle probe at zero

angle of attack, and correct for how much the angle of attack is different 

from the navigation instrumentation. This has the advantage of avoiding 

possible non-Iinearities associated with flying at large angles of attack. 

Differential Pressures With geometry established, we can now relate 

differential pressures to flow angles. Recall that these angles are determined 

by the direction 6 of the relative wind. To avoid proliferating negative
r 

signs, we here change to the direction vector 1=-i that points outward,
r 

rt r =--rl. In reference to (3.3), this direction can be written
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6. Theory of Flow-Angle Measurement

(6.8) # =Ai+Bj+ ck-
where: A =  l iD; B = tanp ID; C=tana /D; andD = /1 +tan 2P+tan2a 

·
. At this point we

need to know the pressure distribution over the surface of a sphere; but 

this is derived in (B.14) of Appendix B which can here be written

(6.9) 

where, as before, p is static pressure and n is the outward unit normal. Ins . 
passing, we remark that this equation is often given in trigonometric form. To 

do this , set # •n=cos )' where y is the angle between the wind direction and a

surface port measuring pressure p. Then (6.9), takes the form

(6.10) p =p8+q[t-�sin2y]
Of some importance is when the the term in brackets vanishes :  sin2y s =4/9 <=>

)' ::41.81°. In this case, measured pressure p at the surface is precisely the s 
static pressure p . However, this is getting ahead of the story.s 

For present purposes ,  the useful consequence of (6.9) is that the

differential pressures okp of (6.1) must satisfy

(6.11) okp=�q [(N•n0)2- (#•nk)2] ,
making it possible to compute the following four values: 

o1p = �q [A2-(Acos � +Bsin �)2] 
OLf = �q (A2-(Acos 8 + Csin8)2] 
O-JJ = �q [A2-(Acos � -B sin �)2] 
o � = �q [A2-(Acos 8  -Csin8)2]

Verification is simple vector arithmetic; for example, to compute o1p,
note that N•n0=A and evaluate N•n1 with (6.3) and (6.5)

#•n1 =(Ai +Bj + Ck)•n1 =A(i•n1) +B(j•n1)

=A(n0•n1) +Btc1(1-n1•n3)
=Acos� + B sin� . 

To continue, required sums and differences simplify to 

(6.12a) 

(6.12b) 

o�+ o#=� (A2-c2)sin2e ;

9 2 2 . 2 O-JJ+o1p= 2q(A -B ) stn � ;

o�-o#=�ACsin28

o-:�-o1p= �ABsin2�

F-

73



6. Theory of Flow-Angle Measurement

The basic use of these equations is to relate differential pressures to 

flow-angle parameters implicit in A, B, and C. 
Exact Solution of High-Resolution Method Curiously, the high-resolution 

method is the easiest to solve. The approach used here and below is 

superficially naive, "Compute the quotients of measured parameters and 

what happens. " In the present case: 

J4p-J2p A C  sin28 [ 2tana ] 1 tan 2 a 
-

(A 2 - c2)s i n 2e 
= 

1- tan2a tane 
= 

tane

J3p-J1p AB s in2 tP _ [ 2tanp ] 1 _ tan 2 P 

J�+J1p 
-

(A2 -B2)s i n  2 tP 
-

1- tan2P tantP 
-

tan tP · 

see 

At this point, we could simply solve for tan2a and tan2P; however, for

uniformity of presentation, we compute the solutions in terms of tana and

tanP. We organize this computation by defining (secondary) quantities F rx and 

F� as

(6.13) & 

Note, in particular, that F rx and F � only depend on measured pressures .

Substitution then yields quadratic equations in tan a and tanP

(1 - tan2a)F = tan a
2 (X (1 - tan P) F£3 = tanP .

Clearly, F rx and F 
f3 

are first-order estimates of the exact solutions : 

(6. 14) 
tan a = 2F rx I [ 1 +I 1 +4F: '] 
tanP = 2F

f3 
I [ 1 +I 1+4F� '] 

Exact Solution of Low-Resolution Method Here required equations follow 

directly from (6. 12) 

p2 -p 4 = �ACsin28 = -2
9 (tan a sin28)/D2

q 2 

p1-p3 9 . 9 2 -- = -ABsm2tP = -2 (tanP sin24>)/D q 2 

Now, we define (secondary) quantities G rx and G � as
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(6.15) G _ 2 [p2-p4] &
a - 9Sln 28 q 

which, after substitution, result in the following pair of equations : 

(1 + tan2a + tan2p) G = tan a
2 2 

a · (1 + tan a+ tan p) G
f3 

= tanP .

Note well that this is a coupled set of quadratic equations in tana and 

tanp. Fortunately, taking quotients gives G a tanfJ = G 
f3 

tan a and equations

decouple, yielding closed-form solutions :  

(6.16) 
tan a = 2Ga I [ 1 +I 1-4(G!+G�)

' ] 
tanp = 2Gf3 I [ 1 +I 1-4(G!+G�)

' ] 

Unlike the high-resolution case, these solutions are (weakly) coupled insofar

as the term G:+G� is common to both.

Exact Solution of NCAR Method The added complexity here is that the 

pressure difference p 0 -p s must also be computed. This is readily accomplished

with (6.9); indeed, l•n0 =A= liD, and so 

(6.17) p0-p8 = t£9(4'•n0)2-5] = t£9 -5D2]!D2

= q [1- � (tan2a+tan2p)] I D2 . 

Aside from this, the computation mimics the previous one: 

(6.18) 

P2-p 4 9 . 1 [ 5 2 2 ]_ = 2(tana sm28) 1- 4(tan a+tan p) 
PoPs 
P3-P1 9 . 1 [ 5 2 2 ]_ = 2(tanp sm2Q5) 1 - 4(tan a+tan p) 
PoPs 

and again a coupled pair of quadratics results: 

[1- � (tan2a+tan2P)] Ha = tana 
[1 - � (tan2a+tan2p)] Hf3 

= tanp . 
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Finally, taking quotients gives Hoctanp = H
f3

tana, and equations decouple to

yield closed-form solutions : 

(6. 19) 
tan a = 2H

rx / [ 1 +I 1 +5 (H:+H�)\] 
tanp = 2H

(3 l [ 1 +I 1 +5 (H!+H�)
'] 

Analysis of Sensitivity Coefficients In retrospect , we can now better 

understand the sensitivity coefficients in the inversion models (6.2) , (6.3), 

and (6.4) .  For present purposes, it simplifies things to use· the same vertical

and horizontal angles 8=€1> so that K =L • Now, in view of the exact solutions 
n n (6.14), (6. 1 6), and (6. 19), we see that all three models use the small-angle

approximation tanx :=x. This aside, K1 can be computed by

defining relations (6.2) with the first-order quantity F ; thus,fX 

(6.20) I -1K1 =n ( 45 tan 8) deg 

Similarly, the other coefficients can be shown to satisfy 

(6.2 1 )  

comparing the 

We observe in the first case that sensitivity is inversely proportional to 

port separation while, in the other two cases, sensitivity is directly 

proportional; note, in particular, that inverse sensitivity goes counter to 

intuition. Of special interest is the case where these two sets of 

coefficients agree; again the angle is the "optimal" one deduced from (6. 10) ,  

8=y8:.:41 . 8 1°; for this angle, K1=K2=K3= 0.0780535 deg-1.

According to Rosemount, the high-resolution method applied to the 858 

flow-angle sensor requires K1 =0.079 deg-1 which, in view of above discussion,

corresponds to a separation angle e of about 41 .5°. By contrast, Rosemount

gives K2=0.088 deg-1 for the low-resolution method which, to the author's

knowledge, has no theoretical justification. In any case, for Mach numbers 

less than about 0.5 , Rosemount gives "usable" ranges for these two methods as 

about ±45° for the high-resolution method and about ± 12° for the

low-resolution method. Although these ranges are far too optimistic for wind 

measurement, they do demonstrate practical differences .  

At this point, it  should be clear that the approximations (6.2), (6.3), 

and (6.4) are unnecessary insofar as exact solutions (6. 14) ,  (6. 16) ,  and 
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(6. 19) are available. An obvious question is, "Are the improvements 
significant to measurement?" The answer is, "Yes, but only marginally so. " For 
example, with tanP=0. 1, the net difference between the approximate and exact

A 
estimates of tanp is only about one percent; however tanP=0. 1  corresponds to 
an angle of P e 5 .  7° which, in the context of how aircraft actually fly, must be
viewed as abnormally large. 

Dynamic-Pressure Computation The problem here is to estimate dynamic 

pressure from measured parameters .  Clearly, this excludes the low-resolution 

method because dynamic pressure is a given quantity. 

To begin, the solution for the NCAR method is obtained by simply solving 

(6.17) for q 

(6.22) 

Clearly, this solution supposes ·that flow angles have already been computed. 

Again, this is an exact solution for potential flow past a sphere. 

Computing dynamic pressure for the high-resolution method is similar. The 

useful quantity here is the average differential pressure defined: 

(6.23) 
Note that <Jp>=p0 -(p1 +p2 +p3 +p 4)/4 which is approximately a difference of the

form "p0-p9. "  To continue, we evaluate <Jp> with (6.12): 
<Jp> =�q [(A2-B2)sin2� + (A2-c2) sin28]

which can be solved for q (provided that flow angles are known) 

(6.24) = 4<Jp> [ 1 + 3 (tan2 a + tan2P) ]q 2 2 2 9 s i n  e 2 - (t an a + t an p) 

where, for simplicity, we have set 8=�. Note in particular, that when 

8=y e 4 1 . 81° the leading coefficient simplifies and, to first order, qe<Jp>.
s 
Static Pressure Estimation Once flow angles a and P together with dynamic

pressure q have been obtained, static pressure can be computed from (6. 17) as: 
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(6.25) 

provided that the center pressure p 0 pas been recorded and is available. The

advantage of estimating static pressure in this way is that it is contiguous 
in space and time with other pressure measurements . Also, as we shall see in 
the next section, static pressure can be calibrated independently, providing a 

useful �heck. 

In closing this topic, it would be presumptuous to say which method is, in

fact, best suited to radome measurement. This is because flow distortion and 

inexact models can distort predicted results. In the author's opinion, the 

first-order correction to present theory is in the geometry - radomes are not 

spheres. Moreover, flow is a global entity and even features behind the radome 

can influence measured parameters . Nevertheless, the radome sensor is , in 

principle, an excellent . one. The salient observation is that flow-angle 

measurement is independent. of dynamic pressure q which is the quantity most

influenced by flow distortion and pressure-dome effects .  
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So far we have been working with the tacit assumption that sensors are 

accurately calibrated and need no correction. In practice, this turns out not 

to be the case. Some problems arise because of inexact alignment of sensors, 

others are due to flow distortion, and some are due to inexact theory and 

models. Alignment errors arise because of difficulties in matching sensor 

directions and orientations on different parts of an aircraft. For example, 

the flow-angle sensors for measuring the attack and slip angles must be 

precisely aligned with inertial navigation. Flow-distortion errors arise 

because flow near an aircraft is modified in unknown ways, effects may even be 

turbulent. In any case, dynamic calibration techniques can be broken into 

three basic parts : (I) in-flight calibration data, (II) calibration models,

and (III) appropriate analysis procedures. 

Our main focus here is on the calibration of temperature, pressure, and 

true airspeed, a task made more difficult by the nonlinear equations .  Recall 

that the equation of state p =p RT is a good expression of thermodynamics s s 
balance in a static atmosphere. For adiabatic change, this balance applies to 

total quantities as well p t =p t RT t . In addition, adiabatic processes are

governed by the variational equations ( 4. 7) which, for present application,

are put in alternate form 

(7.1) ¥ = (1';1);P ={y-1)�p 

where it is here useful to model the variations as �T=Tt -Ts, �p=pt -ps' 
�p=pt-p ; as above, q =�p denotes (compressible) dynamic pressure. In turn,s c 

these equations can be integrated to get 

(7 .2) T IT = (p /p )(y-1)/y = (p /p )y-1 t s t s t s 
Note that total quantities can be varied by changing airspeed, and static 

variables can be held constant by flying a fixed altitude. 

Temperature Calibration Measured values Tt,m of total temperature Tt 
often exhibit small errors due to such things as flow distortion and sensor 

design. A standard calibration model for fixing such problems is to postulate 

that the recovery factor r defined as the quotient 

(7 . 3) r 

is essentially constant, at least 

T -T t,m s
T -T · t s 

for small Mach numbers (M<l). To help
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understand what this means, consider the following equivalent form 

(7 .4) Tt =Tt + K (Tt-T) =Tt +K JT,m T s ,m T 
where now KT= 1-r. In this context, the constant recovery-factor model can be
interpreted as a scaling adjustment that compensates for lack of sensitivity 
to adiabatic heating. 

We first show that (7 .3) is a Mach-number dependence for adiabatic change. 
Indeed, from (7 .2) together with the definition of the Mach number (5 . 12), we 
get 

=> 

Substitution into (7 .3) and solving for T then results in the followings 
estimate 

(7.5) T =Tt /(l+ry 2-1M2)s ,m 

which, in turn, leads to an estimate of total temperature 

(7.6) 

and shows that the recovery-factor postulate leads to corrections that depend 

only on the Mach number. Note, in particular, that when the sensor is standing 

still (M=O), this calibration does nothing T = T . Thus, the sensor musts s,m 
already be calibrated for static conditions .  

A somewhat more direct way of obtaining these corrections amounts to 

bypassing the Mach number by rewriting (7 .4) in the form 

Tt =Tt /[ 1-K (1-T /Tt)] ,m T s 

which, when combined with (7.2), immediately gives 

(7 .7) T =T /[l-K ( 1-P)]t t,m T r 

where, as in Sec. 5, P =(p /pt)(y-t)/y .  Now, static temperature is obtained as
"' "' 'Y s 
T =P Tt . Note that this is mathematically equivalent to (7 .6) .s 'Y 

Recovery-Factor Estimation The accepted method of determining the 

recovery factor is using conventional wind tunnel testing. Flight test methods 

can then be used to check the recovery-factor to see if such things as flow 
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7. Calibration of Temperature, Pressure, and Airspeed

fields, radiation, radio frequency interference, etc. change the calibration 
of the in-situ sensor. One such flight test check, using reverse-track data, 
is discussed next . 

It is not at all obvious that the recovery factor r can be estimated
without knowing either the dynamic pressure or the static pressure. We do this 
next. To begin, recall that the true-airspeed equation (5 . 10) says that 
2 't' 12=cP(Tt -T8), and so the recovery factor (7.3) can be expressed

T -T 
(7.8) r =2c t,m s 

p 't'2 

Consequently, by varying T with constant T , we get
s 

LIT 
(7 .9) r =2c ( �,m) p LIT T s 
where the subscript notation is used to emphasize that T is held constant. s 
The key step amounts to finding conditions under which true airspeed T can be 

replaced with the horizontal groundspeed UH=IIUHII (as measured by the INS) ; if

this can be done, the need for dynamic pressure is circumvented. Now, the 

usual way to keep static temperature constant is  to fly at fixed altitude. 

Additionally, "reverse-track" maneuvers are particularly effective in 

canceling effects due to ambient wind. In more detail, suppose that U+ and U_

are the horizontal groundspeeds obtained by flying first in the direction of 

the ambient wind V .. ='t'+V and then against it U _ ='t'-V where v is the (horizontal) 

wind speed. Note that both 't' and v must be nearly constant over the duration. 

This is relatively easy to achieve for true airspeed T by simply flying with 

constant power. However, atmospheric conditions determine the windspeed v, and 

acquired data must be from a stable and laminar flow. In any case, data u : 
and U� for the two directions are averaged together to get

(7. 10) u2 = ! (u2 + u2) =![ ('t'+v)2 + (r-v)2JAVE 2 + - 2 
= i + v2 .

Note that the net effect of averaging over opposite directions is to cancel 

the cross term 't'U. As previously stated, true airspeed must be varied to 

obtain a dynamic range of values .  A simple way to do this is to use a 

high-speed value 't' and a low-speed one 't' . Thus, let U and U denote theHI LO HI LO 
average groundspeeds corresponding to the different airspeeds . Observe that 

equal amounts of data in opposite directions must be averaged for the 

problematic cross terms ±'t'u to cancel. The difference Ll U2 is then computed as
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7. Calibration of Temperature, Pressure, and Airspeed

(7 .11)  

-i 2 _A 2 
- HI-'t'LO -a't' ' 

Now, the small but potentially troublesome term v2 cancels .  Finally,

substitution into (7 .9) gives the required estimate 

(7 . 12) 
T - T 

r =2c ( t , HI t , LO ) 
p u 2 u 2 - T HI LO S 

where T t. HI 
and T t. LO 

denote the corresponding averages of the measured

temperatures Tt for the different airspeeds . We emphasize that this is an
,m 

exact equation when maneuvers are precisely executed and when atmospheric 

conditions are stable. Also, there is no reference to pressure. However, if 

the sensor has a non-linear recovery-factor for some reason, the evaluation of 

recovery-factor will be incorrect if only two airspeeds are used. 

Static Temperature We next show that the net effect of temperature 
calibration is to correct the static temperature T . In part, this followss 
from (7 .5) above. However, it is more convincing to work backwards from the 

recovery-factor computation (7.12) . First, recall that total temperatures 
A A Tt H and Tt as computed from (7. 7) satisfy, I ,LO 

2 2 2 2 A A A A 

UHI- ULO =-rHI -rLO =2c/Tt,HI- Tt,Lo)-2c/Ts,HI- rs,LO)

provided the ambient-wind term u
2 

cancels in the difference. But, the recovery
2 2 A A 

factor is computed to force the balance U - U =2c (Tt - Tt ) whichHI LO P ,HI ,LO 
is equivalent to saying that computed static temperature must be the same for 

the two racetracks, i .e . ,  T =T . In any case, the recovery factor iss,HI s,LO 
usually close to unity (e.g. r=0.95), and corrections to static temperature

· are typically only a few tenths of a degree eK). 
Racetrack Maneuvers In practice, data are acquired from dual racetracks 

consisting of two racetrack maneuvers aligned with the wind direction; on e is 
flown at high speed while the other is flown at low; both are flown at the 

same altitude and with as little roll as possible (turn s excluded). Each

racetrack has two straight legs consisting of several minutes of data, 

separated by turns to reverse direction. In principle, the two legs should 

have opposite tracks, a condition that is made easier by flying directly into 

and against the wind which has the added advantage of reducing troublesome 
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7, Calibration of Temperature, Pressure, and Airspeed 

correlations with , the slip angle. In executing such maneuvers, small 
variations in altitude (---50 m) are inevitable and can cause small variations 
in. ambient temperature T8• Corrections can be made by adjusting to a constant
altitude via a lapse-rate model. Thus, if <H> denotes the average altitude for 
both race tracks and if r is a given lapse rate (typically 0 .0065 °K/m for
moist air), then a corrected value T1 can be obtain.ed as,m 
(7.13) Tt = Tt + F(H-<H>) • ,m ,m 
where His· the altitude corresponding to the sample Tt . In principle, (7 . 13),m 
is not really a correction to total temperature at all, but a 

static-temperature correction applied to the difference T1 -T occurring in,m s the numerator of (7 . 8) ;  because the net effect is the same, it is here

convenient to attach it to total temperature. As a check on signs, note that 

if altitude H is greater than the mean <H>, then the temperature T1 at H- ,m 
will be smaller than the hypothetical temperature T1 at <H>.,m 

Static-Pressure Calibration Here the model to correct for airspeed 

dependence is :  

(7.14) I PA -p· +K q I s s,m p c,m ' 

where p and q are the measured static and dynamic pressuress,m c,m 
respectively; K is the calibration constant (the dependence is not 

p 
necessarily on q m' but could be upon attack angle or Mach number) . Note thatc, 
this model simply balances two quantities of the same basic type, and when the 

sensor is standing still (q =0), calibration does nothing p =p . Thus, asc,m s s,m 
with temperature, this sensor must already be calibrated for static 

conditions .  In any case, KP can be evaluated in flight tests using a reference

pressure sensor inside of a trailing cone flown at several different airspeeds 

and altitudes to compute the range of static errors (Brown, 1988) .  Such flight 

testing can reduce static and dynamic errors to ±0.4 mb and ±0.53 mb,

respectively. 

True-airspeed Calibration It remains to calibrate dynamic pressure q c 
and with it, true airspeed. Here the model is a simple one: 

(7. 1 8) I qc =Kqqc,m I· 
Now, the constraint on K is to optimize the true-airspeed computation. This. q 

L ' 
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' 

is done by comparing computed airspeed with horizontal groundspeed. Again, 
using racetrack data, constant · winds cancel and the constraint is simply 
stated in terms of sample averages 

(7 . 19) I <r> = <UH>
As with the recovery-factor computation, valid application requires data from 

reverse tracks to be of equal duration. However, dual racetracks are not 

required. - they can either be used· separately or in tandem. In particular, 

they can be used to test whether K is, in fact, a constant.q 
The difficulty in using this condition is that equations are nonlinear and 

computing a solution requires a search algorithm. To review the computation,

recall that known data are Tt , p , q , and )', and known calibration,m s,m c,m 
constants are K = 1- r and K . In particular, static pressure may be consideredT p 
as already corrected: p =p + K q . Then for a trial value of K , trues s,m p c,m q 
airspeed is computed 

( 7.20) 

qc =Kqqc,m
p = [p l(p +q )](y-

1)/y
r s s c 

T =T /[1-K (1-P )]t t,m T r 

Ts =Pr Tt 
1 = / 2c (Tt

-T ). p s 
This computation is then repeated for all given data, and the average error 

e(K ) = < U >-<-r> is used to indicate whether the trial value K was a good oneq H . q 
or not . Finally, the whole procedure is repeated for many different values of 

A 
K , and the value K for which e(K ) is closest to zero is the answer. Inq A q q 

practice, K must be computed with an iterative root-finding algorithm.q 
Vapor Pressure and Relative Humidity Vapor pressure e is not measured

directly, but inferred from mirror temperature T . (measured in °C) measured · m1r 
with a cooled-mirror, dew point hygrometer. The exact calculation is : 

(7.21) 
{ 6. 1078 exp[17 .6498 T. /(243 . 1 7+T. )], T. <!:0m1r m1r m1r e = 

6. 1078 exp[22.4716T. /(272 .72+T. )], T. sO.m1r m1r m1r 
For temperatures above freezing, Tmir is better known as dew point temperature

Td, and for temperatures below freezing it is usually converted to frost point

temperature (also denoted T d): 
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{ T. , T. a:O 
T = m1r m1r 
d 243 . 17 [( loge - 1 . 8096)/(19.4594-log e)], T . :50 m1r 

Next, relative humidity is based on an intermediate quantity called the 

saturation vapor pressure e (mb) ; it is computed in a fashion similar to e, w 
but with static temperature t in place of T . : s m1r 

(7 .23) e = 6. 1078 exp[1 7.45 T / (241 .48+T )] w s s 

where T also has units of °C. Finally, the relative humidity estimate �iss 
computed in percent as : 

( 7.24) � = lOOn (p -e )le s w w 

where, as in Sec. 4 ,  11 is the mixing ratio.

Constant Offsets The last detail in calibrating temperature and pressure 

is to baseline ambient values . Recall that our calibration models are linear, 

and slopes have already been computed; it remains to compute the intercepts .  

This requires comparison of static temperature and pressure along with mirror 

temperature with in-situ measurements,  say from a tower; needed data is 

acquired with "fly-bys" at different airspeeds . In turn, small corrections are 

inferred and used to (additively) adjust measured parameters .
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8. CALIBRATION OF FLOW-ANGLES
In the previous section, we calibrated true-airspeed r which is the

amplitude of the relative wind ?l =ri , it remains to calibrate the directionr r 
vector e� which, in view of Sec.3, is the same as calibrating the flow angles.

Not surprising, flow-angle calibration is largely geometric. The easy case 
is that of straight-and-level flight. However, when roll q, is added, the
situation becomes more complex; now, both a and p can change with cp. Consider
the situation where probes are mounted on the fuselage; the attack probe is 

located, say, near the front and on one side while the slip probe is located 

nearby, but on the top. This arrangement is poor because it lacks symmetry 

with respect to roll. When the aircraft is banked in a turn, flow is modified 

in nonlinear ways, and this distortion gets passed on to the sensors; in 

particular, affects may not be the same in right and left turns. 

Standard Calibration In Sec.6, we showed that the flow angles are, to 

first order, proportional to quotients of a differential. pressure and a 

dynamic pressure. The calibration model commonly used for straight-and-level 

flight ( cp=O) is 

(8. 1 )  
tan a =K (o plq )+A0a a a 
tanP =Kf3(of3p/qf3)+B0

Here oap, of3p' qa' and q(3, denote measured pressures while Ka' K(3, A0, and

B0 are the cali�ration constants. For example, with the high-resolution method

(6.2) and (6. 14) we would choose J ap=o2p-o 4p, qa =(o2p+o 4p)/2,
of3p=o3p-o1p, and qf3=(J3p+J1p)/2. Note, however, that Ka and Kf3 are

inverse to the sensitivity coefficients used before; also A0 and B0 are

constant offsets that align flow parameters to inertial navigation, in 

particular, to correct for possible misalignment of sensors .  Although required 

pressures can be obtained in different ways, it is enough here to know that 

they are supplied by measurement. Also, the small-angle approximations tana:=a 

and tanp =P are often used in this model. Not only is this less correct, it is 

confusing; it suggests that additional trigonometry is required in subsequent 

relative-wind calculations .  

It  turns out that dual racetracks provide a good source of calibration 

data for Ka and B0, but not for K(3; data for A0 is conditional. There is

significant correlation of true airspeed with the attack angle, but not with 

the slip angle. (On the P-3 ' s ,  changing airspeed from 180 kt to 240 kt results 
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8. Calibration of Flow An gles 

in a change from about 3° to about 0° in the attack angle.) To estimate K ,a 
observe that in straight-and -level flight, attack a and pitch fJ should have
the same dyn amic ran ge, and so

(8.2) 

In turn, A0 can be estimated

(8 .3) A0 = -21 { tan fJ + tan fJ -K [( J p I q ) + ( J p I q ) ] }HI LO a a a HI a a LO 

which is valid provided there is n o  n et vertical motion in the atmosphere. 
However, vertical velocities on the order of 10 cm/s are common, and such 

motion is difficult, if not impossible, to isolate or average out. At the same 

time, A0 is an important parameter to estimate well ; it determines the zero

line of the vertical-wind measurement. In the next section, we see that there 

may be other nonlinear effects as well. 

Yaw Maneuvers Slip-angle calibration requires special data taken in yaw 

maneuvers .  Such maneuvers are executed by skidding the aircraft from side to 

side, in snake-like fashion, to produce variations in the slip angle . Again 

these maneuvers are flown at constant altitude and with as little roll as 

possible. Recall that attack is calibrated by comparison with the pitch angle. 

In a similar way, slip is calibrated by comparison with the the drift angle 

d =C-'If. However, unlike the comparison of attack and pitch, the comparison of

slip and drift is an approximation which is only exact in horizontal flight 

when pitch is zero. Fortunately, pitch is typically small (a few degrees) and 

this problem can usually be neglected. In any case, data are divided into high 

and low averages by separating quantities which lie above and below the sample 

mean. The estimate of Kf3 is then analogous to the estimate of Ka

(8 .4) 
t an d - t an d HI LO K(3 = (i5(3p!q(3)HI-((5(3plq{3)LO 

To continue, we observe that the (strenuous) turning and skidding required 

in the yaw maneuver is difficult to execute with high precision, making it a 

poor source of data for B0• However, dual racetracks provide a good source of

data. Thus , B0 is estimated using racetrack data as:
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8. Calibration of Flow Angles

We emphasize that data bases used in (8 .4) and (8 . 5) are completely different 

and should not be confused. 

Improved Calibration Models? The calibration model (8.1) is known to be
inexact in several ways. First, none of the refinements of the exact solutions 
(6.14), (6. 16) , or (6.19) are reflected in this model. Recall from Sec.6 that
net improvements using exact solutions were diagnosed as being marginal 
except possibly in extreme cases . 

Another modeling error, at a similar level of significance, is due to the 

way that sensor misalignment is corrected. A small error t in an angle x 

affects the tangent as tan(x+e)=[tanx+tant]l[l-tanx·tane], and the 

nonlinearity in this denominator is not accounted for in (8.1). 

Improved Comparison Angles Recall that our understanding of flow angles 

is through comparison with pitch and drift. However, when roll is present, 

this comparison is no longer valid. In fact, even without roll , the comparison 

of slip with drift is an approximation. Our objective here is to compute more 

accurate comparison angles, say a0 and p0, that also work when roll is

present. Recall from (3 .2) that attack and slip satisfy tan a = 9'f I dJt andr r 
tanfJ = r I dJt where ?I =( dJt , r , 9'f ) is the relative-wind vector expressed inr r r r r r 
aircraft coordinates. Consequently, first-order approximations to the l wanted 

angles satisfy tana0 == 9'f0
1 dl/0 and tanP0 == 1QI dl/0•

Better approximations can be obtained by transforming computed winds into 

aircraft coordinates where attack and slip are measured. In aircraft 

coordinates wind is computed, u:?t0+?t r where ?t0=G-1U
0=( dl/0, 1Q, 9'f0) and G-1 is

the inverse of the orthogonal matrix G in (2 .6) . Next, remembering that dJt isr 
always negative, 

(8 . 6) " = ?t o+?t = ?t o - I dJt I (?t I dJt )r r r r 

and it becomes apparent that more correct comparison angles should satisfy: 

(8 .7) 
tan a0 = 9't'o' l dltrl 
tanP0 = r0

1 1 dltrl 
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With these definitions ,  (8. 6) can be written 

(8 . 8) u :: I  �r l [ ( �o'l �r l - l)i+ (tanp0-tanP)/+ (tana0
-tana)k]' 

and we can now better understand what is going on. First, �r e: --r is a

controlled variable (that usually changes slowly) , and so wind information is 
largely contained in the angles .  In particular, mean winds are contained in a0
and P0 (because airborne platforms tend to advect with the mean flow), and
fluctuations are contained in a and p (because flow-angle sensors react more 
quickly). Clearly, this mixed behavior complicates wind measurement and can be 
difficult to analyze. 

