NOAA Technical Memorandum OAR ARL-264

A FAST-RESPONSE DATA ACQUISITION SYSTEM FOR
SONIC ANEMOMETERS

Christoph A. Vogel
J. Randy White
David L. Senn

Oak Ridge Associated Universities
Oak Ridge, Tennessee

Thomas S. Wood V

Wood International, Inc.
Oak Ridge, Tennessee

William R. Pendergrass

Atmospheric Turbulence and Diffusion Division
Oak Ridge, Tennessee

Air Resources Laboratory

Atmospheric Turbulence and Diffusion Division
Oak Ridge, Tennessee 37831

March, 2013

noaa NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Oceanic and Atmospheric
Research Laboratories

NOTICE
Mention of a commercial company or product does not constitute an endorsement by NOAA/OAR.

Use for publicity or advertising purpose, of information from this publication concerning propri-
etary products or the tests of such products, is not authorized.

i

Contents

List of Figures iv
Abstract 1
1 Introduction 1
2 Measurement System 2
2.1 Sonic Anemometer e e e e e e e e 2
2.2 Serial Device e 2
2.3 Netbook Computer i e e 3
2.4 Ethernet Switch and Cellular Modem 3
3 Python Script 4
3.1 Version 1 e 4
3.2 Version2 e e e e e 5
4 Discussion 5
Appendix A Python Program for Logging R. M. Young Sonic Data: Version 1 6
Appendix B Python Program for Logging R. M. Young Sonic Data: Version 2 8
References 10

11

List of Figures

1 A diagram of the high frequency sonic anemometer data acquisition system

v

A FAST-RESPONSE DATA AQUISTION SYSTEM
FOR SONIC ANEMOMETERS

Christoph A. Vogel'2, J. Randy White!-?, David L. Senn'-?, Thomas S. Wood V?3, and William R.
Pendergrass'

INOAA Air Resources Laboratory, Atmospheric Turbulence and Diffusion Division, 456 S.
Illinois Ave., Oak Ridge, TN 37830
20ak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831
3Wood International, Inc., Oak Ridge, TN 37830

Abstract

For many applications allowing atmospheric turbulent flow data to be acquired and pro-
cessed by a datalogger in the field is sufficient. Turbulence statistics are downloaded to a
computer and analyses are performed using those statistics. However, if there is a desire to
perform more in-depth analyses on the flow, raw data at the maximum sampling rates should
be logged. The following technical memorandum describes a data acquisition program, writ-
ten in the Python programming language, that allows for the logging of raw data from an R.
M. Young sonic anemometer. The program was written so that minimal modifications could
be made to include other types of sonic anemometers in its ability to log raw data.

1 Introduction

In the course of using sonic anemometers to investigate atmospheric turbulent flow characteristics
near the ground, there is frequently a desire to collect raw data as opposed to statistical variables
from data processed by dataloggers or other computers. This allows for more in-depth analyses of
the flow, and greater assessment of the quality of the data. Currently, in taking raw data, either a
commercial product must be used as an interface to the instrument, or a computer program must
be written.

Commercial products can be used to log raw sonic anemometer data, however, there are disad-
vantages. First, the cost of the software can be relatively high. Also, often the software is only
available for a specific operating system, one that inherently has a large overhead of processes
running, and hence is less than conducive to taking data. Finally, most proprietary software limit
the amount of options available, and don’t allow modifications to the underlying code. Thus, for
a significantly more cost effective way to log high frequency data, and for the ability to develop
fully controllable data acquisition code that can run in a variety of operating system environments,
a self-written computer program is preferred.

The following describes a measurement system, including computer code, used to obtain raw data
from a sonic anemometer. The model used in the testing and out in the field was the R. M. Young
81000. Since sonic anemometers are manufactured differently, significant modifications to the
present system would potentially need to be implemented. However, what is described here is
an example (and potential template) for successfully logging raw data from a variety of sonic
anemometers. Concerning the data acquisition software, the code was written in the python pro-
gramming language, and optimized to run in the linux operating system environment. Test and
field operation was performed on an ASUS 1005HA-PU17 netbook computer running Ubuntu
Linux 10.04 LTS.

2 Measurement System

The following describes the measurement system used to test and implement the high frequency
data acquisition capability. Attempts were made so that only minor modifications to the code
would be needed to adapt to new equipment. The system is described here to establish a baseline
as to what operated successfully to aide in making future upgrades.

2.1 Sonic Anemometer

The sonic anemometers used in all testing and measurement campaigns performed at the time of
this writing are type R. M. Young model 81000. These anemometers have a nominal maximum
output rate of 32 Hz, although testing and analyses have shown that the maximum rates experienced
with the particular units used was closer to 31.8 Hz. This sampling rate was determined through
precise (time wise) opening and closing of files at particular times, and counting the number of
scans (a fixed byte amount) present. This was performed repeatedly over long periods of time at
different open/close file intervals to assess consistency so that the reduced output rates were not
due to the rejection of bad data.

Nevertheless, the R. M. Young sonics were set to output at 32 Hz, at a 38400 baud rate, with Error
Handling set to “Omit Invalid Data”. The RS232 serial output format of the sonic data was “U VW
WS WD Ts”, where U is the east-west component of the wind, V the north-south component, and
W the vertical component. WS and WD are the two dimensional wind speed and wind direction,
while Ts is the temperature inferred from the speed of sound. A set of these six variables is termed
a “scan” of data. The redundancy in the wind quantities arises from existing formats used in the
field that would have been inconvenient to change due to the affect on processing by other data
acquisition systems.