However, the definition (8. 7) is somewhat circular (i.e . , nonlinear) 
insofar as � also depends on flow angles ;  more precisely, � =--riD where D, as

r r 
defined in (3 .3) ,  depends on tana and tanp. This difficulty can be 

circumvented by replacing tana and tanP with tan a0 and tanp0 in the

definition of D. Now, angles must satisfy the coupled set of quadratic 

equations :  

tan2 a0 = ( CH0/-r)2 (1 + tan2 a0 + tan2 P0)

2 2 2 2 tan p0 = ( �/-r) (1  + tan a0 + tan P0) .

Taking quotients shows � tan2 a0 = � tan2 p0 and this system is readily

solved to give: 

(8 .9) 
tan a0 - CJ/'0/ A

tanp0 - 1'0/A

where A = / -r2 - � - CJ/'2 
' 

0 0 

The tedious part of this computation is inverting the groundspeed: ?t0=G-1U0
=( �0, �' CJ/'0 ). Observe that, unlike pitch and drift, these estimates depend

on true airspeed -r. Also, A is an estimate of I �r l ' and when ambient winds are

small, can be replaced with �0 • 
The calibrations (8 .2)-(8.5) for attack and slip can now be improved by 

replacing 0 with a0 and d with p0. However, "improvements"  so obtained have

been marginal, probably because racetrack maneuvers tend to cancel many of the 

errors anyway. The main application is to data with nonzero roll. 

To use these angles ,  maneuvers must be flown to make the mean wind < « >  in

(8. 8) cancel out. This is possible because ambient wind u in aircraft 
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coordinates has the curious ,  but useful, property of depending on attitude 
angles ;  more precisely, u is computed as the inverse transformation u:=G-1u of
ambient wind u, expressed in geodetic coordinates . For example, circles are 
usually flown with constant pitch and roll , in which case G varies only with
heading 1/f. Thus, < «- >  =0 when averaged over an integral number of circles ,
provided that ambient wind u i s  constant . (More general conditions can be 
obtained using Stokes Theorem.) 

Calibration for Roll In principle, calibration for roll is  possible 
when flow distortion is laminar (the kind that creates lift) . However, in 
practice, this is seldom done, due to the complexity of the problem. 

To help understand the affect of roll, we compute simpler estimates of a0 
and P 0 in the special case when aircraft motion is horizontal and pitch is
small. We observe that in horizontal flight, the main affect of roll is to 
rotate the pitch and drift angles into the attack and slip planes . This 

rotation can be approximated: 

(8 . 10) [p� ]  = [ �?:: -�!:: ] [ � ] . 
We remark that this estimate is not meant to be an alternative to (8 .6) ;  its 

main use is for analysis . 

Now, parameters most affected by flow distortion due to roll are the 

"constants " A0 and B0 in (8 . 1) .  Intuitively, these parameters reflect changes

in the mean flow along the skin of the aircraft; when banked in a turn, flow 

characteristics can change, requiring an adjustment. By contrast, the 

sensitivity coefficients Ka and K£3 are relatively unaffected. Therefore, the

next significant level of complexity in a calibration model is to allow for

roll dependence:  A0=A0(tfl) and B0=B0(tfl) . 
Lagrangian Circles Data for computing the functions A0(t/l) and B0(t/l) can

be obtained by flying left and right circles with constant roll tfl; 
additionally, airspeed and altitude should be kept constant . In the absence of 

ambient wind, this maneuver does, indeed, result in Eulerian circles .  However, 

when wind is present, the Eulerian circles become Lagrangian ones that advect 

with the mean flow; aircraft tracks, as observed from the ground, consist not

of circles but of cycloids . 

Experience has shown that at least three circles are required with each 

value of q, for unambiguous interpretation . Thus , a minimal calibration would

require three circles to the right and three circles to the left, say, with 
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constant bank angles ±30°. Then, using the same values of K and K computed a {3 
in (8.2) and (8 .4) ,  estimates of A0 and B0 can be obtained as:

(8 . 1 1a) A0(cp) = <£¥0> -K < J p/q > a a a 

(8. 1 lb) 

where, as usual, < • > denotes the sample mean or average. Observe that in 

straight-and-level flight, these equations are equivalent to (8.3) and (8.5) 

above. Note also that both <£¥0> and <P0> are strongly influenced by ambient

wind, and so, to minimize unwanted affects ,  it is important to average over an 

integral number of circles .  We emphasize that (8 . 1 1) should be applied to the 

left and right circles independently; joint application with data from both is 

not very meaningful. In any case, we now presumably have three sets of 

estimates corresponding to roll angles cp of -30°, 0°, and 30° ; therefore,

required calibration functions A0(cp) and B0(cp) can be modeled as quadratics .

Otherwise said, intermediate values can be inferred from quadratic 

interpolation. 

Useful diagnostic quantities are the track and cross-track components of 

the computed wind (also known as the longitudinal and lateral components or as

the tangential and radial components) . The track component u
< 

is the

horizontal wind in the track direction u
<

=u•ic:, and the cross-track component

u
x 

is the remaining orthogonal part, it is positive outward along the right

wing. In more detail, suppose that U 0 =( U 0 , V 0 , W 0) is the aircraft velocity and

u=(u,v,w) is the computed wind. Then, u
< 

and u
x 

are computed as

(8 . 12) u
� 

= (u U0 + v V0)/D
u

x 
= (u V0 - v U0)!D

where D=/ U� + V� is the horizontal groundspeed. For circles , these

quantities should be sinusoidal and 90° out of phase; in particular, they

should have the same amplitude. It turns out that the track component u
� 

depends primarily on true airspeed while the cross-track component u
x 

depends

primarily on flow angles ,  and this separation is valuable in analysis 

procedures .  

In concluding this material, we remark that flow-angle calibration can 

often be improved through direct analysis of computed winds . The advantage is 

that winds are computed using all available transformations and corrections .  

At the same time, winds tend to be sensitive to calibration errors, and
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minimizing erroneous correlations with aircraft maneuvers often produces 

better results .  In short, calibration constants are "fine-tuned" using the 

final product rather than some intermediate one. This can either be done 

manually or with search algorithms.  
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9. IN-FLIGHT EXAMPLES

We now apply theory and procedures of the last three sections to the 
P-3 ' s .  We emphasize from the onset that the primary purpose of this exposition 
is to illustrate basic ideas and theory, and not necessarily to document 
specific sets of parameters .  

Our discussion will focus on two calibration flights, one for each 

aircraft (N43RF and N42RF) ; acquired data were taken nearly two years apart, 

on the 13th of August, 1987 and on the lOth of August, 1989 respectively. 

Calibration flights of this kind, during the summer, are performed yearly in 

support of hurricane research and reconnaissance, and generally consist of two 

basic parts: (I) "high-altitude" maneuvers to determine dynamic parameters and 

(II) "ground-based" comparisons to determine constant offsets .  In the 1987 

calibration, the ground-based comparison was done with tower data acquired at 

a flight-training strip (the Dade-Collier airport) , west of Miami and in the 

Everglades ecosystem. Data so acquired was near the ground ( "' 25 m) ,  in the 

boundary layer, and may not be representative of operational conditions .  The 

1989 comparison was done using a tethered balloon located at NASA's lightning

triggering site on the north tip of Merritt Island, near Cape Canaveral FL. 

This comparison consisted of fly-bys at altitudes ranging from 150 ft to 

4100 ft. Although results were generally consistent with P-3 data, measurement 

difficulties (on the balloon) obscured accuracies and the comparison. Although 

such comparisons are important and operationally intricate, they are 

conceptually straightforward and will not be further discussed here. For 

present purposes , the important aspect of these flights was that the 

"high-altitude" maneuvers were performed over open water and away from 

possible sea-breeze affects .  

An identifying feature of in-flight procedures is the calibration 

staircase of race-track maneuvers .  Two staircases are shown in Fig. 9-1 for 

the 1987 calibration (upper left curve) and the 1989 calibration (upper right 

curve) ; both curves are plots of radar altimetry verses time. Note that the

1987 curve is a descending staircase while the 1989 staircase is an ascending 

one. It is worth mentioning that such procedures were introduced in 1987 and

this was the first staircase used with N43RF. It turns out that ascending

staircases are somewhat more effective because aircraft are lighter near the 

top (due to fuel consumption) and can go higher . (The P-3 's operational 

ceiling is about 25 ,000 feet .) 

In more detail, the 1987 staircase of race tracks consisted of six steps 
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Fig . 9-1 . P-3 cal ibrat ion fl ight data. The left-hand graphs are from N43RF ' s 
cal ibrat ion f l ight on 8/1 3/87 ; the right-hand graphs are from N42RF ' s 
cal ibrat ion f l ight on 8/1 0/89 . Radar al t i tude is p l o tted versus t ime in the 
upper graphs , showing the cal ibrat ion staircase performed in each fl ight . 
Radar a l t i tude vs . stat i c  temperature i s  p lo t ted in the midd l e  graphs , with 
lapse rates F=S .  6°C/km and F=S .  3°C/km shown . Radar al t i tude vs . stat ic
pressure i s  p l o tted in the bottom graphs , showing that the atmo sphere was 
approximately hydrostat i c  in both f l i ghts . 
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9. In-Flight Examples

or levels at approximate altitudes of 15 K, 12 K, 10  K, 8 K, 5 K, and 1 .5 K
feet respectively; the remaining levels shown in Fig. 9- 1 were for other 
maneuvers .  (These altitudes correspond to pressure increments of about 
100 mb .) By contrast, the 1989 staircase consisted of fewer altitudes but a 
greater overall range; altitudes used were 1 .5 K, 5 K, 10 K, 15 K, and 20 K

feet. The additional levels shown were part of the balloon comparison 

mentioned above. All things considered, it was probably a mistake to combine
the staircase with the bal!oon comparison. Compromises had to be made;

staircase data was more spread out in time and the 8 K altitude was omitted 

altogether. At the same time, there is more variability in calibration at 

lower altitudes ,  and multiple levels help protect against faulty data. Because 

of this, the author recommends using the seven altitudes : 1 .5 K, 5 K, 8 K, 

10 K, 12 K, 15 K, and 20 K feet in future calibrations.

Another important aspect of calibration is the atmosphere itself;

conditions should be as stable and quiescent as possible. In southern Florida, 

early morning flights are best (to avoid afternoon convection) ; the ·basic idea 

is to start maneuvers as soon as the sun is high enough in the sky to insure 

good visibility. For the calibrations under consideration, both staircases 

were started at about 1330 Z (830 EDT) .

A good (post-processing) check on atmospheric conditions is supplied by 

temperature. To this effect, scatter plots of altitude verses computed, static 

temperature ('C) are also shown in Fig. 9- 1 .  The reason for the apparent

sparsity of points is , .  in part, because the 1 Hz data was preaveraged into 

19 s bins ( 1987) and 24 s bins (1989) prior to plotting; additionally, many of 

the points fall on top of one another and cannot be distinguished. In any 

case, both scatter plots are roughly straight lines with lapse rates r of

about 5 .6°C/km and 5 .3°C/km respectively, showing that conditions were about 

as homogeneous and stable as could be expected. 

Analogous scatter plots of static pressure p s are shown in the bottom 

curves of Fig. 9- 1 ,  and relative humidity 31, as computed by (7.23) , is shown

in Fig. 9-2 for the 1989 calibration (only) . Here, pressure (upper curve) 

appears /as a nearly perfect straight line when displayed in log-linear 

fashion. This is the result of the atmosphere being hydrostatic: dp/dz =-pg, 

together with the exponential decay of density p with height z. Next observe

that humidity (lower curve) exceeds 80% at lower altitudes ,  typical to 

southern Florida in the summer. Also, note that the plot shows the presence of 

a dry-air layer at about 5 km (15K ft) . Such layers have repeatedly been 
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Fig 9-2 . Radar a l t i tude vs . relat ive humid i ty for N42RF ' s cal ibrat ion f l ight
on 8/10/89. 

observed, and have been useful in determining humidity dependencies which 

would otherwise be difficult to distinguish from altitude ones. 

With this background, we now turn to the details .  First, the basic 

maneuver executed at each level of the staircase consisted of dual racetracks 

at (indicated) airspeeds of 240 kt and 1 80 kt respectively; these airspeeds 

are, effectively, the limits of P-3 performance (at least, in turbulent air) . 

Racetracks were flown with a two-minute leg flow directly into the wind with a 

companion leg in the opposite direction; thus, four minutes of 

straight-and-level data were acquired from each racetrack. We also observe 

from Fig.9-1 that each step requires about 15-20 minutes of flight time; this 

time is attributable to the eight minutes of data together with time for wind 

alignment, turns ,  and a changes in altitude. 

As documented in previous sections ,  the objective of dynamic calibration 

is to deduce calibration constants K , K , K , K , KQ, A0, and B0 used to
A T p q oc � 

correct total temperature T
t

, static pressure p , and dynamic pressure q , as S C A 
well as to estimate the attack and slip angle tangents tana and tanP 
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as summarized in the calibration models : 

(9. 1 )  T = T / [1 -K ( 1 -P )] t t ,m T y , m  

Ps =ps, m +Kpqc, m'

A = K  qc qqc , m' 
tana =K (J P. lq )+A0ex ex ex 

tanP=K£3(J£3plq£3)+B0

where Tt , p , and q are the measured (total) temperature, static ,m s , m c , m 
pressure, and dynamic pressure respectively; also, Jap, J£3p, qex, and q£3, are

some compatible set of measured differential flow-angle pressures as 

discussed in Sec. 6. Here, P is an intermediate quantity defined
(y-1)/y y , m  

P =(p /pt ) where y is the (computed) Poisson constant discussedy, m s , m , m
in Sec. 4.

Before proceeding there is a scaling problem that needs to be mentioned. 

The difficulty is that calibration constants Ka' K£3, A0, and B0 have

traditionally been scaled in degrees which is technically inconsistent unless 

the small-angle approximation tan(x) ::x is used. Also, for historical reasons, 

P-3 parameters Kex and K£3 differ from theoretical ones by a factor of two.

Although these are purely formal problems, the reader should be wary when 

interpreting results . 

Recall that, with the exception of K£3, all constants can be estimated for

each level of the staircase, from a single pair of dual racetracks . Computed 

results for K , K , K , K are shown in Tables 9- 1 and 9-2 for the 1987 andT p q ex 
1989 calibrations respectively. As above, temperature is tabulated in °C,

pressure in mb and the mixing ratio 17 in g/kg; additionally, all values shown

are ensemble averages over the full 8 min of racetrack data. 

Our first observation is the relatively poor quality of the temperature 

calibration K ; in the 1987 calibration, the 8K and lOK values were discardedT 
because of observed dust (possibly African) . Nonetheless, the resulting 

A . 
average K =0 .019 is reasonable and corresponds to a recovery factor of

A T 
r = 1 -KT=0.92 1 .  Although amplitudes were similar in the 1989 calibration,

values fluctuated in sign for unknown reasons and had to be discarded as 

erroneous . While it is well known that water droplets adversely affect the 

temperature measurement, this would indicate that there are other factors as 

well. In any case, the wisdom of using temperature calibration with these 

sensors is debatable. 
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H Ps, m T 1'f K K K K r t , m  T p q ex 
( fe e t ) (m/s ) ( OC )  ( g/kg ) (d e g )  
1 5 . OK 555 . 9 8 . 14 3 . 8 0 .  074 0 . 030 0 .  990 6 . 14 
1 2 . OK 627 . 8 1 2 . 5 1  3 . 7  0 .  086 0 .  027 0 .  986 6 . 18 
1 0 . OK 679 . 1 1 5 . 97 5 ; 8 0 .  078 . 0 .  027 0 .  984 6 . 12 
8 .  OK* 763 . 2 2 1. 93 3 . 0 -o . 016x 0 .  028 0 .  989 6 .  32
5 .  OK* 850. 1 24 . 91 9 . 2 -0 . 050X 0 .  027 0 .  979 6 .  27 
1 .  5K* 960 . 1 3 0 . 72 1 4 . 5 0 .  079 0 .  029 0 .  972 6 . 17 --

Averages = 0 . 079 0 .  028 0 .  983 6 . 20 
· *= o bserved dust , X=discarded 
Tab l e  9-1 .  Computed calibration c ol)stan.ts for N43RF,  13-Aug-87 .
I ns t rumentation: INS=2 , Temperatur e 2 ,  'Wi ngtip pr e ssures . 

H Ps, m T 1'f KT K K K r t , m p q ex 
( fe e t )  ( m/s )  ( OC )  ( g/kg ) ( d eg )  

1 .  5K 958 . 3 28 . 62 17 . 9  -0 . 082 0 .  024 0 .  966 6 . 15 
5 .  OK 852 . 8 24 . 33 1 2 . 2  0 .  085 0 .  030 0 .  966 6 . 13  

10 . OK 698 . 2 1 5 . 88 6 . 6  o .  079 o .  028 o .  965 6 .  17
15 . OK 571 . 8 8 . 22 2 . 4  -0 . 024 0 .  027 0 .  965 6 .  04
20 . OK 464 . 3 0 . 33 2 . 0 0 .  028 0 .  032 0 .  965 6 .  08--

Averages = fail  0 .  028 0 .  965 6 .  1 1

Tab 1 e 9-2 . Computed calibration c o nstants for N42RF,  10-Aug-89 .
Ins t rumentation: INS=2 , Temperatur e 1 ,  'Wi n gtip pr e ssures . 

We next observe that the true-airspeed calibration K is nearly constant. q 
in the 1989 data, but varies by several percent in the 1987 data which 

translates to errors of about ± 1  m/s . This variation was found to be 

\ attributable to humidity sensitivity in a Garrett pressure transducer on the

N:43RF wing tip (which was replaced in 1989) , and humidity dependence was 

modeled empirically as K =K 1[1-(p lp )] ; results of this model are shown inq q v s , m 
Table 9-3 . (Belatedly, it was learned that Garrett recommended routine 

replacement of a desiccant in the dynamic-pressure line .)  Now, because K isq 
nearly constant, the value of Kq in (9 . 1) can be computed as

K =0 . 994 [ 1 -(p lp )] , and the problem is solved. Note that without data fromq v s , m 
many different altitud�s, this problem could not have been properly diagnosed 

and parameterized, illustrating the great utility of staircase data. 

Some results of pressure calibration and adiabatic temperature 

compensation are shown in Table 9-4. Although changes in static pressure 

� -

/ r ' 
r-r 
� 
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H Ps , m  Pv l r q 
( f e et )  ( mb ) ( mb )  
1 5 . OK 5 55 . 9 3 . 37 0 .  996 
1 2 . OK 6 27 . 8 3 . 74 0 .  992 
1 0 . OK 679 . 1 6 . 25 0 .  994 

8 .  OK 763 . 2 3 . 70 0 .  994 
5 . OK 8 50 . 1 1 2 . 40 0 .  993 
1 .  5K 960 . 1 2 1 . 98 0 .  994 

0 .  994 

Tabl e 9-3. Vet calibration model K q

H Ps, m  Ps ft , m T r s 
( f e et )  ( mb )  ( mb )  ( OC )  ( OC )  

1 .  5K 9 58 . 3 96 0 . 2  2 8 . 62 2 2 . 1 5 

5 .  OK 8 52 . 8 85 5 . 2  24 . 33 1 7 . 19 

1 0 . OK 6 98 . 2 70 0 . 5 1 5 . 88 0 7 . 37 

1 5 . OK 5 71 . 8 574 . 0 8 . 22 - 0 1 . 58 

2 0 . OK 4 64 . 3 466 . 8 0 . 33 - 1 1 . 29 

Table 9 - 4 . Selected resul ts  for the 1 989 calibration. 

are small ( i'\1 2 mb) , the correction for adiabatic heating is substantial and 

requires good precision. 

We next turn to flow-angle calibration. To motivate this discussion, we

analyze a problem with our vertical-wind measurement . Vertical wind for the 

1989 calibration staircase is shown in the upper curve of Fig. 9-3 . Here, data 

was manually adjusted so that data on the far left corresponding to the l .SK 
level is centered about zero. We next observe that data on the far right, at 

the top of the staircase, is about 40 cm/s .  However, all who participated in 

this experiment agreed that such vertical velocities were unrealistic, leading 

to the conclusion that our vertical-wind measurement is drifting in time by 

perhaps as much as 5-10 cm/s per hour. This is a very serious problem; 

clearly, the single most important aspect of vertical measurement is to 

d�termine whether net vertical motion is up or down, and our example shows 

that this cannot be done with any certainty! 

One might speculate that vertical measurement is drifting with altitude 

and/or true airspeed. Indeed, the lower plot in Fig. 9-3 shows that mean

airspeed did increase with time; this is due to maneuvers being flown using 

indicated airspeed (5 . 14) . Nonetheless ,  we next show that this drift is more 

likely correlated with P-3 fuel consumption. 

r-
l 
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Fig 9-3 . Vert ical wind , w ,  and true airspeed , �. vs . time for N42RF ' s 
cal ibration fl ight on 8/10/89 . 

A good place to start is to remember that vertical-wind measurement is 

largely determined by the attack-angle a ,  and we look for anomalies in this

calibration. First, inspection of Tables 9- 1 and 9-2 shows a weak trend in the 

dynamic parameter K . However, such variations are not very significant andex 
can be neglected. · By contrast, analogous variations in the offset A0 cannot be

so easily dismissed. Analysis of this important parameter is given in Tables 

9-5 and 9-6 for the two calibrations .  Because, A0 also serves to compensate

for possible misalignment of sensors, the means <A0> are first removed to show

variations . Analogous variations are also computed for pitch (} and true

airspeed �. (Recall that the mean true airspeed is calibrated to be exactly 

the same as the mean groundspeed.)  Also shown is the mean windspeed v together 

with its standard deviation u ( v ) . (We remark that the large value of <A0>=2. 13

in the 1989 calibration i s  consistent with a known alignment problem op. 

N42RF.) 
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H Ao Ao- <Ao> 8 8- <8> T -r- <-r> v O' ( V )  r 
( f e e t ) ( d e g )  ( deg ) ( deg ) ( d eg ) ( m/s )  (m/s ) ( m/s ) ( m/s ) 

15 . OK -0 . 79 0 . 0 4  1 .  57 0 . 1 2 139 . 7 13 . 7 8 . 8 1 . 2
1 2 . OK -0 . 81 0 . 0 2  1 .  52 0 . 07 132 . 4 6 . 4 8 . 9 0 . 8 
1 0 . OK -0 . 84 - 0 . 0 1 1 .  48 0 . 03 129. 1 3 . 1 10 . 0 0 . 9
8 . 0K -0 . 84 - 0 . 0 1 1 .  43 -0 . 02 123. 5 - 2 . 5 6 . 8 0 . 3 
5 . 0K -0 . 86 -0 . 0 3  1 .  41 -0 . 04 1 18 . 0 - 8 . 0 7 . 6 0 . 4
1 .  5 K  -0 . 85 - 0 . 0 2  1 .  31 -0 . 14 1 13. 1 -12 . 9 5 . 6 0 . 6-- -- --

<A0>=-o . 83 < 8> = 1 . 45 <-r>=126 . 0 

Tab l e  9-5 . A naly s is o f A0 for 1987 cal ibration .

H Ao Ao- <Ao> 8 8-<8> T T- <P v 0' (  v ) 
r 

( f e e t )  ( d e  g )  ( deg ) ( deg ) ( deg ) ( m/s ) (m/s )  (m/s ) ( m/s ) 

1 .  5 K  2 .  24 0 . 1 1 1 .  95 0 . 57 113 . 4 -17. 0 2 . 5 0 . 5
5 . 0K 2 . 19 0 . 0 6 1 .  57 0 . 19 1 19. 0 -11 . 4  5 . 9 0 . 3

10 . OK 2 . 1 1  - 0 . 0 2  1 .  22 -0 . 16 129 . 5 - 0 . 9 5 . 4 0 . 3
1 5 . OK 2 .  06 -0 . 0 7  1 .  17 -0 . 2 1 138 . 8  8 . 4 5 . 3 0 . 9 
20 . OK 2 .  04 - 0 . 0 9  1 .  00 -0 . 38 151 . 5  13 . 1 7 . 6 0 . 4-- -- --

<A0>= 2 .  13 < 8> = 1 . 38 <-r>=130 . 4  

Tab 1 e 9-6 . A naly s is o f A0 for 1989 cal ibrat ion .

We argue next that variations in A0 matches observed drift in computed

vertical winds .  Indeed, for an aircraft traveling at lOO mis, a 0. 1° drift in 

a will result in an error of about 100 tan(O. l0) s:0.2 m/s. Consequently, the

0.2° variation shown in Table 9 .6  corresponds ,  almost exactly, to the drift

observed in Fig. 9-3 . Next, observe that A0 -<A0> and 8-<8> were positively

correlated on both flights . At the same time, dependence on true-airspeed can 

be excluded because A0 -<A0> and -r-<P were positively correlated in 1987, but

negatively correlated in 1989. Similarly, correlation with altitude and/or 

pressure can be also be excluded because one staircase was ascending while the 

other was descending. Finally, there is no evidence of correlation with 

atmospheric winds , and a reasonable cause for the variation in A0 is due to

fuel consumption. (Unfortunately, this correlation was only discovered in the 

preparation of this document, and this hypothesis is yet untested. 

It remains to calibrate the slip angle P, and here things are very 

disappointing. The difficulty is that P-3 slip sensors are located on top of 

the aircraft, and several meters behind the cockpit (see App. A) ; but the 

cockpit is known to generates a "rooster tail " and the slip sensor is in the 
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turbulent wake. Because of this, calibration parameters are based more on 

history and use, rather than on precise computation. In any case, values K13 of

about 8.5 (for both aircraft) ha ve been used. In passin g, we remark that a yaw

maneuver was exe cuted in the 1989 calibration, and precise computation

generated a value of about 10.4 for K13 which is much too lar ge for general

application, a gain indicating the the poor performance of this sensor. This 

discrepancy is shown in Fig. 9-4, where calibrated slip P for the yaw maneuver 

with K13 = 8.5 is compared with the drift angle. Even the value 8.5 is

si gni ficantly lar ger than it should be; indeed, Eq.(6.21) predicts Kcx=K13:=6.41 
(note that this value accounts for the "missin g" factor of two discussed 

above). 

Further evidence that the sensor is in the turbulent wake, can be found in 

the data of Table 9-7 which shows computed values of B0• A gain, this table was

compiled using dual-racetrack data; recall that for this to work, the value of 

K13 must be preset, in this case to 8.5.

10 
'bO G) 

5 s 
� 

0 "0 
c= ClS -5 � 

-10 
0 16 32 48 64 

Time (sec) 

Fig 9-4. Drift angled (dark line) and slip angle P (light line) during a yaw

maneuver executed on N42RF, s calibration flight on 8/10/89.
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H r
(f e et) 

15. OK 
12. OK
10. OK

8. OK
5. OK
1. SK

Bo
(d eg) 

0. 063
0. 236
0. 020
0. 143
0. 096

-0. 097 

Av e rage 0. 07 8 

Tab 1 e 9-7. Noisy B0•

It is easily verified that the estimation procedure (8. 5) for B0 is both

accurate and statistically stable (e ven with an incorrect value of K£3). 
Howe ver, the computed values of B 0 are quite noisy compared to those of A0,

leading use to the conclusion that the slip measurement is unstable. This 

behavior has consistently been obser ved with both aircraft. 

In addition to unstable fluctuation, there is also a persistent nonlinear 

distortion. To demonstrate this we use 1989 calibration data acquired from a 

circle maneu ver consisting of three circles to the left ( -30° roll) followed

by three circles to the right ( + 30° roll), flown at about 1. 5K ft, prior to

the staircase and with constant power. A scatter plot of heading versus 

groundspeed (mean remo ved) is gi ven in the upper cur ve of Fig. 9- 5. The strong 

sinusoidal beha vior is the result of the aircraft ad vecting with the mean 

flow. In particular, minimums occur when the aircraft is flying against the 

wind and maximums occur when flying with it; according to the plot, wind is 

from the east and off the water. Also wind speed can be deduced as about half 

the peak-to-peak variation which is about 3 m/s. It is fascinating that so 

much information can be inferred from INS data alone. 

Next, the track and cross-track components of the horizontal wind [see 

Eq. (8.9)], are shown in the lower plot of Fig. 9- 5. Here the track component 

(dark cur ve) is balanced across both sets of circles; howe ver, the cross-track 

component (light cur ve) changes in the mean by nearly 1 m/s. At this point, it 

is use ful to recall that the track component depends primarily on true 

airspeed while the cross-track component depends primarily on flow angles. We 

can therefore conclude that one (or both) of the flow angles is incorrect, 

"But which one?" 

For a more detailed analysis, we use the modeled angles a0 and p0 computed

in (8.6). Recall that these angles depend primarily on INS data, with a weak 
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Fig. 9-5. Upper graph: Scatter plot of groundspeed with mean removed (U -<U >)H H 
vs. heading during a circle maneuver on N42RF' s calibration flight on 8/10/89. 

Lower graph: Track component (U() and cross-track component (Ux) of the

computed horizontal wind (dark and light lines, respectively) from the same 

circle maneuver. 
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Fig. 9-6. Upper graph: Attack angle a (dark line) and modeled attack angle a0
{light line) during circle maneuvers on N42RF• s calibration flight on 8/10/89. 

Lower graph: Slip angle P (dark curve) and modeled slip angle p0 (light line)

during the same circle maneuver. 
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dependen ce on true airspeed T. Basically, they function much like pitch and 

drift, but are designed to work in the presence of roll; in particular, they

tend to agree with attack and slip on the average. We next refer the reader to 

Fi g. 9-6; in the upper plot, a0 is compared with a, and in the lower plot, P0
is compared with p. Observe that attack effectively goes down the "middle" of 

a0 as it should, but slip is defective in this respect. Thus, error in the

cross-track component can be traced to a faulty slip angle. 

So what if anythin g can be done? Clearly, the best answer is to relocate 

the slip sensor to a position well in front of the cockpit (e.g., a radome 

sensor). Short of this, calibration for roll, as ou tlined in Sec. 7, is about 

all 
. 
that can be done. In this respect, a preliminary in vestigation wi th the 

same circular data, showed that errors can be re duced by about a factor of 

two. Nonetheless, such procedures cannot solve the instability problem 

mentioned earlier, and we are led to the conclusion that roll calibration is, 

at best, a "band-aid" solution. 
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10. ADIABATIC AND HYDROSTATIC APPROXIMATION
Considera ble insight into the equations for adiabatic change can be gained 

fro m their first-order approximations. Often complicated expressions simplify 
in ways that make interpretation easier. Such approximations are also use ful 

in error-correcting procedures. Of special interest is the adiabatic 

correction required to transform a dynamic pressure from the wing tip to the 

fuselage. In tandem with this, the hydrostatic approximation is used to

transform wing-tip static pressure to the fuselage. 

To begin, we introduce ·the quotients Q =q /p and Qt=q lpt which ares c s c 
small, dimensionless quantities, central to this analysis; in particular, 

Ptlp8=1+Q8 and p81pt=1-Qt. In addition, we need the binomial theorem which

says that for any real number (/) and lxl<1, (1+x)w has the following

Taylor's series expansion: 

(10.1) 

J 

(1 +x)w = 1 + wx + w ( w-1) x2 + w(w-1)( w-2) x3 + ...
2 • 1 3•2• 1 ' 

= 1 + wx + O(x2) 

where the notation O(x) is used to denote a function or error term that

re mains bounded as x goes to zero. Thus, f(x)=O(x) means there is some

constant A so that lf(x)l < A  lxl for x sufficiently small. Examples are

cos(x)=1+0(x2), sin(x)=x+O(x3), and 1/(1-x)=1+x+O(x2>. (Note that the "0"
notation does not distinguish between terms that differ by multiplicati ve 

constants.) 

As a first application, we apply this to the a dia batic condition ( 7  .2) 

relatin g temperature and pressure. Actually, there are two ways to do this 

(10.2a) TIT =(p lp )(y-1)ly =(1-Q )(y-1)ly = 1 -(y- l)Q ly+O(Q2)s t  s t  t t t 

(10.2b) TIT =(p lp )(y-1)ly =(1+Q )(y-1)ly = 1 +(y-1 )Q ly+O(Q2) t s  t s  s s s 

Clearly, the first approximation (10.2a) is the better of the t wo because 

Qt=qcl(p8+qc) is unifor mly smaller than Q8=q/p8•
Mach number Here, we approximate the the Mach number (squared): 

M2 =_3_ [(1+Q )(y-1)ly_1] =�Q +O(Q2)
y-1 s , s s 

which says that, to first order, Ail is proportion al to Q . An immediates 
consequence is that the pressure calibration model (7.14), when written in the 

for m p =p (1+K q /p \, is essentially a Mach num ber dependence.s s, m p c, m s, m' 
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10. Adiabatic and Hydrostatic Approximation

Adabatic Heating Recall from Sec. 3 that (y-1)/y=R/cP which together

with the ideal gas law can be used to rewrite (10.2a) in the form: 

qc e: ptc/Tt -Ts) •

Taking differentials of both sides of this equation, with T held fixed thens 
gi ves 

( 10. 3) 

which is similar to (4. 7), except that now p is replaced with pt. (Note that

to tal quantities pt' pt, and Tt usually work better in adiabatic

approximations.) This relationship is graphically illustrated in Fig. 10-1 

which shows data from the dual-racetrack maneu ver for the SK ft le vel of the

1989 calibration discussed in the pre vious section. The dark cur ve is dynamic 

pressure qc and the light line is total temperature Tt after means have been

removed; additionally, total temperature has been rescaled by a factor of 10 

for graphical display. The jumps or steps in these quantities correspond to a 

change of (indicated) airspeed from 180 kt to 240 kt. With nominal values of

6 
L- 10

8/10/89 
14: 13 - 14:28 

0 
..... 
* 0
�..., 

.. 
,...... 

-10'8 ._, 
u 

-20 � 

-30 
0 5 10 15 

Time (min)

Fig 10-1. Vingtip dynamic pressure qc (dark line ) and total temperature Tt
multiplied by 10 (light line) during a change of indicated airspeed from 180 

kt to 240 kt. Means have been removed from both quantities. 
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10. Adiabatic and Hydrostatic Approximation

0.01 (10-g/m
3

) and 1000 (J/kg-°K) for pt and cP respecti vely, we get the
approximate relationship L1 q c :: 10 L1 T t, explaining the scaling used in the

figure. Note, in particular, that such temperature changes are due to dynamic 

heating and must be remo ved to obtain static temperature Ts. 
Adiabatic q

c We next work backwards from the true-airspeed equation to

obtain the adia batic analog of q=�p s r:2 used with incompressi ble fluids. In

detail, (10.2a) com bined with the true-airspeed equ ation (5.10) gi ves: 

1 2 2r: =c/Tt -Ts) =cPTt (1-T/Tt) a:cPTt (RicP)Qt
=(TtR/pt)qc =q/Pt ' 

and sol ving for q yields the wanted result:c . 

(10.4) I qc "'iPti

Thus, the essential change has been to replace static density p with totals 
density p t; otherwise said, q c =(p t/ p s) q .

Wingtip Corrections for qc 
With this background, we now turn to the

problem of correcting dynamic pressure for extraneous motions. To fix ideas, 

suppose that because of changing attitude angles, a probe mounted on the wing 

tip measures the true a �rspeed 1:, but the (hypothetic al) true airspeed at some

other point on the aircraft (e.g., the INS) is r-L1r:. Then, according to

(10.4), incremental change in dynamic pressure is related to incremental 

change in true airspeed by the equation: L1 q c = p t r: L1 r, and the corrected value

qNEw of dynamic pressure qwiNG on the wing tip is:

(10.5) I qNEw=qwrNo-ptrLI..- 1 . 
Because 1: depends on q, this equation is, implicitly, nonlinear. Howe ver, when

processing sequential data, the pre vious value of f works well. In low-wind 

situations (hurricanes excluded), r:= IIU0 11 also works. 

It remains to estimate Llr:. Recall from (3.7) that an estimate Ar:=r: -r: ofw n 
the difference between true airspeed on the wing tip and near the nose is the 

dot product Llr:::: -i •(L1 U-L1 U) where i is the relati ve-wind direction andr, n w n r, n 
where L1 U and L1 U are the incremental velocities due to changing attitudew n 
angles. Another estimate is: 

(10.6) 
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10. Adiabatic and Hydrostatic Approximation

which has considerable geometric appeal; it says that the difference in true 

airspeeds at different points on the aircraft is about the same as the 

difference in groundspeeds. Verification again uses the binomial theorem. 

Indeed, the first term on the right containing L1 U can be approximated:w 

IIU0 +L1wUII = IIU0 ll ( 1+2U0 •L1wU!IIU0 ll2+llL1wUII21IIU0 ll2) 
1/2

= IIU0 ll ( 1 +2U0 •L1wU!IIU0 ll2) 
= IIUoll + (Uo •L1wU) !IIUoll 
= IIUoll + io •L1wU

1/2 

where i0 =U0 /IIU0 11 is the direction of aircraft motion which, in horizontal

flight, is the same as the track direction. The term containing L1 U isn 
similar, and (10.6) becomes L1't' := i0•(L1 U-L1 U) =i0 •L1 U;. in particular, thew n wn 
groundspeed IIU01 1 cancels in the difference. But, to first order, this is the

same as (3.7) because i0 and· -i typically agree to one, if not two,r,n 
significant digits. Thus, ( 10.6) is a valid, first-order estimate of Ll't'. In

retrospect, we can now better appreciate the complexity of the exact solution 

(3.6). 

";;' 
� 
e 8/10/89 

12: 12 - 12:27 
t; 0.5
0 
a 

0.0 
� ... 

CJ -0.5� 
I 

� ... 
CJ -1.0� .._ 

-1.5 
0 5 10 15 

Time (min) 
Fig. 10 -2. Difference between uncorrected wingtip dynamic pressure q andc,w 
uncorrected fuselage dynamic pressure q f (light line), and the samec, 
difference after correcting the wing tip q for motion (dark line). Means havec 
been removed from both quantities. Data is from circle maneuvers performed on 

N42RF's calibration flight on 8/10/89. 
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10. Adiabatic and Hydrostatic Approximation

This correction procedure is graphically illustrated in Fig. 10- 2. Here 

data is from the �arne calibration consisting of three circles to the left 

followed by three circles to the right, discussed in the pre vious section. The 

light cur ve shows the difference . in dynamic pressures as measured by the 

(left) wing tip sensor and by the fuselage sensor. Because the left wing tip 

travels slower in a left turn and faster in a right turn, there is an abrupt 

jump when circles are re versed. The dark cur ve is then the result of applying 

(10.5) and ( 10.6) to correct the wing tip pressure by translating it to the 

INS. In this way, the jump is almost entirely remo ved (dark curve), 

demonstrating the high precision of this correction. 

True-Airspeed Errors · It is now easy to analyze sensiti vity of true

airspeed to errors in dynamic pressure. As a test c ase, we choose a nomirial 

airspeed -r of lOOmis and pt =0.0 1 (10-g/m
3

). Again using the differential of 
I 

( 10 .4): L1 q c =p t -r L1 -r, we see that an accuracy L1 -r of 1 m/s in true airspeed

requires an accuracy of (about) L1q=l.O mb in dynamic pressure.

As a check, we again use the circles of the above example. Now, because 

the wing tip sensor is about 15 m from the INS and because a circle requires 

about 2 min to complete, the rotational velocity L1 1 of the wing tip is about

15 x2n/120 or 0.75 m/s. In addition, present analysis predicts a change of 

about 0. 75 mb in q which is close to what is observed in Fig. 10- 2 .c 
Next, we analyze humidity-dependent errors. Here, required accuracy in 

vapor pressure e can be estimated from related error in density p t =p d +p v where

Pv=e/RTt. To this end, we again take the differential of ( 10.4), this time

allowing <Jensity to vary as well: 

1 2 L1qc = 2L1pt 'r + Pt -rL1-r • 

Furthermore, pt=Pi1+1f) where 1f=P/Pd is the mixing r atio, and .so 

L1pt :::. p d Ll'lf = Pt Ll'lf/(1+1f) := A 'If Pt .
=> �L1pt i = Ll'lf[Pt -r2

/ 2] = L1qqc
Howe ver, errors in p t do not effect qc (because dynamic pressure is an

independent measurement); thus, L1q =0 and the following dependence results:c 

(10.8) I qcL1, = -pt -rL1-r I . 
Note that underestimating the vapor pressure (L11f<O) results in computed true

airspeed -r being too large. For the test case used above and values of 50mb

for q and Ll'lf=-0.02 ( -20g/kg), the error A-r is about 1 m/s. Also, this mixingc 

L r 
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10. Adiabatic and Hydrostatic Approximation

ratio corresponds to about 3 0mb of vapor pressure at sea le vel which is not 

uncommon to moist climates. Consequently, neglecting vapor pressure can lead 

to errors in excess of 1 m/s. 

Temperature Calibration The temperature calibration equation ( 7. 7) can be 

approximated to obtain a simpler model. First, apply the binomial theorem to 

P =(p /p )(y-1)/y to get
r s t . 

1-P = 1-(1-Q /Y-1)/y = y-1 Q +O(Q2) 
r t y t t ' 

which, in tandem with 1/(1-x) = 1 +x, results in the following first-order

estimate: 

Tt ::T (1+K y-1Q) t, m T y t 

where, as abo ve, KT =1-r . Note that the difference between this and the exact 

equation is a second-order term of the form O(Q�)·Tt,m· To verify the accuracy

of this approximation, computer simulations show that with a reco very factor 

r=0.95 (K =0 .05) , the maximum error for Mach numbers M s 0.5 is (1.44E-4) · Tt ,T - � 
and this error is reduced to (3. 15E-5) · Tt when K is replaced with K = 1.05 • ,m T T 
KT. (This modification. works because of convexity in the underlying 

mathematical functions.) In short, this approximation is sufficiently accurate

for direct use as a calibration model. 

Wingtip Corrections for Ps It should be clear that laws go verning

adiabatic change do not generally apply to the atmosphere, and static 

corrections are based on a different set of physics. Here the model is that of 

a motionless fluid, go verned by the hydrostatic equation: 

(10.9) I dps =-psgdz I 
where g is the acceleration of gra vity . . This equation is recognized as the 

vertical component of the Euler equation (5.4) for a wind-free atmosphere; it

is the first-order balance between pressure, density and altitude. We obser ve 

that (10.9) is directly applicable to correct static pressure for differences 

in elevation, e.g., for sensors on the wing tip. The most accurate way to

compute Liz is with the transformation G of Sec. 1 . Howe ver, for a sensor at

position -t-, this difference depends primarily on roll cJ> and can be estimated:

Liz :: 11-t-11 sin l/> 
where 1 1-t- 11, as before, is the distance to the INS.
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10. Adiabatic and Hydrostatic Approximation

Vertical Aircraft Velocity For an ideal gas, (10.9) can be expressed: 

(10.10) dz =-(Rig)Ts (:� s) 
which, when differenced in time, gives the vertical-velocity estimate: 

(10.11) 
A _, (1 dp )W0 = -(Rig)T8 p ats 

s 
which can be used to "stabilize" the vertical-wind computation. 

Pressure Altimetry As was seen in the calibration data of Fig. 9-1, the 

relationship between pressure and altitude is quite predictable. However, to 

infer altitude from pressure, temperature information is also required. For 

this purpose it is common to model the troposphere as having a constant lapse 

rate r which simply means that temperature can be modeled T s =T0-rz where T0 is

some reference value. But then, (10.10) can be rearranged: dp lp 
� s s 

= -(g/R)dz!T , and a simply integration givess 
� gi(FR) ( rz )gi(FR)

p /p = (T IT) = 1--.,.-s o s o .�0 

Finally, replacing z with H and solving gives the pressure altitude equation: p 

(10.12) H = (T /1)[1-(p lp )FR/g]
p 0 s 0 

which is an estimate of height H above mean sea level. Note well that this 
p 

estimate is not designed for high accuracy. Rather, it is used more as a 

standard, for comparison with in-flight parameters. Commonly used values are 

T0
=288.16°K (15°C), F=0.0065°K/m, and p0=1013.25mb (sea level), in which

case To'F=44332, FR!g=0.19025, and H
P 

is in meters.

Another estimate of vertical aircraft velocity can be obtained by 

differencing pressure altitude (10.12). We leave it as an exercise to show 

that this leads to the same estimate as (10.11), but with T replaced by
� s 
T 8=T0-rz. The author has no explanation as to why this seemingly inferior

estimate is used so often in practice. 
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11. P-3 DATA ACQUISITION

In its simplest form, data acquisition can be thought of as little more 

than recording data for subsequent use. In this context, it might seem that 

the only difficulties would be technical ones related to the mechanics of 

moving data around. In actuality, data acquisition is one of the most complex 

topics in signal processing, with a whole theory to support it. Important 

aspects of this theory are discussed in App. D. Of particular interest here is 

how symmetric filters are used in ·"near real time" to prefilter data prior to 

sampling. Also, aliasing problems related to computation are discussed. 

The main difficulty with data acquisition comes in trying to represent a 

continuous process with a discrete sample. Clearly, it is impossible to 

capture all the information with instantaneous points; important features may 

be skipped over or omitted when the step size is too coarse. The problem, 

therefore, becomes one of obtaining discrete samples that are, in some sense, 

statistically representative of the greater whole. The basic idea is to 

average the continuous data into discrete values which are then attached to

the time-series grid. Again, such averaging can be modeled with convolution 

and, again, convolution is the same as filtering. 

Aliasing Intuitively, the effect of incorrect sampling is to introduce 

noise. However, when (almost) periodic functions are sampled with too large a 

step size, the result is another (almost) periodic function; the difficulty is 

that it is the wrong one. One periodic structure has been aliased into 

another. This is what happens when the spokes in wagon wheels appear to move 

backwards in a western movies; the frame rate is too slow to keep up with 

actual motions. From the standpoint of data acquisition, it would be better to 

blur out aliased motions, say, with long exposures. But, this is just another 

way of saying that it would be better to average or prefilter the aliased 

images before they are recorded in discrete form. 

The mathematical explanation of aliasing begins with the observation that 

1 . 
l 2 

. 
d

' ik(w+2n) ikw h h h 
. 

comp ex exponentla s are n per10 IC e =e ; t us, w en t e continuous

functions eiwtand ei(w+2n)t are sampled at times t=k, results are identical.

More generally, an improperly sampled component will get folded mod(2n) so 

that it (falsely) appears as a component in the interval [-n,n]; the end point 

n of this interval is called the folding or Nyquist frequency (in radians); by 

periodicity this is the same as -n. Strictly speaking, the Nyquist 

component is not aliased. Nonetheless, it exhibits a related form of 

uncertainty. Observe that a time series x(t)=cos(nt+QJ) sampled at times t=k 
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results in the Nyquist component of alternating numbers: 

xk = x(k) = cos(nk+cp) = (-l)
kcos(cp)

Thus, a sample of finite length will have energy proportional to cos
2(cp). But,

phase cp is a random variable and dependent only on when the "clock" was 

started; consequently, energy is also a random variable making the finite 

sample ambiguous. We conclude that, like other aliased components, the folding 

frequency is unsuitable for analysis. 

Normalization A discrete sample xk of a process x(t) is usually modeled

as x
k 
=x(k.Lit) where the sampling increment or .interval L1t has units, say, of

time; here, the sampling rate is 1/.Lit. However, when working with discrete 

samples, .Lit is a nuisance parameter that is usually "scaled out" to obtain 

normalized time t =t/.Lit. To see how frequency OJ is normalized, we observe N N 
that true components and normalized ones must be the same 

A cos (OJt+cp)=A cos (OJ t +cp); thus, OJ t =OJt and so OJ =OJ t/t =OJ .Lit. NN NN N N 
Additionally, true frequency f, measured in · Hertz (cycles-per-second), is

related to radian frequency as OJ=2nf and the normalized value is fN=f At. In

particular, the normalized folding frequency f
N 

= 1/2 corresponds to a true

folding frequency of .f=1/(2L1t) Hz. For example, a 1Hz sampling rate

(.LIt= 1. 0 s) has a l/2 Hz folding frequency while a 10 Hz sampling rate

(.Lit=0.1 s) has a 5 Hz folding frequency. 

For a discrete sample, the normalized folding frequency has the simple 

interpretation of always being two sample points long. However, when a 

discrete time series is subsampled there are two folding frequencies, one for 

the given time series and another for the subsampled one, and this can lead to 

confusion. 

Aircraft Data Acquisition The data-acquisition scheme used with the P-3's 

is designed to produce data at several different rates; data can be sampled at 

the "slow" rate of 1 Hz (1 point per second) and the "fast" rate of 80Hz, 
with an intermediate rate of 10 Hz. Basically, all analog data are prefiltered 

with a four-pole Butterworth filter prior to sampling at the fast 80Hz rate;

in turn, slower samples are obtained through decimation by digitally filtering 

and then subsampling the "fast" samples. In more detail, the Butterworth 

filter shown in Fig.ll-1 is a standard (four-pole) analog filter that 

attenuates the 40 Hz frequency component by about an order of magnitude 
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Fig. 11-1. Frequency response of the four-pole Butterworth filter used to 
prefilter all P-3 analog data.

(20 dB);. additionally . the half-power point (3 dB) occurs at about 22.5 Hz.

(Recall that an 80Hz sample rate corresponds to a 40Hz folding frequency.) 
Next, to obtain the 10Hz rate, data are digitally averaged ("box-car" 

averaged) and subsampled. Although this may seem naive, it is useful because 

some instruments produce digital outputs at different clock speeds, and simple

averaging is easily modified to accommodate this. Ideally, all data are 

brought into sync with a single clock in this way. In any cas_e, the

interesting step is in going from the 10Hz rate to the 1 Hz rate; here, a

triangular filter T
20 

having 20 coefficients

(11.1) (1�2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7,6, 5,4, 3,2,1)/121 

is used. Because coefficients sum to unity, T
20 

leaves constant sequences

unchanged. Also, this is a symmetric filter provided that resulting values are 

recorded as delayed in time (by 0.95 s from the end). Also, because the filter 

uses 20 values (0.1 s of data per value), the resulting 1Hz time series has

adjacent points that are correlated. (More precisely, white noise sampled at 

10Hz, prefiltered, and subsampled at 1 Hz will have a lagged correlation of

417�0.57 .) Nonetheless, alternote points remain statistically independent. 
Of practical importance is that T

20 
is both easy and efficient to 
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11. P-3 Data Acquisition

implement. Consider the following FORTRAN loop: 

Sl=O. 
S2=0. 
DO 100 K=1,10 
Sl=Sl+X(K)

100 S2=Sl+S2 

On exit from this loop, S2=10X(1)+9X(2)+· • ·+X(lO) and so

X(1)+2X(2)+•••+10X(10)=11*S1-S2 

The sum S3=10X(11)+9X(12)+· • ·+X(20) is computed in analogous fashion from the

remaining 10. points and T20 is computed as

(11.2) T20 = [ll*Sl - S2 + S3]/121
= [Sl - [S2-S3]/11]/10 

Thus, only two multiplications are required and shows that, T20 has an

efficient implementation. 

Frequency Response At this point, the reader is referred to App. C for a 

discussion of basic filter concepts such as the frequency response. Our 

objective here is to compute the frequency response &lT20(w) of T20. The

pivotal fact is that the composition T=A A of an N-point running-averageN M . 
filter AN with an M-point running-average filter AM is a filter T with N+M-1

coefficients in the shape of a trapezoid. In the special case when N=ltf., we get 

a triangle with a single vertex; for example, 

where Q is the shift operator Qxk=xk+l: Similarly, when N=M+1, the filter is a 

triangle with two "vertices"; in particular, T20 is the product T20=A10A11. 
To continue, we need the responses of the filters AL. The easier

computation is for the case when L is odd L=2N+ 1 because then the

running-average filter is centered and can be summed like a geometric series 

A = 
1 \'

N
Qk = 

1 (�+ 1!2_ Q-N-1!2)
L L kb-N L ( Q112_ Q- 112) 

In turn, the response, say at , of A is computed by replacing Q with eiw:L L 

(11.3) 1 N 
ikw 1 (ei(N+1 / 2 )W_e·i(N+1/2)W)

RL (w) = L L e = L 
( iw/2 -iw/2)k=-N e -e 
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_ sin L(J)/2 
- L sin(J)/2 

When L=2N is even, the computation of R ((J)) is somewhat more involved, but theL 
result is still the same. 

Next, the convolution theorem [see (C.15) of App. C] gives M
10

M
11 for the

response MT20 which would be the answer except that decimation from 10Hz to

1Hz must also be included; thus, 

al
T20((J)) =allO((J)/10) al11 ((J)/10) .

Finally, the response of our data acquisition must include the averaging used 

to go from 80 Hz to 10Hz. This is yet another averaging filter with response 

M8(w/80). Consequently, the total response M
D(())) of our digital filter is

aeT20((J))ae8((J)/80) or

(11.4) [ sin (J)/2 ] [ sin 11 (J)/20 ] [ sin (J)/20 ]ae
D((J)) =

10Sln (J)/20 11 Sin (J)/20 SSin (J)/160 

This is the response of a symmetric filter provided only that resulting data 

are recorded as delayed in time. As noted above, computation of the triangle 

filter results in data being 0.95 s too slow, and decimation from 80Hz to 

10Hz accounts for another 3.5/80 s; thus, total delay is 0.99375 s. 

Analysis of Data Acquisition The response (11.4) is shown in Fig.ll-2 for

frequencies between zero and three Hertz with a folding frequency of 1/2 Hz. 

Also shown is the sine function sinc2(J)=(sin2(J))/(2(J)) which is essentially 

what the filter would be like if the triangle filter were replaced with simple 

averaging; note, that our filter significantly reduces the (aliased) peaks or 

lobes. Finally, the circles are the result of a test in which data of known 

frequency content was used as input; because data was analog, the (negligible) 

effect of the Butterworth filter is also present. Although agreement is not 

exact, it is within experimental error. 

To continue, we observe that the most serious aliasing occurs close to the 

folding frequency of l/2 Hz, and the interval [l/2 Hz, 3/4 Hz] gets folded or 

reflected back onto the interval [l/4 Hz, l/2 Hz]. By contrast, there is 

little aliased data to fold back to low frequencies around 0 Hz. Consequently, 
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- Sine function 
Theoretical filter 

0 Laboratory test 
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Frequency (Hz) 

3.0 

Fig. 11-2. Frequency response of the digital prefilter used to obtain "slow" 
1-Hz data from "fast" 80-Hz data (light line), and frequency response of the 
sine function, sinc2a>=(sin2CtJ)/(2CtJ) (dark line). Circles are the result of a 
test in which data of known frequency content was used as input. 

residual effects of aliasing are largely confined to the interval 

[l/4 Hz, l/2 Hz] and another low-pass filter can be applied later to the 

final, "slow" data to remove the contaminated area. More generally, "The 

option to further reduce aliasing, in post-processing procedures, only works 

if the data-acquisition filter is approximately zero around multiples of twice 

the folding frequency (of the subsample). 

Comparison with P-3 Processing With this background, we can better 

evaluate P-3 data acquisition. The important comparison is between the P-3 

prefilter shown in· Fig.ll-2 with the "optimal" prefilters derived in App. D 
and shown in Fig. D-1. Because P-3 data is acquired using a 14-bit 

analog-to-digital converter (ADC), precision is about half that of standard, 

single-precision arithmetic (23 bit mantissa), and the optimal prefilter 

corresponding to p=4 is a better choice for this comparison. All things 

considered, the P-3 prefilter is rather humble compared to the p=4 prefilter; 

the passband is not very flat and the transition is too slow. Nonetheless, it

is monotone in the passband and has a similar geometric character. Efficiency 

and speed were important factors in its choice; limited resources prohibited 
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anything much more complicated. We conclude that the P-3 prefilter is of sound 

design, but there is room for improvement.

Computational Aliasing This is a sinister problem that generally impacts 

all nonlinear computations ,on discrete grids. The difficulty is that nonlinear 

operations tend to generate higher-frequency information, some of which cannot 

be accurately represented on a fixed grid; unless care is taken, these high 

frequencies can alias back and contaminate computed answers. This problem is, 

perhaps, best known in numerical modeling where nonlinear equations tend to 

generate a cascade of scales that, eventually, cannot be resolved. 

To be more specific, consider the (normalized) time series x(t)=cosw1t

and y(t)=cosw2t. From the trigonometric identity:

(11.15) cos()) 1 t cos (JJ 2t =�[cos ( ()) 1 +(I) 2)t + cos ( 0) 1 -(I) 2)t] '

we see that the product x(t)y(t) results in sum and difference frequencies. 

Consequently, even though we may start with unaliased samples xk =x(k) and

yk =y(k), the product will be aliased whenever w1 +w2 > n. 

So how does this impact us? Recall that wind computation requires a number 

of multiplications of data dependent quantities. True airspeed is multiplied 

with flow-angle data which is then rotated into geodetic coordinates, and this 

rotation requires three more multiplications. Clearly, the potential for 

trouble is high. We emphasize, however, that neither the extent nor the 

magnitude of the problem is very well understood. 

Practical Considerations In App. D it is shown that computational 

aliasing can be controlled with interpolation and filtering. Although theory 

is definitive, required procedures are tedious, especially with large data 

bases (e.g., lOhr of aircraft data). Consequently, we here explore a 

compromise. To begin, we observe that an easier, but less accurate, way to 

reduce computational aliasing to simply filter before computation. The 

difficulty here is that aliasing is suppressed at the expense of discarding 

some "good" data as well. At this point, we recall that our data acquisition 

(11.4) leaves some data aliased anyway, and additional filtering can be 

justified on this basis. Thus, application of a lmv-pass filter will improve 

both problems. But, what filter? In view of discussion following (11.14), the 

Hanning filter is an obvious choice; it is the simplest filter consistent with 
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11. P-3 Data Acquisition

SiDe function 
1-Hz data acquisition 
Anti-aliasing ftlter 

0.5 1.0 

Frequency (Hz) 
1.5 2.0 

Fig. 11-3. Frequency response of the sine function sinc2(1.)=(sin2{l)}/(2c;o} (dark 
line), of the digital prefilter used to obtain "slow" 1-Hz data from "fast" 
80-Hz data (light line), and of the "anti-aliasing" filter--the digital 
prefilter used in combination with the Hanning filter (dashed line). 

above theory. In particular, the Hanning filter has response cos2((1.)/2) [see 

Appendix C (C.3)], and vanishes at the folding frequency. Finally, the net 

effect of using this filter in tandem with our data-acquisition filter is 

shown in Fig. 11-3 where it is there labeled as an anti-aliasing filter. This 

terminology is justified for two reasons: first, it suppresses aliasing 

remaining after data acquisition and reduces phase problems, and second, it 

safeguards against computational aliasing, especially in wind computations. 

The improvement in phase problems is seen in Fig. 11-4, where the coherences 

of temperature T, ·static pressure p s, and dynamic pressure 'lc are plotted with

(dark line) and without (light line) the anti-aliasing filter. These 

coherences were computed using 31-point averages. In any case, we emphasize

that there is no reason to believe that simple procedures of this kind are 

adequate. Much research remains. 
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8/10/89 
10:21 - 10:25 
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Frequency (Hz) 

Fig. 11-4. Coherence }(2 of the two total temperature sensors (Tt,1
, T

t,2
),

wingtip and fuselage static pressures (P , P 
f), and wingtip and fuselages,w s, 

dynamic pressures (q , q f) computed with (dark line) and without (light
c, w c, 

line) the anti-aliasing filter. 
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12. CORRECTIONS WITH FILTERS

Calibration methods provide one way of improving accuracy in acquired 

data. However, such methods are applied point-wise and are limited in extent 

to rescaling measured parameters. We here explore another set of methods based 

on filtering theory, where one mixes two measurements of the same thing to 

obtain the best features of both. A short list of applications is 

(1) Correcting horizontal navigation with LORAN-G or GPS. 

(2) Correcting vertical navigation with radar altimetry or GPS. 

(3) Correcting wingtip pressures with fuselage pressures. 

(4) Correcting Lyman-Alpha humidiometers with cooled-mirror 
hygrometers. 

For example, in (2), inertial navigation and radar altimetry both supply

information about vertical position, but not with the same accuracy; one 

instrument (the INS) is accurate at high frequencies, the other (radar 

altimetry) is accurate at low. The "optimal" blend then consists of data that 

is accurate everywhere. The mixing filter technique has broad application and 

has been used by many others in aircraft science. Some of the first use (1) 

were Gray (1965), and Shapiro and Kennedy (1981); (2) has been documented by 

Jorgensen et. al. 1985; (3) has been used in P-3 processing (see below); and

(4) is as yet untried. 

We begin with an overview of some technical aspects of filtering. A 

short list of relevant issues is: 

•Editing?
(a) Shot noise.
(b) Poor SNR.

•Operator type?
(a) Linear
(b) Adaptive.

•Classification?
(a) Lowpass.
(b) Highpass.
(c) Notch.

•Characteristics?
(a) Passband.
(b) Stopband.
(c) Lobes.

•Symmetry?
(a) Predictive.
(b) Symmetric.

•Missing data?
(a) Least-square curves.
(b) Filtered interpolation.

•Boundaries?
(a) Neglect.
(b) Least-square curves.
(c) Mirror-images.

•Implementation?
(a) Versatili ty.
(b) Memory.
(c) Speed.
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12. Corrections with Filters

Editing Because filters operate globally, they can propagate noise in 

undesirable ways. This is especially true of shot noise which is characterized 

as being very large, but of short duration. Clearly, it is advantageous to 

remove this and other sources of error prior to filtering, so that effects do 

not spread. A statistical procedure for doing this is discussed in App. H. 

Operator Type A linear filter A is an operator that satisfies 

A[ax+by]=aA[x]+bA[y] where a and b are scalar constants and x and y are

time-series data; all filters used here are of this type. By contrast, 

adaptive filters are designed to change or adapt to a given time series and do 

not have this property. Although they are useful in certain applications, such 

as for computing Doppler shifts, they are not recommended for general use and 

will not be further discussed here. 

Filter Classification The most commonly used filters are lowpass, 

highpass, and notch. Lowpass filters are used for smoothing and with data 

acquisition; an algorithm useful to our needs is given in App. F. Highpass 

filters are the opposite of lowpass filters and can be computed by 

differencing data with a lowpass filter; highpass filters are often used to 

remove slowly varying trends. Finally, notch filters are used to remove 

erroneous oscillations at a specific frequency. 

Filter Characteristics Filters are often specified with a passband, a 

stopband, together with a transition region. The passband characterizes which 

frequency components should remain unaltered, and the stopband specifies which 

ones should be attenuated. In particular, the stopband puts limits on unwanted 

peaks called lobes. As a rule, the sharper the transition and the smaller the 

lobes, the harder the filter is to implement, requiring more coefficients. 

This topic is more fully discussed in App. D where certain ideal filters and 

their approximations are studied in some detail. 

Symmetry Most filters in use are either predictive or symmetric. 

Although symmetric theory is generally more powerful and easier to understand, 

real-time methods so dominate the literature that symmetric ones have all but 

been forgotten. We demonstrate the essential difference with data from a 

cooled-mirror, dew point hygrometer, taken with N43RF on 12/9/87 as part of 

OCEAN STORMS experiment (based in Seattle Washington). Five minutes of data 

are shown in Fig. 12-1; they are badly contaminated by a feedback oscillation 

that controls the cooling of the mirror. This oscillation is known to be 

fairly stable with a frequency of about 0.175 Hz, and can be removed with a 
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12. Corrections with Filters

12/09/87 
2:13 - 2:18

- 2-sided filter 

c -1.0 

-2.0�----�----�--------�--�--------._�� 
0 200 300 

Time (min) 

Fig 12-1. Top graph: Raw dew point (light line) and dew point corrected using 
a 1-sided filter (dark line) for a 5-minute portion of a flight when the dew 
point sensor suffered an oscillatory feedback error. Bottom graph: Same as the 
top graph, but the filtering has been performed with a 2-sided (symmetric) 
filter. Note that the 1-sided filter shifts peaks in the data, while the 
2-sided filter does not. 

notch filter. The superimposed dark curves in the upper and lower parts of 

Fig. 12-1 are the result of applying predictive and symmetric filters

respectively. More precisely, the lower curve is the result of applying the 

same predictive filter, both forward and backward in time, and averaging. We 

observe that the predictive method tends to move peaks around, producing a 

distortion. By contrast, the symmetric method leaves peaks where they belong, 

and gives the better answer. In App. C it is shown that this is characteristic 

of the general case, and proves that symmetric filters are superior for 

. post-processing applications. 

Missing Data Missing data is a problem that arises surprisingly often; 

it can result from editing, poor signal-to-noise ratio (SNR), or equipment 

failure. In spite of this, there appears to be no theory that addresses the 
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12. Corrections with Filters

problem in any comprehensive way, most likely due to its complexity. At the 

same time, high-order filters cannot be used with missing data, and neglecting 

the problem is a poor option. 

So, "What can be done?" The obvious solution is to fill in missing regions 

with interpolation. But, standard interpolation schemes are often unsuitable 

when data are noisy and/or missing regions are of long duration. In 

particular, system failure during the course of a flight often results in 

large noise spikes adjacent to the very regions that need fixing. To gain 

some insight as to what to do, consider the approach of filling in missing 

regions by fitting least-square curves. In principle, this can be viewed as a 

statistical interpolation scheme that reduces uncertainties due to noise. 

However, curve-fitting procedures c�n be awkward to use because missing 

regions tend to occur randomly, in unexpected ways; regions can be of long 

duration (like half a flight) or short and frequent (like every other point). 

We observe, however, that fitting least-square curves is a form of smoothing, 

and the stabilizing effects of smoothing are much easier to achieve with 

filtering. Filtered interpolation schemes for doing this are discussed in 

App.G. 

Data Boundaries Because data is always of finite duration, every time 

series has a beginning and an end, and near the boundaries, filter performance 

must change. One scheme is simply to discard points anywhere a formula cannot 

be fully evaluated. In practice, this can be awkward to do and even when it 

isn't, long filters (i.e. many coefficients) can result in a substantial loss 

of data. In addition, discarding points can complicate other procedures, such 

as integration, that require boundary data. 

Using least-square curves near boundaries is an approach with intuitive 

appeal. However, least-square polynomials tend to become unstable near 

boundaries, producing large excursions. In addition, such procedures are 

difficult to interface with convolution procedures (see App. C.). 

Another approach is to change or shorten underlying formulas as boundaries 

are approached. This also turns out to be difficult because changing formulas 

often produces jump discontinuities - unacceptable behavior for low-pass 

filters that are supposed to produce smooth results. Nonetheless, 

normalization procedures can be made to work reasonably well with low-order 

filters having positive coefficients (see App. G). 

None of the various "solutions" to this problem have proved as 
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12. Corrections with Filters

satisfactory as simply extending a time series with a mirror-image extension 
before applying a filter. Such extensions also work well in multi-dimensions, 

and result in linear operators. For lowpass filters, mirror-image extensions 

produce smooth results without instability, and are accurate near peaks. Also, 
the mirror-image is a geometric form, familiar to experience, and easy to work 

with in analysis procedures. In the author's opinion, it is the only 

general-purpose method acceptable with high-order filtering methods, and is an 

important feature of the lowpass filter documented in App. F. 

Implementation Computer algorithms are as much art as science. 

Nonetheless, some are better than others, and good software can make the 

difference between success and failure. For example, aircraft data often 

results in large arrays, and algorithms that require more array space may not 

be usable because of insufficient memory. Also, speed and efficiency can be 

limiting factors in real-time applications. Finally, versatility is important 

in a research environment to determine optimal settings. The lowpass filter 

presented in App. F was designed to meet these needs. 

The Mixing Procedure We now turn to the correction procedure, central 

to this development. To help formalize ideas, we borrow some notation from 

turbulence theory. Here, a process x in space and/or time is decomposed into a

mean and fluctuating part x=x+x'; the mean x comprises the large-scale

features and the fluctuation x' comprises the small-scale ones; alternatively,

the mean consists of low frequencies and the fluctuation consists of high 

ones. Moreover, the maps X-7X and X-7X' are generally modeled as 

projections or ideal filters, that is, they are symmetric (in space and/or 

time) and idempotent: x=x and x"=x'. Note that because x'=x-x, this

decomposition is completely determined by the filter X-7X alone. 

For present purposes, two measurements of the same thing, say x1 and x2, 
are separated into their mean and fluctuating parts: x1=x1+xi and x2=x2+x�. 
If, moreover, x1 is more accurate at high frequencies and x2 is more accurate

at low, then an "optimal" blend x can be constructed as: 

(12.1) x =x +x' =x +Tx 2 1 1 

where L1x=x2-x1 and Tx is the low-frequency correction to x1. In particular,

when x1 =x2, Tx vanishes and this construction does nothing. While this

formulation captures basic ideas, it is overly simplistic insofar as optimal 
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12. Corrections with Filters

low-pass filters x �.x can be elusive to find and difficult to verify. 

A Simple Example We apply this scheme to correct for what is often

called "cold-soaking." When pressure transducers get cold they tend to drift. 

Sensors mounted on a wing tip boom have shown variations in static pressure as 

high as 3 mb; drifts in fuselage-mounted sensors of 1 - 2 mb have also been

observed (Willoughby et al., 1989). The idea is, therefore, to combine 

high-frequency data from the boo� with low-frequency data from the fuselage. 

(These data should already be corrected for roll-induced altitude variations.) 

Thus, if p and p f are the static pressures on the wing tip and on thes,w s, 
fuselage respectively, the "optimal" blend is p =p' +p f. s s,w s, 

In this application, choosing a filter is relatively simple because errors 

are small and slowly varying. The exponential filter E (with r=0.95), r 
discussed in App. C, has proved adequate. To make it symmetric, it is applied 

both forward and backward in time and averaged: S =(E +E
* 

)/2. Also, ther r r 
exponential filter is normalized near boundaries to preserve constants (see 

App. G). We emphasize, however, that such simplicity is the exception; other 

correction procedures are much more demanding. 

Fourier Transforms and Optimality To better understand what is going 

on, a spectral interpretation is helpful. For this we use the Fourier 

transform $, defined on a time series x(t) as: 

(12 .2) §( x)(w) = -1- Joo 
x(t)e -iwt dt .

V2i£ -oo

where w is (radian) frequency. For the integral to exist, the process x must 

have finite energy which, in this context, is quite restrictive. Nevertheless, 

the Fourier transform is a standard tool, useful for illustrating basic 

concepts. To start, we abbreviate notation for transforms with capitals 

X(w)=§( x)(w), and denote the low-pass mixing filter by A, that is, 

x2(t)=A[x2(t)]. Thus, if fil
A
(w) is the frequency response of A, then the 

Fourier transform of (12.1) is 

(12.3) 
A 

The important observation is that X(w) is a weighted average of X1 (w) and
A 

X2(w); more prec!sely, X(w) is a convex combination with weights 1-filA
(w) and

fil
A 

(w). Ideally, X(w) is as a smooth "splice" of the Fourier transforms X1 (w)

and X2(w) that results in a flat and seamless fit.

To make this more explicit, note that X1 starts out noisy at low
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12. Corrections with Filters

frequencies and becomes more accurate at high ones; for X2 
the situation is

reversed. In between there should be an overlap region [w1
,w

2
] of common

accuracy, and X1 and X
2 should be (approximately) equal on it. In this

situation, an optimal mixing filter A is one for which the frequency response 

fll A ( w) makes the transition from unity to zero within the overlap region
A 

[w1'w2]. When this is the case, X(w) of (12.3) reduces to X2(w) for w<w1, and
A 

to X1 (w) for w>w2; in between, X(w), X1 (w), and X2(w) should all be about the

same. The net result is data that is accurate everywhere. Clearly, such 

filters are not unique; if we can find one, there are others as well. Such 

lack of uniqueness can (and does) lead to some confusion. 

Readers familiar with spectral analysis will recognize the overlap region 

[w1 ,w2] as that region over which the spectral coherence of X1 (w) and X2(w) is

nearly maximum. Thus, the coherence determines the filter when errors depend 

only on instrument performance. However, errors can depend on other parameters 

making filter optimization more difficult. For example, filters best suited 

for straight-and-level flight can differ from those best suited for maneuvers. 

In addition, spectral techniques are poorly suited for analyzing data with 

slowly moving trends that, say, might be modeled as polynomials, exponentials, 

or partial cycles, and many of the errors of concern fall into this category. 

As a result, the problem of finding optimal filters is more complicated than 

it otherwise might be. 
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13. HORIZONTAL WIND COMPUTATION
Horizontal winds are computed as the difference between aircraft velocity 

and the relative wind. Therefore, accurate horizontal wind computation 
requires not only well-calibrated flow angle and pressure sensors, but also 
accurate aircraft navigation measurements. However, aircraft navigation, using 
the Inertial Navigation System (INS), is vulnerable to a host of errors which 
must often be corrected to obtain accurate horizontal winds and aircraft 

position. Correction of these navigation errors is covered extensively in 

Masters and Leise (1993), and only a brief overview will be presented here. 

Navigation instumentation Each P-3 aircraft carries two Delco earousel-IV 

INS's, operating independently and producing data at 40 Hz. Each INS consists 

of a gimbaled platform containing three gyroscopes (gyros) and three 

accelerometers, one for each spatial degree of freedom. To minimize the 

problem of measuring small horizontal accelerations in the presence of 

gravity, the platform supporting the two horizontal accelerometers is 

maintained as level as possible (through torquing commands issued by the 

navigation computer) and is rotated about the local vertical at 1 rpm. The 

exact mechanical arrangement is called a carouseled, free azimuth system. The 

navigation computer integrates measured accelerations to produce velocities 

and positions in XfZ or geographic coordinates, where X is east, Y is north,

and Z is up along the local vertical. In tandem with this, attitude angles

(heading, pitch, and roll) are measured by synchros attached to the gimbals. 

Because the INS measures accelerations at the fast rate of 40 Hz, it is a good 

source of high-frequency data; manufacturer specifications are about 38m and 

0.1 kt (0. 0 5  m s-1 ) for the resolution of position and velocity. However,

because velocities and positions must be deduced from integrations, errors 

tend to accumulate and grow. For an INS, the net result of accumulated error 

is long-term drift and other forms of low-frequency variations that are 

difficult to distinguish from real motions. 

To complement the INS, an ANI-7000 LORAN-e receiver (manufactured by 

Advanced Navigation Incorporated) is used. LORAN-e (short for LOng RAnge 

Navigation) is a method of radio navigation requiring three or more 

synchronized ground-based stations that transmit phase-locked 100 kHz radio 

pulses. LORAN-e measures positions at the slower rate of 1 Hz, has a lower

resolution (88m), and has poor relative accuracy on a point-to-point basis due 

to small jump discontinuities. Nonetheless, LORAN-C errors are nearly constant 

in time with an advertised absolute accuracy of 0. 1 nm (0.185 km), provided 

130



13. Horizontal Wind Computation

in time with an advertised absolute accuracy of 0.1 nm (0.185 km), provided

data are acquired in regions of good coverage. Because errors do not grow with 

time, LORAN.;.C is an accurate source of low-frequency data. 

NOAA has also tested Global Positioning System (GPS) receivers on the P-3 

aircraft. GPS is a method of radio navigation requiring signals from 3 or more 
l 

satellites from a constellation of 21 satellites that orbit the Earth at a 

fued altitude of 18 ,000 km. GPS measures positions at 1 Hz, and can achieve 

accuracies of 25m under favorable conditions. Unlike LORAN-C, GPSbas global 

coverage and is less prone to electrical interference; thus it is a better 

4.0��
��������-r��� 

6 Time= 
84 min. 

Terminal error -
after 9 hours 

8 10 12 

Lon error (km) 

14 

Fig. 13-1. Total (Schuler+ drift) INS position error over the course of the 

9h.flight of October 20, 1988. Such cycloidal motions are easily confused 

with hurricane tracks which display similar motions with similar time scales. 
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13. Horizontal Wind Computation

source of low-frequency data. It is anticipated that GPS will replace LORAN-C 

as the primary source of low-frequency navigation information aboard the P-3's 

in the near future. However, GPS data was not available for this study and 
will not be discussed in more detail. 

Error sources INS errors can be grouped into low-frequency errors 

(inertial drift and Schuler oscillation), and other errors (maneuver dependent 

errors, heading angle errors, and phase lag problems). Fig. 13-1 illustrates 

the severity of the low-frequency INS drift and Schuler oscillation errors on 

a typical P-3 flight. At takeoff time, the position error in both latitude and 

longitude is zero, but as the flight progresses, errors in both latitude and 

longitude accumulate at approximately 1 km hr-1 due to inertial drift.

Superimposed on this inertial drift error is a sinusoidal oscillation with 

period 84 minutes called the Schuler oscillation. Note that the position 

errors shown in Fig. 13-1 trace out a cycloidal pattern, similar in time 

period to patterns observed in hurricane tracks (Willoughby et al. 1984). When 

velocity errors are added to this cycloidal behavior, locating the velocity 

center of a hurricane vortex can be a challenging exercise. Of some importance 

is that accurate data of these kind are essential for hurricane warnings in 

support of public safety, and navigation error could compromise this mission. 

In more detail, the Schuler oscillation is caused by precession of the

Z-gyro in an elliptical pattern about the local vertical. Suppose for 

simplicity that an aircraft is flying with velocity v along a great circle. 

Then, a small angular error e in vertical alignment of the inertial platform 

results in the horizontal-acceleration error v =g sine. At the same time, E 
velocity error v along a great circle can be estimated as v =(R+ll)e where R 

E E 
is the radius of the earth and H is altitude above mean sea level. Thus, on 

combining equations (R+ll)e=g sine, and the small-angle approximation sine:=e

results in a harmonic equation with solutions of the form e(t)=Acos (wi+c/>)

where A and cJ> are amplitude and phase, and where w is the radian frequencyH 
w =1/T computed with T =2n..f(R+H)/g ' . Although A and cJ> are generally H H H 
unknown, T is fairly constant and can be estimated as T = 84.5 min using 

R=6.378x 10
�

m, g=9.807m/s2, and H=O (see Broxmeyer 1964, �.1 5) In turn, this

precession causes sinusoidal variations in the vector velocities. Because, the 

vector components are the projections of total error onto the horizontal axes, 

they have similar amplitudes but are 90° out of phase. Predictably, amplitudes

tend to increase during a flight, as vertical alignment deteriorates. On the 

Carousel-IV units, Schuler oscillation peak amplitude errors in position range 
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13. Horizontal Wind Computation

from 1-7km, and peak amplitude errors in velocity range from 0. 5-3m s·
1
• 

Inertial drift is characterized as being nearly constant in direction, but 

with an amplitude that can grow linearly or exponentially with time. However, 

the sources of such errors are harder to pinpoint. They are generally 

attributed to mechanical imperfections in the Z-gyro, inaccurate calibration 

of the INS, and deficiencies in models and numerical algorithms. In any case, 
the prevalence of drift is easy to verify; typical angular offsets in the 

Z-gyro result in initial INS velocity errors of about 0. 5 m s"1, even when the

aircraft is sitting still on the runway. Once airborne, position errors tend 

to accumulate at about 2 km h"1, although rates as high as 7 km h"1 have been

observed. 

Correcting INS errors · INS errors have been corrected by various authors 

using a variety of techniques. Shaw (1988) was one of the first to demonstrate 

the feasibility of correcting winds using LORAN-e data sampled at regular 

intervals. He used 1 Hz data and cubic splines to obtain a smooth fit to 

low-frequency INS errors. His results were definitive; LORAN-e substantially 

improved the accuracy of computed winds. Leach and MacPherson (1991) used the 

somewhat more complicated Kalman filtering app�oach to correct INS errors 

using LORAN-e; this method had the additional advantage of being able to 

estimate errors in heading angle and maneuver correlated errors. 

A method of correcting low-frequency INS errors using LORAN- C or GPS has 

been developed at NOAA. The method is similar in spirit to the methods of 

Shaw (1988) and Leach and MacPherson (1991), but the implementation is 

different. Rather than using a curve-fitting procedure, the method is based 

upon filtering theory, which has the advantage of possessing a spectral 

interpretation. This allows one to control the spectral content of the data, 

which is useful in post processing, for example, because it allows one to 

evaluate problems related to phase lags in the INS. Phase lags occur because 

the navigation computer must estimate, and otherwise update, parameters prior 

to output, producing a delay. Delays of 0. 08 to 0.7s in INS parameters have 

been observed by Tjernstrom and Friehe (1991), and phase lags of similar 

magnitude have been observed in NOAA's INS data. Delays of this magnitude can 

cause serious problems in applications requiring high-precision data, such as 

flux computations. Additionally, the use of symmetric filters does not inject 

phase lags into the data; application of a causal Kalman filter does. 

The correction algorithm The method works by mixing the high-frequency 

data from the INS with the low-frequency data from LORAN-e to produce data 

133



13. Horizontal Wind Computation

that is accurate at both high and low frequencies. To perform this feat, the 
filter presented in App. F is used in conjunction with the mixing filter 
technique ( 12. 1). Comparison with a tracking laser (Masters and Leise, 1993) 
showed that position errors can be reduced below 0.2 km, and aircraft velocity
errors to 0. 1-0.3 m s-1• The filter used is tuned to the Schuler component
because other errors are less variable and of lower frequency; note, however, 
that maneuver correlated IN S errors do exist, and those corresponding to 
frequencies higher than the Schuler component will not be corrected. In 
addition, the 1 rpm revolution of the Carousel IV  platform causes oscillations 
in all INS  quantities with a period of 1 minute which will not be removed by 
the filter. 

Correcting the heading angle Even though near-perfect ground velocities 

can be obtained using the correction procedure, errors in heading remain and 

can degrade absolute accuracy of computed horizontal winds. For example, an 
aircraft flying 100 m s-1 with a 0. 1° error in heading will produce a
velocity error of 100 tan (0 . 1°) = 0. 2 m s -1, and larger angle errors produce
proportionally larger velocity errors. Since the manufacturer's specified 
accuracy of heading angle is 0.4 °, errors in computed horizontal wind due to
heading angle errors could approach 1 m  s-1• A method of partially correcting
beading angle errors is presented in Masters and Leise ( 19 93). However, full

correction of heading angle errors will require and independent source of 

heading information, or a Kalman filter approach. 

Conclusions and recommendations Accurate horizontal wind computation 
requires navigation data that is accurate at both high and low frequencies. 
The INS is an excellent source of high-frequency data, and GP S and LOR AN- C are 
excellent sources of low-frequency data. By mixing the high-frequency data 

from the IN S with low-frequency data from GP S or LORAN- C, errors in aircraft 
velocity can be reduced below 0.3 m s-1• However, heading angle errors and
maneuver correlated errors remain and may degrade horizontal wind calculation 
by as much as 1 m s -l. The only recourse may be to use another, more accurate 

source of heading, or abandon the symmetric filter and go to a Kalman 
filtering approach. 

However, designing a good Kalman filter is difficult and time-consuming, 
and one injects phase lags and distorts the spectral content of the data due 

to the complex, time-varying blend of information used to generate corrected 

quantities, even when applying the filter forwards and backwards in time to 

produce a symmetric filter. Kalman filters are superior for real time 
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13. Horizontal Wind Computation

applications, and should be implemented on the aircraft for in- flight wind 
computation, but it remains to be proven that Kalman filtering is the best 
approach to use in post processing applications where winds with highly 
accurate spectra are needed, such as for flux computations. 

A better solution might be to modify the INS, measure all angles and

accelerations directly, and compute positions and velocities, instead of 
relying on the INS to do the computation. One could then use the symmetric 

filtering technique presented here in post-processing to correct the low 
frequency errors in the INS using GP S or LOR AN-C. The final result would be 
highly accurate winds with good spectra, free of phase lag errors. Another 
possibility might be to use one of the new multi-antennae differential GPS 
systems to obtain attitude angles and low-frequency position information; 

high-precision accelerometers could then be used for high-frequency position
information, since GPS, in spite of its greatly improved capabilities, does 

not have sufficient resolution at high frequencies to substitute for inertial
navigation. Manufacturer's specifications indicate that these multi-antennae 

GPS systems can measure attitude angles to milliradian accuracy (better than 
an IN S). Again, the mixing filter technique could be applied the the 
GP S/accelerometer information, to provide accurate winds with good spectra, 
free of phase lag errors. 
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14. VERTICAL WIND COMPUTATION
Vertical wind computation is performed by finding the vector sum of W 0, 

the aircraft's vertical velocity, and W , the vertical relative wind. W is
r r 

computed from true airspeed, attack, and slip angles, while W 0 is computed by 
integrating the vertical accelerometer output from the INS. The difficulty is

that integration processes are inherently unstable; measurement errors, once 

incurred, tend to accumulate and grow. It is well known in statistics that 

integrating a white noise process (e.g., round-off error) results in a random 

walk with infinite variance. This error is apparent in Fig. 14-1 (light

curve), where the aircraft vertical velocity from integrating the INS 
accelerometer ranges between 20 and 80 ms-1 over the course of a 4 hour

flight. Vertical aircraft velocity from the integrated accelerometer must be 
stabilized by another source of aircraft velocity with good low frequency
information. 

100 
,....... 

8/10/89 - 80 I 
en 

.12:40 - 16:40 a 60 ._, 

::r: 40
� 20
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.. 

� 0 
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o.o 1.0 2.0 3.0 4.0 
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Fig. 14-1. Vertical aircraft velocity computed by integrating INS vertical

accelerometer (ll, light line) and by differentiating radar altimetry (ll ,I H 
dark line). Note the poor low frequency behavior of ll, and the bias of

I 
20 ms:1 Data taken from N42RF' s calibration flight on 8/10/89. 
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14. Vertical Wind Computation

Two sources of vertical aircraft velocity with good low frequency
information are available: the derivative of either pressure altitude or radar 
altitude with time. When GPS becomes available in 3 dimensions, one could also
use the derivative of GPS altitude. Fig. 14- 1 (dark curve) shows that the
derivative of radar altitude gives good low frequency information--it remains 
near zero for the entire 4-hour flight, as one would expect when flying a 
calibration flight with many legs at constant altitudes. Radar altitude is the 
preferred measurement to use, since pressure altitude depends on altitude and 
meteorological conditions, and radar altitude does not. An exception to this
rule occurs when flying over land--then one has no choice but to use pressure 
altitude, as radar altitude will give a measure of the terrain fluctuations 
beneath the aircraft. 

Given the two estimates of vertical aircraft velocity, one from the 
integrated accelerometer, and one from (for example) differentiated radar 

c:J � 
1 I d l dt0 

IT] [l] 
l l 

Difference: �W = W - W I H 

Filtered interpolation 

for missing data: 

Low-pass filter: �W 
to accelerometer errors. 

MEASURED DATA: 

a = Vertical INS
I acceleration with

mean removed. 

H = Altimetry.
(a)Pressure. 
(b) Radar. 
(c)GPS 

SHIFTED INTEGRATION Jo 

w = w + �w k k- 1 
�w = (.S+o)a +(.5-o)a 

k-1 k 
o=O => Trapezoi4al rule.

COMPUTED ANSWER: 

W0 = Vertical platform
velocity. 

Figure 14-2. Flow chart of method used to compute vertical 
aircraft velocity from altimetry and INS acceleration. 
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14. Vertical Wind Computation

altimetry, one can splice them together using (12.1). A filter for doing this 

is described in App. F. The full correction procedure is outlined in Fig.

14.2. First, the mean acceleration from the entire flight is removed from the 

raw acceleration, ai' Acceleration is then integrated using the trapezoidal

rule to give the estimate of vertical aircraft velocity W1 (good at high

frequencies). Note that the integration can be shifted in time to inject a

phase lag, J, into W1 (discussed at the end of this section). Radar altitude H 
is differentiated to give the estimate of vertical aircraft velocity W H (good

at low frequencies). The difference .dW = W1- W H undergoes filtered

interpolation to replace missing data (App. G), then it is lowpass filtered to 

obtain llW. The final estimate of vertical aircraft velocity is then
A 

Wo=WI+:3W. 
The main question is, "how do we tune the filter to give the best vertical 

winds?" The answer depends on the performance of the two instruments used. In 
this case, we want to use the good high frequency information from the 

accelerometer without corrupting the computed velocity with accelerometer 

integration errors. Conversely, we do not want to use information from the 

radar altimeter that is too high in frequency, because its resolution is

limited to 1 meter (see Fig. 14-3). The correct mix is best determined by

er 22�--����----�-----T----�----� 
.._, 

.8 20 
a 
·.:: 18
< 

16 3/30/89 
16:17 - 16:22 

1 4�--��--�----�----_. __________ _ 

0 1 0 0 200 300 

Time (min) 

Fig: 14-3. Radar altitude·vs. time for N43RF's low-level flight on 3/30/89 
over a smooth portion of the polar ice cap. Note the poor high frequency 
information from radar altimetry--resolution is limited to 1 meter.
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0.5 1.0 1.5 

Frequency (Hz) * 

2.0 2.5. 

10-2 

Fig. 14-4. Response curve for filter used to compute vertical aircraft
velocity. Response is shown for LNTH=2, 3, 5, and 10; the value of LNTH 
controls the passband of the filter. LNTH = 3 is reco111nended for best vertical
winds. 

studying maneuvers in calibration flights, and striving to tune out any 

observed maneuver-correlated fluctuations in the computed vertical wind. 

The filter used to perform the splice has an adjustable length parameter, 

LNTH, that controls the passband of the filter (s� App. F). When LNTH is

doubled, the passband is halved. For example, with LNTH set to 5, the filter

passes data with periods of 4 minutes or longer; for LNTH=10, only data with 

periods of 8 minutes or longer are passed (see Fig. 14-4 for the filter's

response curve). Vertical winds were computed with a number of LNTH parameters 

for many different operational and calibration flights to study the best way 

to tune the filter; a value of LNTH = 3 was determined to give the best 

overall performance. Computed vertical winds using LNTH = 3 and LNTH = 5 are 

shown in Fig. 14-5. These winds were computed during constant altitude circle 

maneuvers performed on N42RF's calibration flight of 8/10/89; six full circles

were flown during the time shown. A plot of computed horizontal wind (lower 

graph) shows the circles quite clearly, as does the plot for vertical winds 
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Fig. 14-5. Horizontal wind speed U (lower graph), vertical wind w computed
with LN1ll = 5 (top curve) , and w computed with LNTII = 3 (middle curve) , during
a series of 6 circles on N42RF' s calibration flight of 8/10/89. LNTII = 3 gives
vertical winds with less maneuver correlation and lower standard deviation, u. 

computed with LNTH = S (middle graph). Vertical winds computed with LNTH = 3

show little or no correlation with maneuvers; furthermore, the standard 

deviation of the winds is lower than that for LNTH = S. Further reducing LNTH

to 2 gives approximately the same answer as LNTH = 3, but with a slightly 

higher standard deviation; thus LNTH = 3 appears to be the better choice.

With LNTH = 3, the filter has approximately unity response for data with

periods of 3 minutes or greater, zero response for periods less than 1 minute,

with intermediate periods passed according to Fig. 14-4. This is similar to

the filter used by Jorgensen and LeMone (1989) to compute vertical winds on

the P-3's. Their filter (Graham, 1963) had unity response at periods longer 

than 65 s, zero response at periods shorter than 30 s, and a cosine fall off 
in between. This response is approximately what one would get by setting 

i 
I . 

140



14. Vertical Wind Computation 

60 I I I I I I 

- -

40 - A -

� -

- 20 - -

-

'u.:� - -
! 0 (1, ...... ..flo. "'"' """""" ,M 1'-\,.M. 

\/'-' � v v I v ..,.. 

0 ... -

� -20 - -

v 

-40 
v � v 

-
4/24/87 - \ -

17:17 - 17:25 
- -

-so I I I I I I I 

3.0 

1.0 

-- 0.0 ��������-r�H-+r������ 
I 

Cl.:l 

! -1.0 
� 

-2.0

-3.0 No Phase Delay 

-4. 0�--._��--���--�--�--��� 
0 384 5 12 

Time (sec)

Fig. 14-6. Vertical aircraft velocity v0 (top curve) and computed vertical

wind w with no phase delay added (bottom curve) for the roller coaster

maneuver on N43RF' s calibration flight of 4/24/87. The maximum error in w is 

about SY., and occurs during the maximum rate of change in v0, implying that a

phase lag may cause the error. 
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14. Vertical Wind Computation

L NTH = 2 in the filter of App. F. Vertical winds computed using the two 

schemes have been compared and agree to within 0.1 ms -t. 

Phase corrections The final test of a vertical wind tuning technique is 
to study the "roller coaster" maneuver, where the aircraft rapidly climbs and 
descends at vertical velocities of 20 ms-1 or greater. Computed vertical winds
for a roller coaster maneuver during N43RF's calibration flight on 4/24/ 87 are 
shown in Fig. 14-6. The aircraft's vertical velocity exceeded 40 ms-1 (top
graph); this vigorous roller coaster was ideal for studying vertical wind 
errors. The bottom graph shows the computed ver tical wind for the same 

maneuver. The vertical wind has about 5% error (± 2.0 ms-1), which is quite

good; NCAR uses 10% error as their criteria for a successful vertical wind 
calibration. Close inspection of both graphs shows that the maximum error in 
vertical wind occurs when the aircraft velocity is changing most 
rapidly--i.e., when the aircraft velocity is passing through zero. This 

behavior implies that a phase delay may be causing the vertical wind errors. 
Phase delays are known to exist in the P-3 INS data--manufacturer's 

specifications give phase delays of between 0.025 s and 0. 125 s for the 

various INS parameters. Delays can also occur in the instruments used for 

relative wind computation--e.g., due to the length of the pressure lines. To 
see if a phase delay might be causing the observed error, correlation analysis 
was performed on the vertical aircraft velocity, W 0, and the vertical relative
wind, Wr. Technically, the computation consisted of computing the cross
spectrum, zero-filling to interpolate, inverse transforming (with the FFT), 
and finally using a second-order, time-series interpolation to complete the 
curve. The result, shown in Fig. 14-7 (top curve), reveals that W 0 lagged W 

r
by 0.25 seconds. It is unknown exactly where this phase lag is coming from, 
since it is approximately double the manufacturer's specifications for the 
phase lag in the vertical accelerometer in the INS. IN S phase lags of
0.08 - 0.2 seconds have been observed in vertical accelerometer data from a 

simil ar INS, the Litton LTN-72, by Tjernstrom and Priebe ( 199 1). 

This I N S  phase lag can be corrected by injecting a phase lag of the 
opposite sign and a mplitude into the integration of the IN S accelerometer

(shown in Fig. 14-2). Vertical winds recomputed after performing this 

correction are shown in the bottom curve of Fig. 14-7. Vertical wind errors 
during the roller coaster maneuver were reduced below 1% (± 0.3 ms"\ which
is an extraordinary feat. Tests done in other roller coaster maneuvers on both 
N42RF and N43RF reveal that this phase lag is always present, and ranges 
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14. Vertical Wind Computation

between 0.1 and 0.4 m s�1 Further re search i s  needed to quantify the magnitude
of thi s pha se lag. 

-
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Fig. 14-7. Top graph: Phase delay between the vertical aircraft velocity v0
and the vertical relative wind V computed using correlation analysis, during

r 
the roller coaster maneuver of Fig. 14-6. v0 lags Vr by 0. 25 seconds. Bottom

graph: Vertical wind w during the roller coaster maneuver recomputed after

correcting for the 0. 25 second phase delay in v0. Relative error in W has been

drastically reduced, to below 1%. 
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15. FLOW DISTORTION AND PHASE

Flow distortion Flow di stortion refer s to the phenomena of flow around 
the aircraft changing in rapid, unpredictable ways due to maneuvering or 
atmo spheric turbulence. A sample of thi s behavior wa s demon strated for the 
slip sensor mounted on top of the fu selage, during yaw maneuvers (Fig. 9-4). 
Flow di stortion can lead to seriou s problem s in wind mea surement, becau se 
sen sor s are typically de signed and calibrated for a narrow range of attack and 
slip angle s. It i s  preci sely when flow di stortion become s greate st when one i s  
most interested in making accurate wind mea surement s, as one i s  typically 
pa ssing through a turbulent region of great meteorological intere st. 

Pre ssure mea surement s on both the wing tip boom and fu selage have angle of 
at tack and side slip dependencies that are not correctly compen sated for by 
current calibration method s, and are vulnerable to flow di stortion error s. 
Ro semount Model 855EB- 1 pitot-static tube s mounted on the wing tip ha s a 
"no se" that i s  somewhat flanged or scooped out to compen sate for small 

difference s in the incidence angle of the relative wind in the mea surement; 
the re sulting measurement of total pre ssure is straightforward and ha s not 
produced any noticeable di stortion s. Static pre ssure, however, i s  another 
story; for this two horizontal port s on oppo site side s of the pitot- static 

tube are manifolded together to supply a static source; the idea i s  that 

external air motion will produce equal and opposite pre ssure force s that 
cancel. In practice, thi s works fairly well in straight-and-level flight or, 
more generally, when only the attack angle is varied; however, thi s 
mea surement doe s not work so well in maneuver s or, more generally, when the 
slip angle i s  varied ( DeLeo and Hagen, 1 977). 

Curiou sly, thi s situation i s  rever sed for static pres sure mea sured along 

the fu selage. In thi s ca se, static port s are located on oppo site side s of the 

fu selage, aft of the wings, and some 15 m behind the no se, in a po sition 

relatively free of air motion. Again, the se port s are manifolded together to 

supply a static source; now thi s mea surement i s  relatively in sen sitive to slip 
angle, but tend s to vary with attack angle (DeLeo and Hagen, 1978). 
Difference s a s  great a s  2 hPa between uncalibrated fuselage and wingtip 
static pres sure s have been ob served on roller coa ster maneuver s (Fig. 15- 1). 

Recently implemented calibration procedure s u sing a trailing cone (Brown, 
19 88)  have provided the independent reference needed to properly calibrate 

static pres sure. 

At large attack and slip angle s, differences between uncalibrated wingtip 
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Fig. 15-1. Difference in uncalibrated static pressure between the wingtip and 
fuselage sensors as a function of pitch angle during the rollercoaster 
maneuver on N42RF' s calibration flight of 4/24/87. The mean has been removed 
from both static pressures. 

and fuselage static pressure can reach 10 h Pa, and up to 17 h Pa for dynamic 

pressure. Differences of these magnitudes were encountered during N42RF's 

penetration of Hurricane Hugo's eyewall on 9/ 15/89 (Fig. 1 5-2). Horizontal 

wind shear of 60 ms -land vertical wind shear of 15 ms -l were encountered over
a 700 meter distance, resulting in extreme flow distortion, slip angles 

exceeding 6°, attack angles of ±4°, accelerations between -3.0 and +5.6 
gravities, and the failure of one of the aircraft's engines. The 10 h Pa and 

17 h Pa differences in static and dynamic pressure between the wingtip and 
static pressures were reduced to only 8 h Pa and 14 h Pa, respectively, after

calibration; errors in flow angles of this magnitude can cause errors in 

computed horizontal wind of 10 ms-1• Flow distortion and wind measurement
errors of this magnitude are rarely encountered, but nevertheless it is 
important to track down these errors so that opportunities to measure unique 
meteorological events are not missed. 

The majority of this huge discrepancy in measurements on the Hurricane 
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Fig. 15-2. Top graph: Difference between uncalibrated wingtip and fuselage 

static pressures (P - P f) and dynamic pressures (q - q f) during
s,w s, c,w c, 

N42RF' s penetration of Hurricane Hugo' s eyewall on 9/15/89. Bottom graph:

Attack and slip angles for the same period. 

Hugo flight was subsequently traced to the wingtip boom. Studies of yaw 

maneuvers on N42RF revealed that the wingtip boom is probably not pointed 

straight ahead, but has a 2°- 4° tilt away from the aircraft fuselage. Thus 

when the slip angle was +6°, the wingtip boom "saw" a slip angle of 8°- 10°. 

According to the wind tunnel tests of the wingtip boom (DeLeo and Hagen, 
1 977), errors in static pressure exceeding 5 hPa can be expected for this 

situation, depending on the angle of attack. The remainder of the discrepancy 

may be caused by improper calibration of the fuselage sensor. Studies of the 

wingtip boom on N43RF reveal that it, too, may not point straight ahead, and 
thus will be subject to similar errors. 

Clearly, more research is needed to determine the attack and sideslip 
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15. Flow Distortion and Phase 

calibration factors for both the wingtip and fuselage pressure sensors. If 
possible, the tilt of the wingtip boom should be measured on the ground. Yaw 

maneuvers flown at various angles of attack would also help diagnose the 

problem. 

Phase Phase lags between the time an event occurs and the time it is

recorded by the data acquisition system occur to some degree in all 
instruments. All instruments have a (usually small) phase lag produced by the

analog circuitry that processes the signal; in addition, instruments typically 

have a characteristic response time that may vary with flight conditions or

meteorological conditions. For example, the General Eastern cooled mirror dew 

point instrument used on the P-3's has a response time of approximately 20 s 

to a 30 °F step change in dew point. At low moisture levels, this response

time is even slower. Additional phase lags can be caused by the data 

acquisition computer as it writes the data to tape; for the P-3's, however, 

these phase lags are probably insignificant (Alan Goldstein, personal 

communication). 

Pressure measurements can have phase lags due to the length of the 

pressure lines connecting the transducer to the sampling port. An important

example of this is the fuselage static pressure--it takes approximately 0.1 s 

for a pressure impulse travelling the spe-ed of sound to traverse the distance 
from the fuselage static port to the total pressure transducer located near 

the copilot's seat (see Fig.· A-1). Phase lags in pressure can also be caused

by flow distortion; Fig. 15-3 shows the fuselage dynamic pressure �,f lagged

the wingtip dynamic pressure a_ by 2.2 s during a yaw maneuver on N42RF's"'C,W 

8/10/89 
13:44 - 13:45 

Fig. 15-3. Vingtip dynamic pressure q and fuselage dynamic pressure q 
f c,w c, 

during the yaw maneuver on N42RF' s calibration flight of 8/10/89. The q 
fc, 

lags q by 2.2 seconds.
c,w 
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Fig. 15-4. Coherence K
2

for three sets of
' 
dynamic pressures: wingtip dynamic 

pressure q and fuselage dynamic pressure q 
f 

(top graph) ; q and dynamic
c,w c, c,w 

attack pressure q (middle graph) ; and q 
f 

and q (bottom graph). Data 
c, a c, c, a 

taken during a straight and level ferry flight on N42RF. 
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15. Flow Distortion and Phase 

calibration flight of 8/ 10/ 89. During this same maneuver, q lagged dynamic c,w 
slip pressure qc by 1.6 s. Phase lags between the two total temperature,s 
sensors of 0.6 s have also been observed during maneuvers. Even during 
straight and level ferry flights, phase problems have been found. For example, 
coherences for three sets of pressure sensors using the same variety of 
trancducer (Fig. 1 5-4) are quite poor, suggesting that substantial phasing 
problems exist. 

These phase problems are important to identify and correct, because even a 
small phase lag can lead to substantial error in computed winds, as was shown 
for the vertical wind in Sec. 14. Horizontal winds can be affected as well; 
Tjerstrom and Friehe ( 199 1) showed that INS phase lags of 0.4 - 0.7 s degraded 
their horizontal winds. In addition, correction of phase problems is critical 

for high precision flux measurements requiring fast ( 10 Hz) data. Much 
research is needed to quantify and correct phase problems on the P-3's. 
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16. CONCLUSIONS AND RECOMMENDATIONS

The theory needed to perform high precision wind computations from 

aircraft has been presented. In particular, a better understanding of fluid 

geometry led to exact equations of flow angle measurement on the surface of a 

sphere. Resulting improvements in flow angle measurement will assist in 

computing horizontal winds and turbulent fluxes to higher accuracy. Symmetric 

filtering methods were introduced to correct instrument errors, and a detailed 

description of a high-quality low pass filter to use for these corrections was 

presented. In addition, FORTRAN subroutines and in-flight examples from NOAA's 

P-3 aircraft were presented to demonstrate application of the theory. 

Horizontal wind accuracy was improved by correcting low frequency INS 

errors with LORAN-C, using a symmetric filter. Errors in horizontal winds due 

to aircraft positioning can be reduced to 0.1- 0.3 ms-1 using this technique.

Similar methods were used to correct vertical winds, and vertical wind errors 

during strenuous vertical aircraft maneuvers were reduced to a remarkable 1%. 

However, accurate calibrations of the flow angle sensors remained elusive, 

probably due to improper sensor location, and relative wind measurement 

accuracy remains unsatisfactory. 

Recommendations Improvements in wind accuracy can be achieved through a 

combination of improved instrumentation and better understanding of current 

instrumentation and calibration methods. Particular emphasis should be placed 

on identifying and correcting phase lags in all instrumentation carried on the 

P-3's; this is especially important for INS quantities. Correction of phase 

problems is especially critical for obtaining high precision turbulent flux 

measurements from the newly installed radome gust probe. Additionally, flow 

distortion problems need to be identified and corrected; failure to do so will 

cause significant loss of measurement precision at times when one is passing 

through turbulent regions of greatest interest. 111 particular, the wingtip

boom needs to be recalibrated for slip angle dependencies. 

Several unknown error sources need to be studied and corrected. The cause 

of observed drift in vertical wind over the course of a 9-hour flight needs to

be studied. Maneuver dependent and heading angle errors in the INS need to be 

quantified, possibly through addition of separate accelerometers and an 

independent source of heading. A Kalman filtering approach to correcting INS 

errors should also be considered, particularly for real-time application.

Finally, an oscillation in the roll angle with a period of approximately 

5 seconds has recently been discovered (Fig. 16-1). The cause and importance
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Fig. 16-1. Oscillation in roll angle with a period of approximately Ss 
observed during a straight and level ferry flight on N42RF. The cause of the
oscillation is unknown. 

of this oscillation is unknown, but it could could adversely affect turbulent 

flux measurements. Further research is needed to fmd the cause of this 

oscillation, to see if it affects other quantities, and to identify other 

possible troublesome oscillations in P-3 instrumentation. 

New instrumentation can substantially improve wind computation accuracy. 

For true airspeed, direct measurement using a Doppler lidar would be superior 

to the current indirect method, using Bernoulli's equation. Flow angles can be 
be improved by using radome flow angle sensors, which should be less prone to 

flow distortion errors. These sensors have recently been installed on the 

P-3's, but were not available for this work. Horizontal winds can be improved 

by addition of GPS and an alternate source of heading; a multi-antennae 

differential GPS system can provide more accurate attitude angles and 

low-frequency position and velocity information than an INS. Horizontal winds 

can also be improved by obtaining improved high-frequency velocity 

information, either by adding new independent high-precision accelerometers or 

by modifying the INS to measure its accelerometer output directly. 

Consideration should be given to co-locating the navigation and relative wind 

instrumentation to reduce flow distortion and phase lag problems. An improved

slow response dew point instrument is also needed. 

In conclusion, major improvements have been made in P-3 data processing

� 

! 
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16. Conclusions and Recommendations

software, calibration methods, and instrumentation. Accuracy of horizontal 

winds in straight and level flight in the absence of significant turbulence is 

probably 0.5 -l.Oms-1, if low frequency INS errors are corrected using

LORAN-C or GPS. Under the same conditions, vertical wind accuracy is probably 

0.3-0.5 ms-1• However, current instrumentation and understanding of P-3

measurement errors is insufficient to insure good data quality for flux 

measurements, during aircraft maneuvers, and in strong flow distortion 

conditions associated with penetrations of turbulent weather. Additional 

research and better instrumentation is needed in order to provide the 

scientific community the highly accurate wind measurements it needs. 
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Appendix B. INCOMPRESSIBLE FLOW PAST A SPHERE

Theory presented here is for flow past a sphere, needed with flow-angle 

measurement (see Sec. 6). The model is for incompressible, inviscid flow and 

yields an exact, closed-form solution (Landau and Lifshitz, 1959, p. 25); by 

contrast, compressible solutions are rare, even in the inviscid case. Of
special interest is that flow is not restricted to be stationary.

To begin, incompressible fluids are divergence free V •V=O. Thus, for 

potential flow V=V 'l', Laplace's equation must be satisfied: 

2 2 2 
(B.l) V •V = V •V 'l' = V2 'l' =a 'l' +a 'P +a 'l' - 0 ,

ax2 ay2 az2 
which can be solved with harmonic function theory. 

The problem of interest is to compute the potential flow past a sphere of 
radius A. induced by ambient wind of velocity U. Here U can change with time

but not with position. Note that this is a model of flow observed in aircraft 

coordinates from a (spherical) platform moving with arbitrary velocity U.

Boundary conditions are: 

(B.2) BCl: V 'l'=U at large distances. 

BC2: n•V '1'=0 at the surface of the sphere.

where n is the outward unit normal. Thus, ambient flow U is perturbed in such

a way so as not to penetrate the surface. 

This problem can be solved, in standard ways, with separation of 

variables. However, for present purposes, it is easier and more informative to 

simply verify that the following potential function works: 

(B.3) 

where r=rn is the position vector of length r in the direction n. To this end,

the following vector identities are useful: 

(B.4) IDl: V(K(jJ) =KV 4J 

ID2: V(c•r)=c 

ID3: Vr=n ID5:V•4JA=V4J•A+(jJV•A 

ID4: V (jJ(r) = q, '(r) n.

where K and c are scalar and vector constants, and where q, and A are scalar

and vector-valued functions, respectively; in particular, because U depends

only on time, we can use c=U. Now, velocity V=V '1' is obtained with ID2 and

ID3 as,
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(B.5) 

Appendix B. Incompressible Flow Past a Sphere

3 

V =U-!_ [3(U•n)n-U] 
2r

3 · 

Similarly, verification that V •V=O is tedious but straightforward; we

leave this as an exercise (note, n=r/r). To check boundary conditions, observe 

that at large distances r, V agrees with the ambient wind V a:U, and near the

surface r=A., the flow changes to V = 3[U-(U•n)n]/2. Consequently, V •n=O at

the surface, and there is no flow into it. Of additional interest is that flow 

speeds up in going around the sphere; specifically when U•n=O, the flow

satisfied V = 3U/2 and there is a net velocity increase of U/2. 
The subtle step is to relate velocity V to pressure p. For

potential, incompressible flow, Euler's equation (5.3) can be put in the form: 

(B.6) 

where V2=V•V . This is a standard computation, requiring more vector

arithmetic. For present purposes, we neglect gravity and integrate 

(B.7) � + !v2 + 2 =f(t) 
rn 2 p 

where f(t) is the "constant" of integration. This equation is known as

Bernoulli's equation for potential, incompressible flow, and should not be

confused with Bernoulli's equation (5.6) for isentropic flow; in particular, 

the adiabatic and incompressibility assumptions are incompatible. Observe that 

V2 is determined by (B.5)

(B.8) 2 [ A. 
3 ] 2 2 [A_J ).6 ] 2 V = 1 + -3 U - 3 3--6 (U•n) 

2r ,r 4r 
where, as above, U2=U•U. Next, f(t) can be obtained by averaging over

spherical surfaces of radius r=R and letting R --7 oo; we denote this limit by

< · > . It is easily seen that <V2> =U2 and <'I'> =0; thus, < o'l'/ot > =o<'l'> /ot=Oto to to to to 
and f{t) must satisfy:

j(t) =</{t)>to= <g'f>to+�<V2>to+<p>to/p = �U2+p
s

/p • 

where <p> =p is the static pressure. When this expression is used in (B. 7),to s 
the pressure difference p-p on the surface of the sphere is computed by

s 

evaluating terms at r=A. 
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Appendix B. Incompressible Flow Past a Sphere

(B.9) 

Here, p=p(n) is pressure on the surface in the direction n. Recall that this
is the solution for inviscid, incompressible flow. A more realistic model 

would be adiabatic. 

For application to flow-angle measurement, U is replaced with the relative 

wind Plr=rer where, as before, 1'=11Plr11 is true airspeed and er is the vector

direction. The radius A is now the (local) radius of a spherically shaped

sensor or probe which could be the front part of a radome. In any case, (B.9) 

can be written 

(B.lO) 

After all this, we show that the acceleration term can generally be 

neglected, anyway. Consider the relative error computed as the ratio of the 

second term to the first: 

Relative Error = j3An•(oPl lot) I I l-4
1r2[9(e •n)2-51l .r r 

For a worst-case analysis, suppose that the wind direction coincides with the 

pressure direction i •n=-1 and there is no angular acceleration, that is,r 
oU lot=lloU /otlle . Thus, with an acceleration equal to gravity g, the relativer r r 
error reduces to 3Agli. Finally, with a nominal true-airspeed of 100 m/s and

g::10 m/s2, this error is about 3·10-3A. Because the radius A is substantially

less than a meter in practical applications� we conclude that the acceleration 

term can safely be omitted. Nonetheless, the reader should be wary of 

situations where the difference 9(i •n)2 -5 is small and the acceleration termr 
becomes the dominant factor. 
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Appendix C. DIGITAL FILTERS AND SYMMETRY

Mathematically, a filter is a linear operator that transforms one time 

series into another by convolution. Simply stated, convolution is a

generalized moving-average; it is a concept natural to both measurement and 

signal processing. For example, weather radars transmit with a fixed beam 

pattern and the resulting backscatter is spatially averaged or convolved by 

this pattern. Data can also be convolved in time; pressure and temperature 

sensors require a small, but finite, amount of time to respond to physical 

stimuli; the 
. 
net effect is an averaging process that can again be modeled as a 

convolution. For a filter, the salient feature is that the same computation is 

applied over and over (such as in differencing), by sliding it along the data. 

Of special interest here are predictive filters and symmetric ones. 

Predictive filters are used in real-time applications because they are causal, 
that is, they use data only from the past (or present). In practice, they can 

either be implemented digitally, say with a computer, or built directly into 

an analog device (like in radio). A simple example is the exponential filter 
defined 

(C.l) Y =ry 1+ (1-r)x n n- n
where {xk} is a given time-series of data, y n is the filtered answer, and r is

·a parameter that controls the amount of "feedback" from yn_1. We remark that

feedback filters that depend only on present data x are called autoregressive n 
(AR); however, for more general autoregressive filters, feedback can depend on

all previous filtered values yn-k; k>O. Next, it is informative to track the

iteration backwards in time 

(C.2) y = r2y 2 +(1-r) [x +rx 1]n n- n n-

= r3y 2 +(1-r) [x +rx 1+r2x 1]n- n n- n-

co k = (1-r) L r xn-k .k=O 
which is an infinite moving-average . (MA) filter that converges for lrl<l.

Because powers are related to exponentials as rk=exp(klogr), the reason for

calling this the exponential filter is clear. In passing, we remark that this 

example is characteristic of the general case, "Any (convergent) AR filter can 

be represented as an MA filter;" however, the converse is not true, "There are 

MA filters cannot be implemented as AR filters." We remark that many of the

filters of interest are in this latter category. 
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Appendix C. Digital Filters and Symmetry 

By contrast, symmetric filters use data from both the past and the

"future", and are usually restricted to digital implementation; they are 

commonly used in post-processing and analysis. A simple example is the

Von-Hann or Hanning filter: 

1 (C.3) Yn = 4(xn-1 + 2xn + xn+1)

which is often used for smoothing. With general-purpose (i.e., broad-spectrum) 

applications, symmetric filters are superior in almost every way. However, 

because they require data from the "future", they can be more difficult to 

implement. Nonetheless, (short) symmetric filters can be realized in 

near-real-time with fast digital processors or analog delay loops. 

Symmetric Structure A brief, but useful, analysis of symmetric structure

can be obtained with a Taylor's series analysis. To begin, the Taylor's series 

expansion for the function f(t) about t=O is: 

(C.4) 

where f (k)(O) is the k-th derivative at 0. Of some importance is that odd

derivatives cancel when f(h) and /(-h) are averaged:

00 

(C.S) � [f(h)+f(-h)] = [ c!kH t<2k>(o) h2k
k=O 

=/(0) + �/<2>(0)h2 + O(h4)

where O(t) is the notation used in Sec. 10. Observe that (C.S) can be computed

to about the same level accuracy as (C.4), with only half the computation, and

shows the great utility of symmetric formulas in numerical procedures. 

Next, solving for f(O) gives: 

(C.6) f(O) = � [f(h)+f(-h)] - �/2>(0)h2 - O(h4) ,

which, in turn, can be converted into a numerical estimate x of f(nh): n 

(C.7) A 1 1 x = -rx +x ] - -x"n 2 I: n+1 n-1 2 n ' 

where x" is a numerical estimate of /2>(nh). Note that this is ann 
interpolation formula, provided x" does not depend on x . n n 

To continue, a useful filter y results by averaging (C. 7) with x :n n 

(C.8) y =n 
x + 2x +x n-1 n n- 1 1 , 

4 - ixn · 
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Appendix C. Digital Filters and Symmetry 

Note that if x � is set to zero, (C. 7) reduces to linear interpolation, and

(C.8) reduces to the Hanning filter (C.3).

The more interesting case is when the second derivative is nonzero because 

then the filter can respond to local curvature. Here numerical estimates x" n
should be exact on cubic polynomials; a standard one is: 

x - 2x + x 
n n+2 n n-2 

X = ----�------n 4 

When substituted into (C.8), a cubic filter results that is qualitatively 

similar to more advanced filters developed later (e.g., App. F). Of special 

importance is the close relationship between interpolation and filtering. 

Formal Definition A deeper understanding of filtering procedures requires

the shift operator 8 which denotes translation by one unit. More generally,

8-r: is translation of a time series x(t) by -r units

8-r:x(t) = x(t+-r:). 

Positive -r is forward translation, negative r is backward translation, and 

1=8° is the identity or do-nothing operation. A digital filter, as an

operator, can then be represented as weighted sums of shifts. For example, the 

exponential filter (C.2) can be represented E =(1-r) I00rk8-kand the Hanningr k= o 
filter (C.3) is H=(8-1+2l+<f)/4. More generally, a digital filter A is an

operator of the form 

(C.9) \ -k A = L ak8 <=> A[x(t)] = [ akx(t-k) .
k k 

where the (possibly complex) weights ak are called the filter coefficients.
(When summation limits are omitted, it is understood that sums are over all 

required integers, positive and/or negative.) Observe that A[x(t)] is

evaluated by "moving" the computation with t which, as noted above, is

characteristic of convolution. Here, infinite sums must converge (in some 

sense). Also, we continue to use subscript notations for the discrete 

case: xk =x(k) and Ak[x]=A[x(k)].
We next compute the composition of two filters A and B, applied in

succession 

B[A[x(t)]] = B[ akx(t-k) = L akB[x(t-k)] = L ak[ b .x(t-k- j)
k k k j J 

or, letting n=k + j 
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Appendix C. Digital Filters and Symmetry 

B[A[x(t)]] = L akL bn-k x(t-n) = L [L akbn-k] x(t-n)
k n n k 

which is polynomial multiplication, in disguise! Indeed, when polynomials p(z) 

and q(z) are multiplied, all coefficients of a power of z are grouped together 

and summed. Applied to filters, this means 

(C.lO) A =E ak8-k 
& B =E bk8-k 

=> AB =E cn8-n

k k n 

where en =E akbn-k =I an-kbk .k k 

In particular, polynomial multiplication commutes AB=BA, and so, filter 
composition and polynomial multiplication are the same thing. It is,

therefore, not surprising that the coefficients c are computed using the samen 
convolution rule as (C.9). We remark that c , as computed in (C.lO), is alson 
known as the Cauchy product, giving convolution yet another name. 

Frequency analysis is the principle tool used to study filters. It is a

form of spectral analysis based on the complex exponentials 

eiwt = cos(GOt) + isin(wt), where i=r-1' is the imaginary unit and GO is the

(radian) frequency. In this context, the complex exponentials are called 

frequency components, An important property of digital filters is that they

always preserve frequency content; although a filter can delay or annihilate a 

given component, it cannot generate new ones. More precisely, when a digital 

filter A is applied to a component eiwt, there is always some (complex)

number, say PllA (GO), which depends only on frequency GO so that for all time t 

(C.ll) I A[ei"t]=IYlA (w) eiwt I . 
The function Pll (GO) is called the frequency response of the filter because itA 

. t completely characterizes what the filter does to the time series e1w 
• In more

general contexts, eiwt is called an eigenfunction (of the operator A), and

Pll A (GO) is called the eigenvalue.

As a simple example, we compute the response &/H(GO) of the Hanning filter 

(C.3) 

(C.12) H-r itwJ 
1

( 
i( t-1 )w 2 i tw i( t+1 )w )L e = 4 e + e + e 

1
( 

-iw/2 iw/2 )2 itw= 4 e + e e 

= coi(G0/2) ei tw ;

thus, P/lH(GO)=cos2(G0/2). It should be observed that complex functions are used
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to expedite computation; by equating real and imaginary parts, the effect of 
filtering the trigonometric components cos(kw) and sin(kw), as real time 
series, can be inferred; in the present case they are both attenuated by the 

amount /Yl.H(w).

Closer inspection of the eigenvalue computation reveals that the frequency 
response can always be computed by substituting e

iw for 8; thus,

(C.13) I A = Lk 
ak[

k => 81! A (w) = Lk ak
e -ikw I· 

provided that the trigonometric series converges in the usual least-squares 

sense. For example, the response of the exponential filter, as computed in 

(C.2), is fYl. (w)=(1-r) I00le-ikw and converges insofar as it can be summed asE k = O  
a geometric series 

iw 1-r _ (1- r ) (1 -re )IYliw) = -iw - 2 2 · 1-re (1-r) +4rsi n  ro/2 
(C.14) 

Unlike (C.12), this response is a complex function. When this happens, it is 

useful to express it in polar form: /Yl.( w )= I /Yl.( w) I ei </> ( w) where I /Yl.( w) I denotes the

amplitude and cp(w) denotes the phase computed as the inverse tangent

tan -1(Im /Yl/ Re &l) of the imaginary to real parts of &l(w). In the present

case, l&l (w)l2=(1-r)2/[(1-r)2+4sin2w/2]. (Phase computation is usually left toE itw computers.) Note well that nonzero phase means that components e are

shifted or delayed in time by the amount Llt=-q.�(w)/w, that is,

eitw ei<f>(w )= ei( t-l:d) w (w=O excluded). As can be seen from (C.14), the

exponential filter E delays different frequency components by different 
r 

amounts, a feature common to all predictive filters.

From the eigenvalue property (C.ll), it follows that the response of two 

filters, applied one after the other, is the product of the responses. But, 

applying two filters in succession is the same as composition which is also 

the same as multiplication; thus, 

(C.15) 

Because, filter multiplication is computed using the convolution rule, this 

result is generally known as the convolution theorem. In the special ·case when

A=8, the identity fYl. (w)=e
iw/Yl. (w) is known as the shift theorem.

AB B 
To effectively describe symmetry, we need the operator adjoint A* defined

on filters A as:
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(C.16) 

where a* denotes the complex conjugate of a. In particular, s* =8-1 and the

adjoint has th� effect of reversing time. Moreover, it is idempotent A** =A and

distributes over addition, scalar multiplication, and filter products: 
* * * * * *  * * *  . . .. (A+B) =A +B , (cA) =c A , and (AB) =A B . Also, it IS easily verified that the 

response of the adjoint is the conjugate of the response 6l •=/Fl*.A A 
To proceed, a filter has even symmetry if it is self-adjoint A* =A;

examples are filters of the form (A+A*) ,  i<A-A*
), and AA*. The Hanning filter

(C.3) is an example of even symmetry. A filter has odd symmetry if it is skew

symmetric A* =-A; examples are filters of the form A-A*, iCA+A* 
), and iAA*. The

centered difference (8 -8-1) is an example of odd symmetry. A filter is

simply called symmetric if it is either even or odd. Symmetric filters are

never causal (except for real multiples of the identity) and, conversely, 

causal filters are never symmetric. Consequently, symmetry and causality are 
mutually exclusive concepts. 

Now, the response of a filter with even symmetry is pure real because 

fY/A
* =al * =at , and the response of a filter with odd symmetry is pure imaginaryA *A 

because M =M. * =/Fl =-fYl . It turns out that the converse is also true becauseA A -A A 
filter coefficients a can be computed as Fourier coefficients of the n 
frequency response: 

(C.17) 

provided that this integral is well defined. Thus, if /Fl A (OJ) is pure real, then

a = a*, and A has even symmetry; if 6l (OJ) is pure imaginary, then a =-a* ,-n n A -n n 
and A has odd symmetry.

An important consequence of this is that no predictive filter can have a

frequency response that is either pure real or pure imaginary. But, smoothing 

filters are ideally modeled with responses that are pure real, and derivative 

operators are ideally modeled with responses that are pure imaginary. Thus, 
predictive filters used for smoothing and/or differentiation can, and will, 
create time distortions that cause frequency components to shift and peaks to 
move around. By contrast, symmetric filters tend to leave features where they

belong. 

The superiority of symmetric methods should by n.ow be clear; above results 
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are definitive. In closing, we remark that the response map has many 

properties in addition to those discussed. Suffice it to say that theory 

generally parallels the Fourier transform. 
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Appendix D. SAMPLING AND INTERPOLATION

This section deals with more advanced, theoretical aspects of sampling and 
interpolation. In particular, we show how numerical interpolation can be used 
to improve on Shannon's Sampling Theorem. Results are then applied to obtain 
an "optimal" class of filters, especially well sllited to data acquisition. 
Finally, a solution of the computational aliasing problem discussed in 
Sec. 11 is presented.

Analog Prefilters Because analog filters are implemented in real time

they are predictive and spoilers of symmetry. The qllestion arises, "Can we do 

without them?" Here, theory supplies a definitive answer. Basically, what is 

needed is an ideal, low pass filter that restricts frequency content to an 

interval of the form [ -.Q ,.0 ]; more precisely, we n.eed a frequency response

alfJ.(w) that satisfies

(D.l) at (w) = { 1' lwl < .Q
fJ. 0, lwl > .Q

The value of alfJ.(w) at w=!J is left indeterminate. Filters of this kind are

called band limited and the interval [-.Q ,.Q] is called the passband of the

filter; likewise, the region of zero response is called the stopband (with

practical methods there is a transition region as well). Now, it turns out 

that band-limited filters do not have digital representations. Instead, the 

corresponding time-domain filter .o/lfJ. must be realized as an integral operator

(0.2) Joo sin D(t-s) d .o/lfJ.[x(t)] = n( t -s) x(s) s-oo 
which is again recognized as convolution, but for a continuous variable. Note 

that 910 is also a projection operator, that is, it is idempotent 91�=910 and

symmetric (also, self-adjoint) 91�=910; in other words, applying .o/lfJ. twice gives

the same answer as does reversing time. 

For present purposes, the operator .o/lfJ. is the theoretical counterpart of an

analog prefilter. Because it does not have a digital representation, analog

filters cannot be replaced with digital ones. For data sampled at regular 

intervals, the only recourse is to sample above the frequency response of the 

instrument or sensor; however, in this situation, the sensor is implicitly 

functioning as an analog filter anyway and little has changed. We therefore 

conclude that analog prefilters are a necessary part of sampling any 
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continuous process. Also, it is worth remarking that phase distortion produced 

by an analog prefilter can, in principle, be removed in post processing by 

running a matched digital filter backwards in time. Although this is seldom 

done, it is a procedure of practical value. 

Interpolation A good place to start is with Shannon's Sampling Theorem

(Hamming, 1977, p. 135) which gives a criterion for data to be correctly

sampled; basically, it says that unaliased time series can always be 
interpolated. More precisely, if xk =x (k) is a sample of a (weakly stationary)

process x (t), then x (t) can be reconstructed from the interpolation:

(0.3) x(t) = 1\00 sin n( t -k) x L n( t -k) kk=-00 

provided that data is unaliased. Here, convergence is in the least-squares 

sense, like a Fourier series. Observe that this formula requires hi-infinite 

data xk from both the past and the "future." By contrast, there is no

analogous predictive formula that uses data only from the past (and/or 

present). 

An important special case is for interpolation to midpoints t=n+l/2; in 

this case, (0.3) simplifies to 

(0.4) 2 00 ( -l ) k 
xn+l/2

= 
n L 2k+1 [ xn+k+l + xn+k] · k=O 

Note that for constant data x, the interpolate x must be the same and (0.4)

reduces to the well-known expression: n=4 .rn(-1)k/(2k+1). Unfortunately, thek = O  
series (0.4) converges very slowly and is not very useful in practice. 

Nonetheless, it has value in its structure, and practical methods that share 

this structure tend to be of high quality. In this regard, Bessel's midpoint 
interpolation is one of the best; for an index p, it interpolates polynomials

of degree 2p-1 to midpoints as 

(0.5) 
A 

_p-1 (-l)k 
xn+l/2

- L cp, k 2k+1 [ xn+k+1 + xn+k J k=O 
where the c k are weights, expressed in terms of binomial coefficients as

p, 

Examples 

- p (2p)(2p-1 ) . k-
1 cp,k -

42p-1 p p-k-1 ' -l,2, ... ,p- · 
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Appendix D. Sampling and Interpolation 

x = [x +x ]/21/2 0 1 

x = [9{x +x) - (x +x )]/161/2 0 1 -1 2 

p=3, Quintic: x11 = (150{X +X ) - 25 {X +X ) + 3(X +X )]/2562 0 1 -1 2 -2 3 

We remark that in the limit as p-'>oo , Bessel's formula (D.5) converges to the 

"ideal" value (D.4); this limit, therefore, provides a different convergence 

pattern to the same final answer. Additionally, it converges in situations 

where (D.4) does not (e.g.,. polynomials), and can be viewed as a 

generalization of the sampling theorem to a broader (nonstationary) class of 

functions and processes. 

We observe that the basic difference between (D.3) and (D.4) are the 

weighting coefficients c 
k 

which impart a Gaussian-like taper to the 
p, 

troublesome term 1/(2k+ 1). This taper is evident in Table D-1 which shows 

total values of b 
k
=( -1 )k c k

/ ( 2k + 1 ) for even values of p. 
p, p, 

k"" 
b

2,k
b

4,k
b

6,k
b

8,k

0 0.5625000 0.5981445 0.6106682 0.6170455 
1 -0.0625000 -0.1196289 -0.1453972 -0.1599748 
2 0.0239258 0.0436192 0.0575909 
3 -0.0024414 -0.0103855 -0.0186983 
4 0.0016155 0.0048477 
5 -0.0001202 -0.0009153 
6 0.0001106 
7 -0.0000064 
8 
9 

b
10,k

0.6209080 
-0.1693386 
0.0677354 

-0.0260521 
0.0086840 

-0.0023684 
0.0005010 

-0.0000766 
0.0000075 

-0.0000004 

Table D-1. Coefficients for Bessel's midpoint interpolation. 

Note that the top row b 
0 

is converging to 2/n =0.6366198 and can be used as 
p, 

a measure of how well (D.5) approximates the ideal (D.4). 

Next, because single-precision (23-bit mantissa) arithmetic has about 

seven significant digits of precision, we see that there is a practical limit 

on the order of this interpolation; indeed, for p> 10, the smallest

coefficients get lost in roundoff error and further increasing p could 

actually result in loss of precision. We therefore conclude that interpolation 

corresponding to p=8 is about optimal for single-precision arithmetic. (A more 

precise answer requires numerical simulations for specific applications.) 

Half-band Filters An ideal low pass filter that reduces the passband to 

A <n has a frequency response flllA (w) defined
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&l (w) = { 1,A 0, 
0 s lwl < A 

A < lwl s n: 

Here, &lA (w) is extended to the rest of the real line by periodicity, and is

not band limited. It turns out that periodicity is a necessary condition for 

filter to have a digital representation; in the present case, straightforward 

computation using (C.13) shows: 

(0.7) 

As above, P A is a projection operator.

A half-band filter is then obtained by setting A=n:/2, and another

calculation shows that y =P /2 
[x] simplifies to:n rr ,n 

1{ 2 00 
(-1)k } (O.S) Yn = 2 xn + n

k
t2k+1 [ xn+2k+1 + xn-2k-1 J '

What is remarkable is that the sum in brackets is the same midpoint 

interpolate x as (0.4) above, except that now it is computed from a subsample 

consisting of every other point. This result is of considerable value in 

application; it shows how to approximate ideal, half-band filters. For present 

purposes, we approximate (0.8) with polynomial filters y(p) of degree 2p-1n 
defined: 

(0.9) /P1 =(x +x<P> )/2n n n 

where x < P) denotes the 2p-1 order Bessel interpolation (D .5) applied to then 
subsample {xn+2k} consisting of every other point. For example, when the

first Bessel interpolation x� 1) =(xn_1 +xn+1)/2 is used, we get the Hanning

filter (C.3). 

More generally, response curves for higher-order interpolation filters are 

shown in Fig.0-1 for p=1,2,4,8,16,32. In all cases the responses &l(p}(w) are

unity at ro=O and zero at w=n:. Additionally, curves are monotone decreasing and

"skew symmetric" about w=n:/2, that is:

(0.10) &l(p} (n:/2-e) + &l(p} (n:/2+e) = 1 .

"Optimal" Data-Acquisition For application to data acquisition, data is 
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1.2 

1.0 

o.s
0 Ul o.s c:l 0 �Ul 0.4 0 

� 
0.2 

o.o 

0.2 0.4 o.s o.s 1.0 -0.2 
o.o 

Normalized frequency

Fig. D-1. Response curves for "ideal" higher-order Bessel interpolation 
passband filters, with p=1 , 2 , 4 , 8 , 16 , 32 . 

prefiltered with a half-band filter (0.9), and then subsampled to every other 

point. We argue that this decimation procedure is well suited, if not optimal, 

for scientific application. First, as noted above, the passband is monotone 

which is important because otherwise there would be peaks or ripples that 

could get passed on to acquired data, leading to confusion. Second, because 

these filters vanish at multiples of w=n , folding does not corrupt the DC

component ( w=O) . (See Sec. 11.)

But filters with these properties can be obtained in many ways, so "What

makes those of (0.9) so special?" The answer is that they are polynomial 

filters, and polynomials are exceptionally well suited to data acquisition 
because they are invariant to subsampling. In other words, any (regular) 

subsample of a polynomial of degree n is another polynomial sample with the 

same degree. By contrast, trigonometric functions do not share this property. 

In addition, the filters /P) of (0.9) are qualitatively similar to then 
ideal half-band filter (0.8), and converge to the ideal filter as p-Hxl, 
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Finally, it is easy to prove that any other polynomial filters with the above 
properties and having the same number of coefficients would be the same. 

Consequently, the filters (D.9) are unique, therefore optimal, by this set of 

standards. 

Another way to judge a data-acquisition filter is by what it does to white 

noise. In this situation, decimation procedures should preserve the 

white-noise property (at least in the mean). However, for this to be true the 

response .;l(w) of a symmetric filter A would have to satisfy:

(D.11) [..4'(n/2-e)]2 + [4(n/2+e)]2 = 1 . 

in contradiction to (D.lO). To better understand this condition, we model a 

white noise sample as having constant power which is the same as having 

constant (real) amplitude c and random phase. Thus, components sampled at

radian frequencies w=n/2-e and w=n/2+e have complex form ceicf> and ceii/J. 
After filtering and subsampling, the w=n/2+e component folds back to w=n/2-e, 
and the complex amplitude is 

a(n/2-e) = c [4(n/2-e)eicf> + 4(n12+e)eil/l] 

In turn, power is proportional to the amplitude squared: 

la(n/2-e)12= c2[.42(n/2-e) +42(n/2+e) +2-A(n/2-e)d(n/2+8) cos(tf>-IJI)].

Finally, if E is the expectation over all such samples, that is, over all

possible q, and f/1, we get

Ela(n/2-e)l2 = c2[42(n/2-e) +42(n/2+e)] 

and so Ela(n/2-e)l2=c2 as claimed when (D.ll) is satisfied, showing that

decimation preserves the· white-noise property. 

By contrast, this same analysis applied to the filters &'l(p) results in

the equation: 

Ela(n/2-e)l2 = c2[r2 + (1-r/] 

where r=&'l(p) (n/2-e). We remark that for application to spectral analysis,

this curve can be used to "calibrate" a power spectrum so that white noise 

will, indeed, appear white (at least in the mean). 

So which are better, polynomial filters or filters that preserve white 

noise? We cannot have both. In this regard, choosing a filter based on what it 

does to noise is a dubious criterion. Moreover, it is not difficult to show 

that such filters are inconsistent with the ideal filter (D.8) at the sampling
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frequency w=rc/2, even in the limit. We conclude that such filters are of

limited value in data-acquisition procedures. 

Application to Computational Aliasing In Sec. 11 we saw that when two 

time series are multiplied together, sum and difference frequencies result. On 

a discrete grid, higher frequencies cannot be accurately resolved, and they 

fold back to lower frequencies, creating a distortion. So what, if anything, 

can be done? The key observation is that continuous time series x(t) and y(t) 
can be recovered using the Sampling Theorem (0.3); once done, the aliasing 

associated with multiplication goes away. However, continuous interpolation is 

a theoretical ideal, and the practical question is, "How much is really 

needed?" It turns out that interpolation to midpoints is enough. This is 

because midpoint interpolation doubles the number of grid points and, in so 

doing, doubles the number of frequencies that can be resolved. At the same 

time, multiplication also doubles frequency content. Thus, midpoint 
interpolation is the minimum amount required to avoid aliasing from 
multiplication. For example, consider the sequence (1, -1, 1, -1, . . .  ) sampled at 

the folding frequency; then squaring gives a constant sequence which is 

nonsense. By contrast, interpolation will yield 0 at midpoints resulting in

the new sequence (1,0,-1,0, . . . >; now squaring gives a meaningful answer.

In summary, multiplicative aliasing can be controlled by (I) interpolating 

to midpoints, (II) multiplying the interpolated time series, and 

(III) decimating the answer back to the grid we started from. Because 

practical methods are never ideal, some aliasing will result, the extent of 

which can be controlled with higher-order methods. More complicated 

nonlinearities will generally not have such ·explicit solutions. Nonetheless, 

they are still amenable to the same scheme, but may need to be "tuned" with 

numerical simulations. All things considered, this is a most satisfactory 

solution, both in theory and in practice. 

Some Operator Identities The utility and power of above theory can only 

be fully appreciated in the context of operators. Although time and space do 

not permit a full treatment of this elegant topic, we here outline central 

results; in particular, we show one way to derive the Bessel formula (0.5). To 

begin, we borrow the notations J.l and � from classical numerical analysis to

denote the mean and difference operators: JJ=(�12+&-112)/2 and �=�'2-&-112

which have frequency responses: cos w/2 and 2i sin w/2, making it easy to

convert, back and forth, between operator identities and trigonometric ones. 

For application to polynomial theory, the important observation is that the 
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iterated operator �P annihilates polynomials of degree p-1 (or less).

The first identity of importance is: 

(D.12) 
J.l . 00 k [� ] 2k ---. = J.l L (-1) Pk z j 1+�2 /2 k=O 

where Pk is expressed in terms of binomial coefficients as pk = �2ke:). Note

that this identity is derived from the Taylor's series expansion of (1+xr112•

Also, because cos2 ro/2+sin2 ro/2=1, there is a corresponding operator identity:

J.l
2-J2/2=/, and (D.12) can be interpreted as converging to the identity

operator /. A useful interpretation of (D.12) is that the infinite series is 

undoing or deconvolving the averaging operator J.l. 
When (D.12) is truncated at k=p-1, the resulting operator, say B , is. p exact on polynomials of degree 2p-1: 

(D.13) ( ) p-1 [gll!_ g-l / 2 ] 2k 
B p = J.l L ( -1 )k pk -;2...----

k=O 

and has response cos(ro/2) f�� 1Pksin2k(ro/2). Although not obvious, (D.12) is

equivalent to Bessel's interpolation (D.S). One way to establish this is to 

show that 'the frequency responses of (D.S) and (D.l3) are both equivalent to: 

(D.14) < ) Jro/2 2 -1 a/ P ( w) = 1 - 2p P s in  P ada ,
p 0

which also shows that Bessel's midpoint interpolation is maximally flat at 

w=O. This is a lengthy computation, requiring the following intermediate 

identity (easily verified in operator form): 

(D.15) 

[Hint: differentiate (D.14) and the response of (D.S), then sum; also 

integrate (D.14) by parts to get the response of (D.13).] 

Finally, we present an important identity for the optimal filter of (D.9), 

that is, for the operator /(p )=(/+B(p ))/2 where jj<P> is the Bessel operator

B(p) applied to every other point. Observe from (D.13) that

(D.l6) ( ) ( ) p. 1 2k 1JJ P (co) = a/ P (2ro) = cosw [ Pk sin w
k=O 
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The following identity for the frequency response d (p)(w) of the operator

I (p) can then be established with a straightforward, but tedious, proof by

induction: 

(0.17) d (p)(w) = cos2P(w/2)Pf (p+:-1) sin
2 kw/2 ; p?!: 1.

k=O 

Observe that the frequency response is parameterized with w in (0.15), but

changes to w/2 in (0 .17). Implicitly, this identity shows that the filters are

maximally flat at w=O. 
The practical significance of (0.17) is that optimal filters can always be 

factored. For p= 1, I (1 > 
is the Hanning filter with frequency response

d (l)(w) = cos
2(w/2) . For p=2, the filter I (p) can be factored

I<2 > 
= [ 8 +2!+ 8-1 ]2 [-8 +4; -c-1 ] 

which is the composition of the square of the Hanning filter with another 

symmetric operator. More generally, the p-th power of the Hanning filter can

always be factored out of I ( P); the remaining filter can then be further

factored into "quadratic" terms: ai +b(8+8-1)+c(8
2+&-2) with real coefficients

a, b, and c.
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Appendix E. ENHANCED TRIANGLE FILTERS

The purpose of this appendix is to discuss a class of high-quality, 

low-pass filters capable of isolating or separating out slowly moving trends 

(see Oppenheim and Schafer, 1975, and Leise, 1981). Because such trends can 

often be modeled as polynomials, filters that leave polynomials unchanged are 

a good choice. Formally, polynomial filters are characterized as leaving 

invariant all polynomials of a given degree (or less). To make this 

mathematically precise, we introduce the notation kp to denote the bifinite

sequence of integers raised to the power p: 

(E.1) kp = ( ... ,(-k}P, (-k+l}P, . . .  ,-1, 0, l, ... ,(k)P, (k+l}P, ... ) .

Otherwise said, kp is the discrete analog of the continuous monomial x (t)=iP.

In this context, necessary and sufficient conditions for a filter F to be a

polynomial filter of degree n are: 

(E. 2) I F[k.Pj = kp ; p=0, 1, 2, ... ,n

and we can now begin to appreciate the significance of polynomial filters; 

they have (low order) monomials kp as an additional set of eigenvectors. More

generally, all {low-order) polynomials are eigenvectors; however, monomials 

are linearly independent� like the complex eigenfunctions eiwt, and deserve

emphasis. 

Our approach here is to compute symmetric, polynomial filters from 

triangle filters. There are several reasons for doing this: (I) we are 

familiar with triangle filters from Sec. 11, (II) frequency analysis is 

straightforward, and (Ill) triangle filters are very efficient to implement. 

Our first task is to understand the mechanics of making triangle filters 

into polynomial filters. In Sec.11 we learned that triangle filters T
N 

with a

single vertex always have odd length (N=2L-1) and can be represented as the 

filter product T
N
=R� where RL is the (centered) running average of length L.

Because the notation T2L-l is somewhat unwieldy, we shall omit subscripts when

context is clear. In any case, the present goal is to find a correction 

filter, say, C for which the filter product P=TC is a polynomial filter. It is 

useful to represent this correction as follows: 

(E.3) 

where Jh = &h/2 -8-h/2 is the centered difference operator for step size h.
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This representation is analogous to a Taylor-series expansion; its principle 

advantage is that powers of Jh annihilate low-order polynomials. To continue,

note that the eigenfunction conditions (E.2) completely determine the unknown 

coefficients c2k; specifically, polynomial filters of degree 2n+ 1 are

completely determined by the following system of equations: 

(E.4) 
n 2k L c2kTOJh {kp] = 0 ; p=O, 2, 4, . . .  '2n

k=O 
where, consistent with our simplified notation, T0=T2L-l

, 
0 is the filtered

value at time t=O. Additionally, because J�k
{kp]=O for 2k>p, the system (E.4)

decouples and the unknowns c2k can be computed recursively; in particular, the

c2k are independent of n.

Note that triangle filters are already polynomial filters of degree one, 

and so c0=l. However, other constants must be computed. To begin, we let

miP>=T0[kP] denote the p-th moment of the triangle filter T=T2L- l ' Clearly, 

these moments vanish when p is odd, and when p is even they satisfy: 

2 L-1 
(E.5) m<P>= - \ kp (L-k)L L2 kbl 
Required sums Ikkr can be found in tables, and the first few values of miP) 
can be shown to be: 

(E.6) 

Computation of J�k 
{kp] is a tedious but straightforward task which we leave

to the reader; some low-order results are: 

With this background, we can now compute c2 from (E. 4)

(E.8) 

<=> 

<=> 

2 2 2 
T0{k 1 + c2T0Jh [k 1 = 0

m<2> + 2h2c m(O) = 0
L 2 L 

c2 - -m <2>t(2h2m ( 0)) L L 

= -(L2-1)/(12h2)

To emphasize the dependence on L, we here change notation to cL =
-c2, in which

case the cubic filter can be written: 
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(E.9) 

Now, it turns out that such filters can be improved through factorization; 

in the present case, we use the identity: T4L-l =p� T2L-l wherel(gh/2 g-h/2) . 
h 

. . 
h b J.lh = 2 cu +cu lS t e averagmg operator for step s1ze h. We t en o serve 

that if f.l� and T2L-l are independently enhanced to become cubic filters, the

resulting composition Q��> is be another cubic filter with improved

characteristics. It is a straightforward exercise to show: 

(E.lO) 

To complete this discussion, we need a condition on h. The answer is to 

choose h at about half the size of L; more precisely h=[(L+ 1)/2] where square

brackets here denote integer truncation. Insight into this choice can be 

obtained by analyzing the cubic filter for the cases L=2 and L=3.

The Triangle-Filter Algorithm Knowing how the triangle filter is 

implemented is part of understanding its limitations. Here, T2L-l [x] is

computed with a double integration of J�[x] based on the identity:

(E.ll). 

(Remember that T2L-l is also normalized be L2.) For example, with L=3 this is

the same as the polynomial identity: 

83-21+8-3 = (8-2/+8-1) (82+28+3/+28-1+8-2) .

Again, we revert to our simplified notation Tixl=T2L-l, k[x] and define

differences Dk[x]=Tk[x]-Tk-l [x]; because J�[x] is considered as already

computed, the double integration takes the form: 

(E.12) 
1 2 Dk{x] = Dk-/X] + L 2 JL,k-l[xJ

Tk[x] = Tk_1[x] + Dk_1[x] .

and Tk[x] can be recursively computed from initial values T0[x] and D0[x].

A shortcoming of this integration is that it tends to propagate roundoff 
2 error generated in the computation of JL[x] and cannot be reversed. (Recall

from statistics that integrating a white noise process, such as roundoff 
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error, generates a random walk with infinite variance.) The computer algorithm 

presented in the next appendix uses an error-correction procedure to help 

control this problem. 

The Composite Filter By now it should be evident that algorithms 

discussed are all well suited to machine implementation . .  Rather than trying to 

design or force a filter to a given set of specifications, we have pursued 

methods of exceptional performance. Our design strategy is to construct 

high-quality algorithms from a collection of finely tuned parts. Our present 

goal is to complete this task. 

Without further distraction, the low-pass filter of interest, say, F L
approximately satisfies F L = Q��> Pi 3> where Q��> controls the shape of the

passband while Pi 3> reduces the size of the stopband. This would be the answer

except for the presence of a rather large lobe (about 20 dB); to reduce it, we

modify Pi 3> to obtain another cubic filter, here denoted Ri 3>. This

computation is rather technical and not very informative. Consequently, we 

simply state final formulas: 

(E.l3) F - Q<3> R<3>. H=[(L+l)/2] 
L 2L 2H ' 

Q��> = T4L-l (/ - � J�) (l-cLo;); cL=(L2-l)/(12If2)

R��> = T4H-l �(8H
+/+8-

H
)(l-dH

oi); dH=�+(4F-1)/(12ff)

which form the basis of the computer algorithm presented next. 
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We here apply the computations of App. E to construct a useful algorithm. 

Because the formulas for F 
L of (E.l3) are complicated and not very intuitive,

this algorithm is better understood by its properties and here the following 

list speaks for itself: 

Properties of F L 
(1) Symmetric (no phase shifting).

(2) Mirror-image extension.

(3) Multidimensional. 

(4) Cubic filter (good with trends). 

(S) First-order approximation: F L = T4L-t
(6) Versatile (a different filter for each L). 

(7) Small lobes ( 40 dB = 2 decimal digits).

(8) Requires no additional array space. 

(9) Very efficient ( = 7 N multiplications).

(10) Easy to use (minimal preparation). 

Note, however, that round-off error can be a problem with large arrays. This 

difficulty, and ways around it, are discussed in some detail below. 

The computer code that implements F L consists of the following four

FORTRAN subroutines listed in Figs. F-1 through F-4. 

SUBROUTINE CMIR3 ( y. N1 '.N2. N3. LNTII1 I LNTH2. LNTH3)
SUBROUTINE CMIR1(Y,NY,LNTH,JUMP) 
SUBROUTINE TANGLE(Y,NY,LNTH,JUMP) 
SUBROUTINE MIRROR(Y,NY,COEFF,LSTEP,JUMP) 

Note that JUMP is not a user parameter; rather, it is a bookkeeping parameter 

for multidimensional arithmetic. It should be set to unity for use with time 

series. (See the listings for an explanation of other parameters used in the 

calling sequences. ) For technical reasons these subroutines are discussed in 

reverse order. 

Subroutine MIRROR This is the core algorithm used to implement 

the mirror-image filter: 

(F.1) M
L 

= 8L 
+ cl + g

·L

without additional array space. Here c=COEFF is a specified constant and 

L=LSTEP is a given step parameter. The idea is to replace a given time series 

x with the computed answer ML[x] (like an FFT) and, in so doing, circumvent
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the need for additiona' memory. The trick is to calculate and update xk �xk+L
along (mirror-image) equivalence classes MOD(L). Unfortunately, explicit 

details are intricate and beyond the scope of this outline. Nonetheless, it is 

an algorithm that can safely be used as a "black box." 

Subroutine TANGLE This subroutine implements the double integration

(E.l2) for the triangle filter. Here the second difference J� is computed

using the mirror-image filter ML with c=-2. The important insight is that by

integrating mirror-image values, the triangle filter also becomes a 

mirror-image algorithm as well. 

As previously noted, integration tends to propagate roundoff error. To 

control such errors, two integrations are performed from the center of a time 

series outward, toward both boundaries. In turn, errors at the boundaries are 

then computed (by comparison with exact, mirror-image values) and a correction 

step is employed that removes much of it. The net effect is to integrate, both 

forward and backward in time, and weight the respective answers by their 

distances from computed initial data. In addition, all initialization&, 

integrations, and error corrections are done with double-precision (64 bit), 

floating-point arithmetic. 

Subroutine CMIRl This subroutine implements the formulas (E.13). Recall 

that one triangle filter is used to control the shape of the passband while 

another is used to control the stopband. This composition is then enhanced to 

become a cubic polynomial filter, and an additional lobe-reduction step is 

used to attenuate lobes to about 40 dB. The next result is a mirror-image 

filter that is exact on cubic polynomials (boundary regions excluded) and 

requires no additional array space. 

CMIRl only requires about 7N multiplications for an array Y(N) of length 

N. Consequently, this is an O(N) procedure; by contrast, the FFT is an 

O(NlogN) procedure. It is worth remarking, however, that with the widespread 

use of math coprocessors, multiplication is not much more expensive than any 

other operation. Thus, multiplication can be misleading as an indicator of 

speed. 

Finally, to implement CMIRl, An adjustable length parameter LNTH is passed 

to the subroutine to control the passband of the fllter. The LNTH parameter 

has a linear effect; when LNTH is doubled, the passband is ·halved. For 

example, operating the filter on an array of 1-Hz time series data with LNTH 
set to 5 will result in data with periods of approximately 25 seconds or 

longer being passed; for LNTH= 10, only data with periods of 50 seconds or 
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longer are passed. When using data averaged into 10-second bins, as in the 

vertical wind computation, the above figures are multiplied by a factor of 10 

(see Fig. 14-4 for the filter's response curve in this case). 

Subroutine CMIR3 This is a multidimensional driver for subroutine CMIRl. 

Implementation is by the method of lines, that is, CMIR1 is applied to all 
lines, in all directions. The amount of filtering in different dimensions can 

be controlled with the length parameters LNTH1, LNTH2, and LNTH3. Although 

this code is only, configured for three dimensions or less, it is easily 

modified to more. 

Because CMIR3 inherits properties from CMIRl, it is also a mirror-image 

algorithm and reproduces cubic multinomials (away from boundaries). We remark 

that the mirror-image extension is especially useful in higher dimensions; it 

unfolds in such a way as to produce continuous extensions to infinity, in all 

directions. Also, all multidimensional, convolution procedures commute with 

one another, simplifying both theory and application. 

Roundoff Error Even with the error-correction used in TANGLE, roundoff 

error is a potential problem with large arrays. Error can, however, be 

monitored and/or controlled with a correction procedure. With notation as 

above, correction consists of first computing y =F
1 

[x}, then the differencen ,n 
s =x -y , and finallv the· corrected values z =y +F [e). In operator formn n • n • n n L,n 
this is the filter G =F +F (I-F ). Note that effects of roundoff error will L L L L 
show up as a low-frequency trend in the difference e = x  -y . In turn, suchn n n 
error is captured in F [e) which, when added back, corrects most of the L 
problem. (The reader is referred to App. G for more discussion on iterations 

of this kind.) 

Another benefit of this correction is that it improves the frequency 

response, and converts the cubic filter into a sixth-order one. (However, 

lobes are increased by about 3 dB.) Because of the improved accuracy, it is 

used with P-3 data in the computation of vertical winds. Note that this 

procedure requires additional storage (not necessiuiiy array space) to compute 

F [e). In any case, the author has not observed roundoff error to be a 
L 

significant problem with array sizes up to about 4K (the largest used in P-3

processing). 
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SUBROUTINE CMIR3(Y,N1,N2,N3,LNTH1,LNTH2,LNTH3) 

**********************************************Jim Leise 2/88 
Hello, 
I am your friendly 3-D, Cubic Mirror-Image Replacement filter; 
I smooth Y(N1,N2,N3) according to how you set my lengths
LNTH1, LNTH2, and LNTH3 (LE. Nk/2); it may help to know that I 
annihilate components of period/wavelength 2*LNTHk. I give you 
back the (smoothed) answer in the same array and I have no need 
for (extra) memory. My defaults are transparent; to suppress 
action in a given dimension, set the respective LNTH 's to zero; 
for 1-D or 2-D data, set the excess parameter(s) Nk to one. 
Mathematically, I have been enchanced to commute with cubics -­
that makes me a third-order algorithm. Near boundaries, I use 
mirror-image extensions; they are continuous (in all dimensions) 
and keep me stable. Finally, you should be pleased to hear that 
my lobes are small (down 40 dB) and that I am fast. Have at it! 
DIMENSION Y(*),NY(3),LNTH(3) 

NY(1)=N1 
NY(2)=N2 
NY(3)=N3 
LNTI1(1)=LNTH1 
LNTH(2)=LNTH2 
LNTH(3)=LNTH3 

Index for cyclic rotation on faces 
of cube. Filter lines are initialized 
as points on such faces. 
Note: NY(k)= l => do nothing.

LNTH(k)=O => do nothing.

JUMP=l Initialize subsampling. 
DO 30 NDIM=1,3 Cycle faces (needed or not). 
IF(NY(NDIM).LE.l .OR. LNTH(ND!M).LE.O)GO TO 30 

NYD=NY(NDIM) Save to reset NY(NDIM). 
NY(NDIM)=l Specify face of cube. 

DO 20 K1=1,NY(1) Loop 
DO 20 K2=1,NY(2) ! through 

DO 20 K3=1,NY(3) ! face.
KSTRT=K1+N1*((K2-1)+N2*(K3 - 1))
======================================== 
CALL CMIR1(Y(KSTRT),NYD,LNTH(NDIM),JUMP) 
======================================== 

20 CONTINUE 
NY(NDIM)=NYD 

JUMP=JUMP*NY(NDIM) 
30 CONTINUE 

END 

Reset. 
Update subsampling. 
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SUBROUTINE CMIRl(Y,NY,LNTH,JUMP) 
C ********************************Jim Leise 2/88 
C 1-D, Cubic Mirror-Image Replacement filter: Smooth Y(NY•JUMP) 
C according to the length parameter LNTH using a mirror extension. 
C The only restrictions on use is 2•LNTH. LE.NY; JUMP is used to
C import data for multidimensional use; set JUMP=l for 1-D data. 
C The LNTH parameter has a linear effect; when LNTH is doubled, 
C the passband is halved. In more detail, if [L] denotes a 
C running average of length L=LNTH, the first-order filter is 
C [2L]*[2L]*[L]*[L], '*'=convolution 
C This convolution is then improved with cubic enhancement, 
C i.e., the central filter is modified to commute with cubic
C polynomials. Also, there is a correction step to suppress the 
C (spectral) side lobes to about 40 dB. Functionally, this code 
C is a driver for subroutines MIRROR and TANGLE. Total 
C multiplications used by this algorithm is about 7*NY. 
C DIMENSION Y(*) 
c 

IF(LNTH.LE.O .OR. 2*LNTH.GT.NY)RETURN ! Check setup.
C . ... Cubic enhancement of top step + large triangle. 
c ================================ ! ===============

c 

CALL MIRROR(Y,NY,-6. 0,LNTH,JUMP) 
CALL TANGLE(Y,NY, 2*LNTH,JUMP) 
----------------------------------------------------------------
YNORM=-1./(4. *FLOAT(2*LNTH)**2) 

4*(1-0. 25*d**2) 
T[4*L-1] 
=============== 
Initialize norm. 

c .... Cubic enhancement of small triangle. 

c 

c 

IF(LNTH.EQ.1)GO TO 10 "Short" samples. 
LHALF=(LNTH+l)/2 Halve LNTH. 
CL=(FLOAT(LNTH)**2-1.)/(12. *FLOAT(LP�LF)**2) 
P = 1. +2. *CL 
Q =-CL 
-------------------------------- --------------------------------------------- -------------
CALL MIRROR(Y,NY,P/Q,LHALF,JUMP) 
================================ --------------------------
YNORM=YNORM*Q Update norm. 

c .... Lobe suppression + small triangle + enhancement. 
DH=1/3.+(FLOAT(2*LHALF)**2-1. )/(12.*FLOAT(LHALF)**2) 
P = 1.+2.*DH 

c 

c 

Q =-DH 
================================ 
CALL MIRROR(Y,NY,l.O,LHALF,JUMP) 
CALL TANGLE(Y,NY, 2*LHALF,JUMP) 
CALL MIRROR(Y,NY,P/Q,LHALF,JUMP) 
================================ 
YNORM=YNORM*Q/(3.*FLOAT(2*LHALF)**2) 

10 DO 20 K=1,1+(NY-1)*JUMP,JUMP 
20 Y(K)=YNORM*Y(K) 

END 
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SUBROUTINE TANGLE(Y,NY,LNTH,JUMP} 
C *********************************Jim Leise 1/88 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c .... 

10 
c .... 
c 

c 
c .... 

so 

1-D TRIANGLE FILTER ALGORITHM. Filter Y(NY) with a triangle 
filter (defined by LNTH} and a mirror-image extension: 

TRIANGLE =[LNTH]*[LNTH] e. g. [3]*[3]=(1,2,3,2,1}
where [L]=running average of length L and '* '=convolution. 
Internally, this algorithm requires NY multiplications which 
are done via the mirror filter algorithm MIRROR. External 
normalization by LNTH**2 is required to complete the filter. 
JUMP is used to import data for multidimensions; set JUMP=1 
for 1-D data. Restriction on use: 2*LNTH.LE. NY & NY. LE. 16384.
DOUBLE PRECISION SL,SR,TL,TR,SB,DB,DF,TB,TF 
DIMENSION Y(*} 

IF(LNTH. LE. 1}RETURN 
N2=NY/2 N2=halfway pointer. 
J1=LNTH*JUMP Subsampled LNTH step. 
Jcntr=1+N2*JUMP Subsample pointer. 
IF(Jcntr.LE. J1}RETURN · ! Indexing check.
Jstop=1+(NY-1}*JUMP Subsampled end. 

Compute !. C. 's for double integration. 
SL=Y(l) Initialize Left Sum. 
SR=Y(Jstop) Initialize Right Sum. 

TL=SL Initialize Left Triangle. 
TR=SR Initialize Right Triangle. 

DB=Y(Jcntr)-Y(Jcntr-J1) Initialize "Difference. " 
SB=Y(Jcntr) Initialize Back Sum. 
TB=SB Initialize Back Triangle. 

DO 10 K=u�P,(LNTH-1)•JUMP,JUMP 
SL=SL+Y(1+K}+Y(1+K-JUMP) 
SR=SR+Y(Jstop-K}+Y(Jstop-K+JUMP) 

TL=TL+SL 
TR=TR+SR 

DB=DB+Y(Jcntr+K}-Y(Jcntr-K) 
SB=SB+Y(Jcntr+K}+Y(Jcntr-K) 

TB=TB+SB 
Get the mirror-image second difference. 

' Left integral. 
Right integral. 
Second integral. 

Difference mod(2*K). 
First Integral. 
Second integral. 

================================ ! ==========================
CALL MIRROR(Y,NY,-2. 0,LNTH,JUMP) ! Y(K) <= Y(K+L)-2Y(K)+Y(K+L 
================================ ! ========================== 
Double integration: center ==> boundaries. 
DF=DB+Y(Jcntr} Initialize F-Difference. 

TF=TB Initialize F-Triangle. 
Y(Jcntr)=TF Save answer. 

KB=Jcntr-JUMP Initialize B-counter. 
DO SO KF=Jcntr+JUMP,Jstop,JUMP 

TB=TB-DB Integrate Backwards. 
TF=TF+DF Integrate Forwards. 

DB=DB-Y(KB} Update Backward Difference. 
DF=DF+Y(KF) Update Forward Difference. 

Y ( KB) =TB Save answer. 
Y(KF)=TF 

KB=KB-JUMP Update backward counter. 
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IF(KB.EQ.l)THEN 
TB=TB-DB 
Y(l )=TB 

ENDIF 
Linear error correction: 
DB=(TL-TB)IN2 
DF=(TR-TF)/(NY-N2-1) 

TB=O. 
TF=O. 

Parity check to terminate. 
NY even => done. 

slope=(exact-integrated)/points. 
Backward error slope. 
Forward error slope. 
Initialize B-correction. 
Initialize F-correction. 

KB=Jcntr-JUMP Backward counter. 
DO 60 KF=Jcntr+JUMP,Jstop,JUMP 

TB=TB+DB Increment B-correction. 
TF=TF+DF Increment F-correction. 

Y(KB)=Y(KB)+TB Do B-correction. 
Y(KF)=Y(KF)+TF Do F-correction. 

60 KB=KB-JUMP Update counter. 

END 

IF(KB.EQ.l)THEN Parity check to terminate. 
TB=TB+DB NY even => done. 
Y(l )=Y(l )+TB 

ENDIF 
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SUBROUTINE MIRROR(Y,NY,COEFF,LSTEP,JUMP) 
C ****************************************Jim Leise 10/85; 1/90. 
C MIRROR-IMAGE FILTER: Implement the (replacement) filter
C Y(K) <== Y(K-LSTEP) + COEFF*Y(K) + Y(K+LSTEP)
C on Y(NY) using a mirror-image extension (NY operations). 
C Set JUMP=1 for 1-D data, or use multidimensional driver. 

c 

c 
c .... 

c .... 
10 

c .... 

20 

30 
c .... 

40 

c .... 
so 

c .... 

c .... 
60 

DIMENSION Y(*) 

KSTEP=MAX0(1,MINO(LSTEP,NY/2)) 
NYJ=1+(NY-1)*JUMP
JSTEP=KSTEP*JUMP 
Jtest=NYJ-JSTEP

Setup check. 
Subsampled end. 
Subsampled stepsize. 
Test parameter. 

KLASS=MIRROR-IMAGE EQUIVALENCE CLASS MOD(JSTEP). 
DO 70 KLASS=1,(KSTEP+1)/2 
Kstrt=KLASS ! Initialize Kstrt.

CYCLE Kstrt MOD(LSTEP) TO POSITION PAST 2*NY AND CHECK CLASS. 
Kstrt=KSTEP-MOD(MOD(NY-Kstrt,KSTEP)+MOD(NY,KSTEP),KSTEP) 
IF(Kstrt.LT.KLASS .OR. KSTEP-Kstrt+1.LT.KLASS)GO TO 70 
IF(Kstrt.GT.KLASS)GO TO 10 Continue search. 

EQUIVALENCE CLASS NEW: Kstrt=KLASS. 
Save =Y(1+(Kstrt-1)*JUMP) Saved to close loop. 
Ynow =Y(1+(KSTEP-Kstrt)•JUMP} Initialize. 
Jstrt=1+(Kstrt-1}*JUMP Save for loop check. 

Jnow =Jstrt Initialize. 
Jnxt =Jnow+JSTEP Update pointer. 

FORWARD STEPS -----------------------------------------

Yold=Ynow ! Update data.
Ynow=Y(Jnow) ! ... 

Y(Jnow)=COEFF•Ynow+(Yold+Y(Jnxt)) 
Jnow=Jnxt Update index. 

IF(Jnxt.LE.Jtest)GO TO 30 Implicit loop to end. 
Jnxt=(NYJ-Jnxt)+Jtest+JUMP Reflect & 

IF(Jnxt.EQ.Jnow)GO TO 60 Check for coincidence. 
BACKWARD STEPS ----------------------------------------

Yold=Ynow ! Update data. 
Ynow=Y(Jnow) ! ... 

Y(Jnow)=COEFF*Ynow+(Yold+Y(Jnxt)) 
Jnow=Jnxt Update pointer. 

Jnxt=Jnow-JSTEP 
IF(Jnxt.GT.O)GO TO 50 Implicit loop to start. 

Jnxt=2-Jnxt-JUMP Reflect & 
IF(Jnxt.EQ.Jnow)GO TO 60 Check for coincidence. 

CLOSE CYCLIC LOOP: [Save,?Y(Jnow),Yold] <== past. 
IF(Jnxt.NE.Jstrt)GO TO 40 ! Check for closed loop. 
Y(Jnow)=COEFF•Y(Jnow)+(Ynow+Save) ! Finish cyclic loop. 
GO TO 70 
OR, TOGGLE COINCIDENT REFLECTIONS? -------------------------
Y(Jnow)=COEFF*Y(Jnow)+(Ynow+Y(Jnow)) Finish coincidence. 
Kstrt =1+KSTEP-Kstrt Reflect Kstrt. 
Ynow =Save 
IF(Kstrt.NE.KLASS)GO TO 20 

70 CONTINUE 

Reini tialize. 
Do other half. 

END 
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We here discuss several methods of interpolating missing values when data 

is noisy. 

Missing Data and the Exponential Filter Recall that the exponential 

filter (C.l) requires an infinite amount of data from the past so, "How do we

get it started?" It must be modified or normalized near data boundaries in 

such a way that constant time series remain constant. What · makes this 

normalization really significant is that it works, more generally, for random 
1
missing data. The net result is a smoothing filter that works even when data 

are incomplete. 

The useful feature of the exponential filter E is that it is a filter r 
with positive coefficients, a property important to normalization. To begin, 

. suppose that {x } is a time series with some missing values. Let {x +} denoten n 
the time series in which the missing values are replaced with zeros, and let 

o+ be the indicator or delta function that is unity at good values x and zeron n 
at missing ones. Then, sums S and counters C are computed using then n 
recursive form (C.l) of the exponential filter, here parameterized with )1=1-r: 

+(G .1) S0 = (1-y)S0_1 + yx0
c = (1-y)C 1 +yo+ .n n- n 

and the normalized filter y is the quotient:n 
(0.2) Y0 = S0/Cn · 

Note that when data are complete, C converges to unity as n---? oo, and so forn 
large n, normalization does nothing. However, for small values, normalization 

helps adjust for an unknown past. Specifically, to get the filter started, S0 
and C0 are initialized to zero and data is indexed so that the first value x1 
is good one. We denote this extension by E+, that is, y =E+ (x). To obtain a

r n r 
symmetric procedure, E+ is applied in both directions and averaged to get s+ 

r r 

S+ =[E+ +(E+)*]/2 .
r r r 

Although this is not a high-quality method, it is useful as an intermediate 

step. 

A First-Order Method In principle, s; can generate values at missing

points; however, the interpolation so produced is unsatisfactory insofar as it 

is constant over missing intervals and produces jump discontinuities at points 

of transition. Nonetheless, because data has been smoothed, noise has been 

suppressed and interpolation across missing regions is more stable. 
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Specifically, if xn and xm are good .values that border missing ones, then the

linear interpolates Yn+l'Yn+2 ... ,ym-l are computed from filtered end points

Y =S: n(x) and y =S
+ 

(x). Finally, smoothed values are replaced with originaln ,, m y,m 
data and only the linear interpolates are retained. In this way, a versatile

(first-order) filtered interpolation scheme is obtained that can be 

implemented as a sequence of simple steps. 

Iterative Improvement Linear interpolation is a low-order method and may 
/
not always be adequate to achieve desired effects (such as needed to determine 

peaks). We here consider a stable way of generating improvements, based on 

higher-order filtering. Results can be viewed as a sequence of successive 

approximations. Thus, let J<1> denote the above procedure, that is,

I< 1) [x]=x at good values and I< 1> [x] is the linear interpolate at missingn n n 
ones. In turn, a higher-order filter (such as in App. F) is applied to the 

time series {I ( 1) [x]} to improve the estimates at missing points. Again, goodn 
values are put back and an improved operator I<2> results; if A denotes the

higher-order filter, then I<2>[x]=x at good values and I<2>[x]=A J<1>[x]n n n n 
at missing ones. Clearly, this iteration can be continued ad-infinitum (with 

the same filter). Although this procedure tends to be stable, it can be slow 

to converge which means that if desired effects are not achieved in one or two

steps, the filter is probably not very well matched to the problem.

A Causal Method So far, algorithms have been of the safe variety,

suitable for automated data processing. However, when working interactively, 

it is often better to use less stable methods that are more flexible and 

faster converging. For this exposition, we restrict attention to the case 

where data are complete, having no missing values. 

To begin, the exponential filter y =E [x] can be improved by smoothingn y,n 
the difference 8 =x -y and adding it back to y ; the resulting operator isn n n n 
E<2>= E + E (I-E ). More generally, higher-order corrections can be obtained

'Y 'Y 'Y 'Y 
through iteration: 

(0.3) 

Y
(k+l) = y<k> + 8<k>
n n n ' 

where y< 1>=y and 8< 1>=8 above. If E(k) denotes the operator E<k >txJ=y(k)
n n n n r y,n n ' 

then mathematical induction can be used to establish: 

(0.4) E<k> = I -(I-E )
k 

.
'Y 'Y 

In turn, the frequency response is: 
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(0.5) azCk)(w) = 1- [1-a'l (w)]k
'Y 'Y 

which converges to unity as k-H», whenever laz<k>(w)l < 1.
'Y 

The interesting thing is that the operator (I-E )k always annihilates
'Y. � 

polynomials of degree k-1 (we leave this as an exercise). As a consequence, 

E(k) is a polynomial filter of degree k-1.
'Y 

Analysis of E(2) We have just seen that the E(2) is a polynomial filter
'Y 

of degree one and can track straight lines. To compute the operator, first 

observe that E2 can be obtained by squaring E as an infinite series:
'Y 'Y 

and so 

(0.6) 

00 00 

E - y L (1-yl8-k => E2 = l L (k+1) (1-yl8-k
'Y k=O 'Y k=O 

00 

E(2)= 2E -E2 = y L [2- (k+1 )y](1-yl8-k
'Y 'Y 'Y k=O 

Observe that the factors [2- (k+l)y] are monotone decreasing with a zero at

k=O = 2/y- 1 ; this zero is useful as a length scale.
'Y 
We apply the scaling parameter 0 to model the number of steps required

'Y 
for E<2> to . stabilize after starting up. When applied to straight lines

'Y 
(x

k
=k), there is a transient error that starts at zero, attains a maximum, and

then decays exponentially back to zero. Steps or iterations N required for
'Y 

convergence to a 1 % relative error level are shown in Table G-1. More 

precisely, N is the smallest number of steps for which k � N => 
'Y 'Y 

I1-E<2> [x]/kl <0.01 . The important observation is that N is asymptotically
'Y 'Y 

proportional to 0 , that is, N°=N /0 = 2.64.
'Y 'Y 'Y 'Y 

Another application of 0 is to characterize maximum amplitudes l&t<2>(w)l
'Y 'Y 

of (0.5). Here, the amplitude starts out at unity (w=o), attains a maximum, 

and then decreases toward zero. Maximums are shown in Table 0-1, together with 

the normalized wavelength A.N=l/fN (scaled in units of points per cycle) at

which the maximums occur. Again the normalization A.0=A. /0 is asymptotically
N N 'Y 

constant with a value of about 4.44 . Observe that the relatively large

maximums (about 1.15) are typical for predictive polynomial filters, and shows 

why such filters should be used with caution. 
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'Y 0 
'Y 

0.001 1999.0 
0.002 999.0 
0.003 6 6 5.7 
0.004 499.0 
0.005 399.0 
0.006 33 2.3 
0.007 28 4.7 
0.008 2 49.0 
0.009 22 1.2 
0.010 199.0 
0.020 99.0 
0.030 6 5.7 
0.040 49.0 
0.050 39.0 
0.060 3 2.3 
0.070 2 7.6 
0.080 2 4.0 
0.090 2 1.2 
0.100 19.0 
0.200 9.0 
0. 300 5.7 
0.400 4.0 
0.500 3.0 
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N 
'Y 

5 273 
26 35 
17 56 
13 17 
10 53 

8 77 
7 51 
6 57 
58 4 
5 25 
2 62 
1 74 
130 
1 03 

86 
73 
64 
56 
51 
24 
15 
11 

8 

No
'Y 

2. 638 
2. 638
2. 638
2. 639 
2 .  639 
2. 639 
2. 638
2. 639 
2 .  640 
2 .  638 
2. 646 
2 .  650 
2. 653
2 .  641 
2. 660 
2. 648 
2. 667 
2. 639 
2. 684
2. 667
2 .  647 
2. 750 
2 .  667 

I ale 2 > I
r max 

1 .15 5 
1.15 4  
1.15 4 
1 . 154 
1 . 154 
1 .154 
1 .153 
1 . 153 
1 .153 
1 . 153 
1 .  15 1 
1 . 149 
1 .147 
1 .145 
1 .143 
1 .  141 
1 .139 
1 .137 
1 .  135 
1 .116 
1 .  097 
1 .  0 79 
1 .  0 61 

AN Ao
N 

8 8 74. 5 4. 439
4 43 7. 3  4. 4 42
2955.3 4. 440
2 216.5 4. 442
1 77 4.9 4. 448
1480. 2 . 4. 454 
1 26 3 . 4  4. 437
1108. 0  4. 450

986.8 4. 461
88 4. 6 4. 445 
442. 3 4. 468
29 3 . 7  4. 473
219.7 4. 484
175.5 4. 500 
145. 7 4. 506
124. 6 4.520 
108 .8 4.534 

96.5 4. 546 
8 6. 7  4.562 
42. 2 4.684 
27. 3 4.810 
19.8 4.951 
1 5 . 3  5 . 092 

Table G-1. Some charac t er i st i c  f e atu res of the fil te r E(2� Here 0 
'Y 'Y 

is the zero cro s sing o f  t h e  f ilt e r c oeffi c ients, N is the n umber of
'Y 

iterations requi red fo r 1% a c cur a cy after startin g up, and AN is the

wavelength, (in points pe r c y cle ) of the m aximum f re q u e ncy r esponse. 

The normalized v alues N°=N /0 a n d  A 0=A /0 show t he us efuln ess of 0., 'Y 'Y 'Y N N  'Y I 

as a length sea 1 e.

The TREND Algorithm The algorithm of interest here combines the filter

z =E( 2 > [x] at good values with the prediction z =2z 
1

- z 2 at bad ones. An r,n n n- n-
flow chart for this algorithm, called TREND, is given in Fig. G-1, and a

FORTRAN subroutine is given in Fig. G-2; note that this subroutine uses a

5-point buffer to bold intermediate results. By changing buffers, the same

code can be used for different applications. 

At this point, it is convenient to streamline the normalization procedure 

(G.1) as: 

(G.7) s
n 

= (1-y)s
n_1 

+x
n

en 
= (1-y)c

n_1 + 1
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y = s lc .n n n 

which requires two less multiplications, but does not distinguish between good 

values and bad ones. Also, the limit for y=O is. different. 

This normalization is shown in the flow-chart of Fig. G-1 for the TREND 

algorithm. Note that missing values are predicted from smooth ones, producing 

feedback which can go on forever. 
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yes 1 
Get c , s , & y . n n n 
c =U-y>e 1+ 1n n-
s =U-y)s 1+x n n- n
yn =sn /cn 

1 
G et t & z .n n 

1 
n+1 f- n

no Predict along 
smooth line. 

Get Yn·

l 

c = ( 1-"' )c 1+1
n ' n-

s = ( 1-"' )s 1+z n ' n- . n
A A yn=sn/cn 

1 
Get c , s , & t .n n n 
cn=(1-y)cn-1
s =y c n n n
8n=(zn -yn )cn

Figure G -1. Flow chart for TREND algorithm. Here {X } are givenn 
data, y is the exponential filter and z is the corrected (final )n n 
one. Vhen data are missing, z is a prediction, c is a shift, andn n 
y , s , and t are computed to be consistent with the filtering n n n 
process. Note that c 1, s 1, t 1, z 1, and z 2 are all savedn- n- n- n- n-
variables. A FORTRAN subroutine is given in Fig.G-2 .

Observe that when data are complete, the TREND algorithm is simply an 

implementation of zn =E; � �[x] and normalizatiqn is done in the usual way.

However, when prediction is used, the intermediate values c , s , y , and t n n n n
require explanation. To help motivate what is going on, suppose that at

missing values c and s are both shifted c =(1-y)c 1 and s =(1-"')s 1. Butn n n n- n ' n-
then, the mean filter y =c /s would be the same as y 1, and would remainn n n n-
unchanged over an entire region of missing values. Consequently, when a good
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value is encountered, there would be an inconsistency causing a jump. Another 
approach would be to use the prediction z as valid data x =z ; however, then n n 
prediction zn =2zn_1-zn_2 is already smooth, and using it as data would have

the effect of smoothing twice, creating a different kind of jump.

The procedure shown in the flow chart of Fig. G-2 is a combination of 

these two approaches. When a bad value is encountered, c is shifted n 
c =(1-y)c 1, but y is computed as though the prediction z was valid data;n n- n · n 
once done, s is forced to be consistent s =y c . In turn, the correction e n n n n n 
is computed as e =(z -y )c . Now, over regions of missing data, y willn n n n n 
converge to z and e will converge to zero. The net effect is a smoothern n 
transition between bad regions and good ones. Also, when missing regions are 

large, c will converge to zero and the algorithm will reinitialize.n 
In summary, we see that TREND is a attempt to handle a variety of 

missing-data problems, and in such a way that straight-line behavior is 

accurately reproduced. Clearly, no predictive algorithm can do so much, over 

such varied conditions, and still remain stable; suffice it to say that TREND 

can go unstable, especially with larger values of y. Nonetheless, when

symmetrized, TREND has performed well in a variety of applications. 

It is worth remarking that there are many variations of this procedure, 

especially with the prediction; another useful one is: z =z 1+z 2-z 3 whichn n- n- n-
is more stable. Also, higher-order procedures similar to (0.3) can be 

constructed directly with TREND, and there is little motivation for 

configuring more primitive code to do this. Finally, it is often useful to 

apply this filter twice, to help further smooth out jumps caused by 

transitions. 
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FUNCTION TREND(Ynow, WT, Buff S) 
C *****************************J IM LEISE 7/87, 6/90 
C Linear TREND estimate: Filter and/or predict values of a time 
C series with present value o f  YNOW. The filter is determined by 
C the weight parameter WT (O<WT<l); small values result in more 
C smoothing; large values in less. BUFFS(S) is a work buffer that 
C must be dimensioned (external ly) to 5 and initialized with WT=O: 
C DUM=TREND(DUM, O. , BUFFS) 
C Bad or missing values are defined with a flag (YNOW=FLAG). For 
C such values, TREND is returned as a predicted value -- provided 
C it has already been given s ome good data. 

c ....

D IMENSION BuffS(S) 
DATA FLAG/-1. E+38/ 
---------------------- - ------------------------ - IN ITIAL IZE =========================== 

TREND=Ynow Set default. 
IF(WT. EQ.O. )THEN Check for startup. 

BuffS(l)=O. Preset to zero. 
Buff5(2)=0. 
Buff5(3)=0. 
Buff5(4)=FLAG Mark as empty. 
BuffS(S)=FLAG Mark as empty. 
RETURN 

END IF 
C .. . .  ======================== MEAN FILTER========================== 

IF(Ynow. NE. FLAG)THEN DATA O. K. 
Ydat=Ynow 

ELSE 
IF(BuffS(S).NE.FLAG)THEN 
Ydat=2*Buff5(4)-Buff5(5) 

ELSEIF(Buff5(4). NE.FLAG)THEN 
Ydat=Buff5(4) 

ELSE 
RETURN 

ENDIF 

Use it. 
DATA MISSING.
Both buffers set? 
PREDICT on line. 
Any data at all? 
Yes, use TREND. 
No data yet. 
Exit. 

END IF 
CT=l. -WT 
Buff5(1)=1. + CT•BuffS(l) Update counter. 
Buff5(2)=Ydat + CT*Buff5(2) Update mean buffer. 
YMEAN=Buff5(2)/Buff5 (1) MEAN FILTER. 

C .. . .  ===================== C ORRECTED FILTER ======================== 
IF(Ynow.NE. FLAG)THEN DATA O. K.

Buff5(3)=(Ydat-YMEAN)+CT*Buff5(3) Correction buffer. 
TREND=YMEAN+Buff5(3)/Buff5(1) Corrected filter. 

ELSE DATA MISSING. 
BuffS(l)= BuffS(l)-1. Shifted to 
Buff5(2)= YMEAN•BuffS(l) be inverse 
Buff5(3)=(Ydat-YMEAN)*Buff5(1) consistent. 
TREND=Ydat Use prediction. 

END IF 
BuffS(S)=Buff5(4) Update and save 
Buff5(4)=TREND for prediction. 

END 

Figure G-2. FORTRAN listing of TREND algorithm. 
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The PATCH Routine We now return to the problem of configuring a method 

for interactive use. Here, the TREND algorithm works well when applied both 

forward and backward in time. Note that the quality of a prediction is a 

function of which direction it comes from. Because of this, respective 

predictions are weighted according to their distances from valid data. If 

missing regions occur at the beginning or end of a time series, results are 

predictive. A FORTRAN subroutine for this procedure, called the PATCH 

algorithm, is given in Fig. G-3. Note that this is an array oriented procedure 

requiring additional workspace. 

Internal to a data set, the PATCH algorithm approximates cubic 

interpolation. The interesting feature is that values produced are quite 

sensitive to the weighting parameter y= 1-r, especially when interpolating over

large regions. In fact, this procedure can become unstable, producing

excessively large values. Nonetheless, this instability can be an advantage 

because the same mechanism gives the algorithm the flexibility required to 

model sharp peaks and other transient behavior. In this context, y must be 

determined interactively by trial and error and by a skilled user. In 

particular, this method is not recommended for automated data processing. 
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SUBROUTINE PATCH(Y, WORK, N, WT) 
C *****************************Jim Leise 6/88, revised 12/89. 
C This algorithm interpolates/extrapolates over missing/flagged
C data in Y(N) -- i. e. values Y(K)=FLAG are replaced; other 
C values are returned unchanged. WORK(N) is a work array required 
C by the algorithm. On exit, it contains the input Y array (FLAGs 
C and all). The weight parameter WT should be set/input between 
C zero and one. Larger values produce smoother splines (smaller
C jumps) and larger peaks; smaller values are more stable. 

c 

D IMENSION Y(N), WORK(N), BUFFS(S) 
DATA FLAG /1. E-38/ 

L=N+1 
KSTRT=O 
DO 10 K=1, N 
WORK(K)=FLAG 
IF(Y(K) . . NE. FLAG)KSTOP=K
L=L-1 

L = backwards counter. 
Preset KSTRT for test. 

Initialize WORK(*) to flags. 
Location of first good data. 
Update L. 

10 IF(Y(L). NE.FLAG)KSTRT=L 
IF(KSTRT.EQ. O)RETURN 

Location of last good data. 
No data. 

c 
c .... 

20 
c 
c .... 

30 

==>, forward prediction and gap 
Dlfg=TREND(DUM, O.,BUFFS) 
DO 20 K=KSTRT, KSTOP 
IF(Y(K). EQ. FLAG)THEN 

KOUNT=KOUNT+1 
Y(K)=TF�ND(FLAG,WT, BUFFS) 

ELSE 
KOUNT=O 
DUM=TREND(Y(K),WT, BUFFS) 

ENDIF 
WORK (K) =KOUNT 

counter. 
Initialize TREND/BUFFS. 
Loop forward. 
Data not OK. 
KOUNT>O <=> bad data. 
TREND predicts on flags.
Data OK. 
KOUNT=O <=> good data. 
Data-base call. 

Needed later. 

<==, backward prediction and weighted averaging. 
DUM=TREND(DUM, O., BUFFS) Reinitialize TREND/BUFFS. 
DO 30 L=KSTOP, KSTRT, -1 ! Backward loop.

IF(WORK(L).NE.O. )THEN ! Missing data detected.
IF(SCALE.EQ.O. )SCALE=1./(WORK(L)+1. ) 
WEIGHT=SCALE*WORK(L) ! Linear weighting.
YNOW=TREND(FLAG, WT, BUFFS) ! Get backward prediction.
Y(L)=(1.-WEIGHT)*Y(L)+WEIGHT*YNOW ! Save answer.
WORK(L)=FLAG Return flags to WORK(*). 

ELSE Good data detected. 
SCALE=O. Reset scale. 
WORK(L)=Y(L) Good Y(*) ==> WORK(*). 
DUM=TREND(Y(L), WT, BUFFS) Data-base call. 

ENDIF 
CONTINUE 

(continued on next page) 
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c 
C . . .. All internal gaps are filled. Now do the ends.

c 

c 

IF(KSTOP.EQ.N)GO TO 50 
DUM=TREND(DUM, 0., BUFFS) 

DO 40 K=KSTRT, N 
YNOV=TREND(Y(K), VT, BUFFS) 

40 IF(K.GT.KSTOP)Y(K)=YNOY 

50 IF(KSTRT.EQ.l)RETURN 
DUM=TREND(DUM, O., BUFFS) 

DO 60 L=KSTOP, l, -1 
YNOV=TREND(Y(L), YT, BUFFS) 

60 IF(L.LT.KSTRT)Y(L)=YNOY 

END 

Far endpoint OK. 
Reinitialize TREND/BUFFS. 
Loop forwards. 
Data-base call. 
Prediction ==> Y(*). 

Starting endpoint OK. 
Reinitialize TREND/BUFFS. 
Loop backwards. 
Data-base call. 
Prediction ==> Y(*). 

Figure G-3. FORTRAN listing of algorithm for filtered interpolation. 

Again YT corresponds to y. Also YORK(N) is needed work space. Note that 

this algorithm could be implemented as a predictive method, applied in 

both directions, and without the use of arrays. 

Two-Parameter Methods The PATCH algorithm is especially useful for 

combining two measurements of the same thing. For example, radar altimetry Hr
is superior for computing vertical winds over water. However, when islands or 

other obstructions are encountered, data are invalidated and require fixing. 

When problems are of short duration ( <30 min), pressure altimetry H can be 
p 

used instead, provided it is adjusted so as not to produce jump 

discontinuities. The exact procedure is a follows: 

Step 1: Edit out bad regions in Hr.

Step 2: Compute the difference LJH=H
r 

-H
P 

of remaining good data.

Step 3: Interpolate bad regions in LJH with PATCH to get LJP. 

Step 4: Replace bad values in H with H +AP. 
r p 

Here a flag structure is used to distinguish between good and bad data (e.g., 

FLAG=-l.OE+38) In particular, LJH is flagged whenever H is bad, and the PATCHr 
algorithm replaces these flags with interpolates. 

The net effect is to adjust the mean trend in H with LJP to match the mean p 
trend in Hr. Once done, the two measuremen�s can be spliced together to

produce a smooth and seamless fit. In particular, high frequencies are 

unaltered by this process. 

A sample of the result of two-parameter editing and patching is shown in 

Fig; G-4. The difference in latitude between two independent sources of 
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navigation information, LORAN-e and INS, is plotted (light line). Data was 

taken from N43RF's flight of 12/9/87 over coastal Washington state. Large 

excursions in the difference are apparent. These excursions, caused .by poor 

signal-to-noise ratios in the LORAN-e unit, required that the LORAN-e data be 

edited, using INS data. Spikes in LORAN-e were edited out and patched over 

using steps 1 through 4, above. The resulting corrections in the patched areas 

are shown as the dark curve in Fig. G-4. 

s.o 

4.0 

2.0 

12/9/87 
1:20 - 2:20 

20 40 
Time (min) 

so 

Fig. G-4. Difference in latitude between LORAN-e and INS {light line). Data 
was taken from N43RF' s flight of 12/9/87 over coastal Washington state. Large
excursions in the difference are caused by poor signal-to-noise ratios in the 
LORAN-e unit. Spikes in LORAN-e were edited out and patched over, using 
filtered interpolation (dark lines). 
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Automatic editing procedures for removing shot noise are an integral part 

of data processing, and should generally preceed filtering procedures; recall 

that because filters act globally, they can spread effects of noise to other 

data, compounding the problem. 

The statistical editing of interest here is based on Chebyshev's 

inequality: 

(H.1) P{ IX-.ul�8u} s !
2 8 

where P, .u, and u are the probability, mean, and standard deviation of a 

random variable X; 8 is an adjustable parameter that determines the size of

the editing window. This inequality is especially useful because it is a 

simple geometric statement about the underlying probability distribution 

function. As such, it is an inequality that applies in many different 

situations, for different random variables, and with different probabilities. 

Configuring editing procedures around this inequality is relatively 

straightforward; values X=Xk that satisfy (H.1) are judged as bad. However,

the mean and standard deviation must first be estimated from sample 

statistics: 

(H.2) and 
A - 1 [ N 2 - A 2 ] 1/2 

a - N-1 L Xk N,u
k=l 

where {Xk: k=1,2, ... ,N} is a discrete sample of size N. Note that division by

N-1 rather than N in the computation of a accounts for the degree of freedom

present in p. Because the underlying distribution is usually not known, values

of 8 can be determined experimentally; once done, they rarely need changing. 

This method is exceptionally effective with P-3 data when applied to the 

difference of two similar measurements. For example, data from the two INS's 

should, in principle, be the same. However, for unknown reasons, spikes or 

shot noise sometimes occur in one but not in the other, and such spikes are 

easy to detect in the difference. An additional feature of two-parameter 

editing is that once a bad value is detected, the other one can be used to 

correct it. A flow chart for doing this is shown in Fig. H-1, and a FORTRAN

subroutine is given in Fig. H-4. Note that bad values are replaced with 

mean-adjusted good ones, and averages are computed from good data only. 

An important property of this scheme is that it is independent of 

amplitude scaling; in other words, for a fixed value of 8 and any constant 

c¢0, the random variables X and eX will be edited exactly the same way.
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Data X={xk
}

l l 
Compute mean and stan dard deviation 

#(X-Y) and U(X-Y) 

l
Get iiVerages <X>, <Y> for good pairs ( x

k
, y 

k ) :

l<xk
-y

k
)-IL(X-Y) j:;; 8•a(X-Y) => (xk'y

k
) good

where 8 =adju stable editing parameter. 

Determine bad 

lx - <X>I k 

IY - <Y>Ik 

l
values in bad pairs 

< IY - <Y> I => k 

< jx - <X> I =>
k 

l
Fix bad values 

y - <Y> + <X>k 
X - <X> + <Y>
k 

yk 
X k 

(xk,yk):

bad 

bad 

Figure H-1. Flow chart for two-p arame ter statistical editing based 
on Chebyshev's inequality. 8 is a user set parameter that controls 
the relative size of the editing window. The averages <X> and <Y> 

are computed only from points pas sing as good. A FORTRAN subroutine 
for this algorithm is given in Fig. H-4. 
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For technical reasons, our two-parameter editing is applied to 20-second 

samples (i.e., 20 points), but each value is subject to two editing steps. 

This is accomplished by updating two tO-second buffers as shown in Fig. H-2. 

Buffer1 

X(l; 1+9) 
Y(I: 1+9) 

1 
Edit 

X(I; 1+19) 
Y(I; !+19) 

Buffer2 

X(I+10; 1+19) 

Y(I+10; !+19) 

I ---7 !+10 

Buffer1 ---7 Buffer2 
New Data ---7 Buffer1 

Figure H-2. 10-second updating procedure used with statistical 

editing. Note that each value is subjected to two editing steps,

increasing se�sitivity to noise and producing better results. 

This two-step procedure helps compensate for the small data base of 20-points, 

making the statistical procedure more reliable. Recall from Sec. 11 that the 

triangle prefilter can spread out effects of shot noise to adjacent points. 

More precisely, shot noise consisting of one point gets spread out to three 

after decimation. The largest or center value is usually easy to detect, but 

the smaller, adjacent ones are not. Using a two-step editing procedure helps 

solve this problem; on the first step the largest value is corrected; once 

done, the smaller values are easier to detect. 

We demonstrate this procedure with data from the 1989 calibration flight 

discussed in Sec. 9. This flight lasted about 7 hr and produced 26820 samples 

of 1Hz data. Shown in Table H-1 are the number of points detected as bad for 

4 quantities for which two separate instruments made measurements: pitch 

(cp1'cp2), acceleration (a1, a2), static pressure (p
s,w

'P
s,f

) , and total

temperature (Tt 
1

, T
t 

2). Note that the wing-tip static pressure p was roll
• • s, w 

adjusted prior to editing (see Sec. 10). For comparison, the number of points 

that would be deleted from a (large) normal distribution with one editing step 

are also shown. Note that these statistics reflect instrument performance; in 

our example, they indicate that p and T
t 1 were working better than p

f s, w ' s, 
and T

t,2
.
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8 Normal �1 �2 a
1 a

2 Ps,w Ps,f Tt,1 Tt,2

1.50 3584 2 7 31 3 0 37 3363 3286 2 646 3893 2579 4062 
1. 75 2149 1 4 03 1 5 66 1999 1996 1487 2212 1382 2325 
2. PO 1541 6 42 6 96 1090 1078 712 1094 660 1154 
2. 25 655 288 2 75 560 534 359 466 278 488 
2. 50 333 1 54 98 284 259 157 177 99 189 
2. 75 160 1 06 47 129 116 60 69 33 75 
3. 00 72 86 23 62 57 23 25 16 24 

Table H-1. Tota l point s  edited for the 1989 calibration flight. 

Another useful way to analyze these data is to normalize with the first 

column of Table H-2. Now values are expressed as the percentage of points 

relative to the normal distribution. This presentation is useful because it 

better shows vertical structure in the table, that is, it better shows how 

changing 8 affects the statistics. For example, changes in the behavior of p 
s

and Tt 
around 8=2.00 indicates a transition in the kind of "noise" sensed by

the editing procedure. 

8 �1 �2
a1 a

2 Ps,w Ps,f Tt,1 Tt,2

1. 50 0. 7 62 0 .  847 0. 988 0.917 0.738 1. 086 0.720 1. 133
1. 75 0. 6 53 o. 729 0.930 0.939 0. 692 1. 029 0.643 1.082 
2.00 0.4 17 0. 452 0.707 0.700 0.462 0.720 0.428 0.749 
2. 25 0. 4 40 0. 420 0.855 0. 815 0. 548 0. 712 0. 424 0. 745
2. 50 0. 4 63 0 .  294 0. 853 0.778 0. 472 0. 532 0. 297 0.568
2.75 0. 6 63 o. 294 0. 806 0.725 0.375 0.431 0.206 0.469 
3. 00 1. 1 94 0. 320 0.861 0. 798 0.320 0. 347 0. 222 0.333

Table H�2. Perc e ntage of points edited out relative to the normal 

distributi o n. Va lues were computed from Table H 1  by normalizing 

with the f i rst c o lumn, for example, 0.762�2731/3584. 

In Table H-3, statistical editing of pitch is shown for each 10 min 

interval of the flight for the editing parameters e=2.25 and 8=3.00. This is 

the usual output in P-3 processing (only one 8, however). Experiment and use 

have shown that 8 should generally be restricted to the the range 

2.25 � 8 � 3.00, with 8=3.00 the preferred value for editing large fliers

only. Observe that at about 8=2.25, the relative number of points edited in �1
and �

2 
changes, demonstrating the lower bound.
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Time cp1 cp2 cp1 cp2 
Time q,1 cp2 cp1 cp2

Interval ( 8 =2. 2 5 ) ( 8=3. 00 ) Interval ( 8=2.25 ) ( 8 =3. 0 0 ) 
10:00 1 1  3 5 3 13:40 10 8 1 1 
10:10 5 3 2 0 13:50 5 7 1 1 
10:20 3 4 0 0 14:00 8 5 2 2 
10:30 2 4 0 0 14:10 7 5 2 0 
10:40 6 5 2 0 14:20 8 5 2 0 
10:50 4 4 2 0 14:30 7 9 7 0 
11:00 1 2  2 4 0 14:40 9 2 6 0 
11:10 6 6 2 0 14:50 2 8 0 0 
11:20 4 4 2 0 14:00 8 3 2 0 
11:30 6 4 2 1 15: 10 . 4 10 4 1 
11:40 6 9 2 1 15:20 9 4 0 1 
11:50 5 9 1 3 15:30 4 5 0 0 
12:00 1 0  6 2 0 15:40 5 2 2 1 
12:10 4 6 0 0 15:50 3 7 0 0 
12:20 6 1 1  2 2 16:00 7 6 0 0 
12:30 4 1 5  2 0 16:10 5 9 0 0 
12:40 7 6 4 0 16:20 3 7 0 0 

*12:50 13 3 5 1 16:30 6 1 2 0 1 
13:00 4 5 0 0 16:40 8 6 3 0 
13:10 7 4 2 0 16:50 4 7 0 0 
13:20 1 3  5 6 0 17:00 5 10 1 1 
13:30 3 4 0 0 17:10 11 1 0  6 3 

Table H-3. B reak down of editing into 10-minute in t erv a ls. 

This breakdo wn i s  pa rticularly useful for showing wh en 

and how often an inst rument malfunctions. 

As a test case, we examine the interval from 12:50 Z to 13:00 Z marked 

with an asterisk in Table H-3. This example is of special interest because it 

occurred during one of our dual-racetrack maneuvers used in our calibration. 

For 8=3, q,
1 

is seen to have five bad values while q,2 has only one. Recall that

because our prefilter spreads noise to adjacent values, there could be as many 

as 2 X 3=6 points that require fixing. A plot of the difference q,
1

-q,
2 

is shown

in Fig. H-3 and shows the presence of two large spikes. 

In concluding this material we emphasize that errors of this kind are easy 

to miss in routine analysis, and left undetected, effects can propagate to 

other parameters. In the present case, errors in pitch are transmitted to 

computed vertical winds as shown in Fig. H-3; clearly, the 1.5 m/s error shown 

is intolerable. Note that, to first order, a 1° error in the pitch angle

translates to about a 1 m/ s error in the vertical wind which is useful as an

order-of-magnitude estimate. 
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1.4 

1.2 

1.0 8/10/89 
'bO 0.8 12:50 - 13:00 0 
., 
-

N o.s 
-e. I 0.4 .... 
-e. 

0.2 

0.0 
-0.2 

� 
.-

C'l.) 
-
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.s 
� -0.5

-= u -1.0 •1"'4 
-
.... 
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Fig. H-3. The difference between pitch angles measured by two independent INS 
units (top graph) reveal that one of the units is generating erroneous spikes. 
These spikes, if undetected, can contaminate computed quantities, such as 
vertical wind (lower graph). Data taken from N42RF's calibration flight on 
8/10/89. 
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SUBROUTINE EDIT2(Y1, Y2, N, SD, NBAD1, NBAD2) 
*****************************�*********diM·LEISE 7/87 
Given two similar types of data arrays Yl(N) and Y2(N), this 
routine edits for flyers(shot noise) and fixes the errors.

INPUT: Y1(N), Y2(N) = Two similar data arrays (Flags OK). 
SD = Editing parameter (Try 2.0, 2.5, 3. 0)

OUTPUT: NBAD1, NBAD2 = �oint-counters for number of fixes. 
Bad values are detected when a difference Y2(K)-Y1(K) varies 
more than SD standard deviations from the mean difference. 
In turn, the value of Y1(K) or Y2(K) that varies most from its 
respective mean is judged as bad and fixed by swapping (mean 
adjusted) values between the arrays. 
DIMENS ION Y1(N), Y2(N) 
DATA FLAG/-1. E+38/ 

NBAD1=0 , ! Initialize bad-data counter.
NBAD2=0 
IF(SD. LE. O. )RETURN Silly call. 

C . . . .  Compute the (sample) variance of Y2-Y1. 

c 

DY=O. Initialize mean. 
VAR=O. Initialize variance. 
KOUNT=O Initialize counter. 

DO 10 K=1, N ! Compute mean and variance.
IF(Y1(K). EQ.FLAG . OR. Y2(K). EQ. FLAG)GO TO 10 
KOUNT=KOUNT+1 Update counter. 
DK=Y2(K)-Y1(K) Get difference. 
DY=DY+DK Difference sum. 
VAR=VAR+DK111!1!2 Second-moment sum. 

10 CONTINUE 
IF(KOUNT. LE.N/2)RETURN 
DY=DY/KOUNT Sample mean. 
VAR=(VAR-KOUNTIII(DYIIIIII2))/(KOUNT-1. ) Sample variance. 
ERR=SD!I!SQRT(ABS(VAR)) Error tolerance. 
IF(ERR. LE. O. )RETURN Constant data. 

C . . . . Get Y1 & Y2 averages free of errors. 
S1=0. Initialize Y1 sum. 
S2=0. Initialize Y2 sum. 
KOUNT=O Initialize counter. 

DO 20 K=1, N 
IF(Y1(K). EQ. FLAG . OR. Y2(K). EQ. FLAG)GO TO 20 
DK=Y2(K)-Y1(K) Get current difference. 

IF(ABS(DY-DK). LE. ERR)THEN Statistical test. 
KOUNT=KOUNT+1 Update counter. 
S1=S1+Y1(K) Accumulate Y1 sum. 
S2=S2+Y2(K) Accumulate Y2 sum. 

END IF 
20 CONTINUE 

IF(KOUNT. LE. 1)RETURN 
AVE1=S1/KOUNT Get mean of good Y1' s. 
AVE2=S2/KOUNT Get mean of good Y2' s. 

(continued on next page) 
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c 
C . • . .  Do the fixes. 

c 

DY=AVE2-AVE1 ! Get mean difference.
DO 30 K=l, N 
IF(Yl(K).EQ.FLAG .OR. Y2(K). EQ.FLAG)GO TO 30 
DK=Y2(K)-Yl(K) ! Get current difference.
IF(ABS(DY-DK).LE.ERR)GO TO 30 ! Statistical test. 

IF(ABS(Yl(K)-AVEl) .LT. ABS(Y2(K)-AVE2)}THEN 
Y2(K)=Yl( K)+DY Y2 bad, adjust. 
NBAD2=NBAD2+1 Update diagnostic counter. 
ELSE 
Yl(K)=Y2 (K)-DY 
NBAD1=NBAD1+1 
END IF 

Y1 bad, adjust. 
Update diagnostic counter. 

30 CONTINUE 

END 

Figure H-4. FORTRAN listing of subroutine for two-parameter statistical

editing. Here SD corresponds to e in the text. Note that this code allows 

for flags (marking missing data). Also, counters NBAD1 and NBAD2 of bad 

data are returned. A flow chart of this algorithm is given in Fig.H-1. 
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