2.2 Serial Device

The interface between the sonic anemometers and the netbook computer was a SerialGear CM-
41082 8S RS232 to USB device with optical isolation and surge protection. As indicated by

sonic

x
@0
N
@
N

sonic
Computer switch

uss CATS CATS
— | — fg Q
S —
Netbook Computer

Cellular modem ‘
sonic l

Internet

sonic

[}
2
=
[}
o°
©
=
[}
w

sonic

£

Figure 1: A diagram of the high frequency sonic anemometer data acquisition system

the model the device has 8 RS232 serial ports to which the sonic anemometer serial cables can
be attached. The sonic signals are then routed through the device, and output through the USB
protocol into the netbook. The 8 ports can easily be addressed in the Ubuntu Linux operating
system.

2.3 Netbook Computer

As mentioned, the computer used to acquire the high-frequency data from the sonic anemometers
is an ASUS 1005HA-PU17 Netbook running the Ubuntu Linux 10.04 LTS operating system. It
has an ATOM N280 1.66 GHz central processing unit and 1 GB of Synchronous DIMM SDRAM.
The USB controller is of the Intel N10/ICH7 family. The netbook has dimensions of 262mm(W) x
178mm(D) x 25.9mm(H), and weighs 1.36 kg. A diagram of the high-frequency data acquisition
system is shown in Figure 1.

2.4 Ethernet Switch and Cellular Modem

In order to enable communications to multiple devices through the Internet, using one cellular
modem as an access point, a Cisco/Linksys 5-port fast ethernet switch was used. Consequently,
each computer had a unique local area network (LAN) address that was accessed through assigned
ports of the cellular modem. These LAN addresses were set up through port forwarding rules
on the cellular modem. The cellular modem model used was a Sierra Wireless AirLink Raven-X
Intelligent 3G Gateway device.

3 Python Script

The following describes the python code used to acquire the R. M. Young sonic anemometer data.
At this writing there is a first version (Appendix A) written to acquire data from the Summer of
2010 to the Summer of 2011. In the Summer of 2011 the code was rewritten (Appendix B) to
improve efficiency, and improve the methods of opening and closing files. The description below
highlights the basic structure of the code, and it is left to the reader to investigate the particulars of
employing certain python modules. It must be noted that the author of the code is not a professional
software developer, and that there most likely are more efficient ways to write the scripts. However,
from our standpoint the primary purpose of the script is to successfully achieve its goal, and once
that has been accomplished to not spend too much additional time optimizing.

3.1 Version1

A customary method of writing Python scripts is to declare modules, subroutines, and functions
prior to the primary portion of the program. In version 1 of the program, the primary part of the
python code begins on line 48 where commands are called from the optparse module (PSF, 2012b).
Lines 48-55 allow for the entering of command line arguments to specify a station identifier and
the serial port through which the data will be acquired. Line 57 sets the Station ID from the options
parser object, while lines 60—61 set the file name, through the get_filename function, and open the
data file. Line 63 configures the serial connection, given 1) again the options parser object, which
contains the serial port number, 2) the baud rate, and 3) the timeout period (in seconds) to wait for
data. The serial object ser0 is set through the serial module (Liechti, 2010). The serial input buffer
is then flushed (line 66), and the first (possibly partial) line of data is received through ser0.readline
call. A counter (cntr) is then initialized, and a while loop is begun to read the data (line 70).

Within the while loop, the subroutine get_sample_scan is called to read the sonic data and write to
file. The subroutine operates initially through a call to the serial object ser0 to obtain a scan of data
(line 17). The data block is assigned to son_scan which is then split to the six different variables.
A conditional statement checks for the proper variable count, and, if true, multiplies the variables
by 100 and converts them to integers. If the conditional statement is false, then the value of cntr is
incremented and, along with the length of the string and the time, is printed to screen.

Also within this subroutine, on line 18, the current universal time object tn is obtained through
the datetime module (PSF, 2012a). This time is used to time tag the sonic scan in line 27 and
contribute to the logic, on lines 28-38, of when to close the current file and open a new one. The
issue of time tagging the data is a quality control check, and not intended to actually give the “true”
time of the scan. The time written to the data file is a function of not only time between scans, but
also of the netbook computer’s scheduler in handling processes.

Finally, once the variables are split from the sonic scan string, they are packed into a binary string
using the Python struct module (PSF, 2012d). As shown on line 27, three time variables and the
four data variables are packed according to the “little-endian” (’<’) byte order format: [unsigned
short integer, unsigned short integer, unsigned long integer, short integer, short integer, short inte-
ger, short integer]. The binary string is then written to file.

4

3.2 Version 2

Appendix B gives a successive improved version (Version 2) of the python data acquisition pro-
gram. To start, there is an additional data file period specification for the command line parameters
(lines 56 — 58). The number of minutes to which a file is written can be set, as opposed to hard
coding the value as in Version 1. The program proceeds similarly, with an additional flushing of
the output as well as input buffers, to the while conditional statement starting the get_sample_scan
loop (lines 77-78).

The subroutine get_sample_scan, however, was rewritten to utilize the python os module for its
operating system interfaces (PSF, 2012c). As in Version 1, the serial string is obtained from the
sonic anemometer, and the date and time is obtained through the datetime module. Since the code
operates such that new files are generated according to the file periods set by the ftim command
line argument, a check is performed through the check_data_file subroutine, to establish whether
data will be written to an existing file or a new file. If a new file generation is warranted then, as
illustrated in lines 18-22, a new file descriptor fd is generated, the previous file object is closed,
and a new file object is created based on the new file descriptor. The sonic anemometer variables
are then obtained as in Version 1 and written to file.

4 Discussion

The two versions of the python scripts described here work well for the measurement systems
currently being used. However, it is important to recognize that the versions described will change
as different instruments are utilized to obtain fast-response wind and temperature information,
and as different communication strategies are implemented in getting data from instrumentation
to researchers. Even as of this writing potential improvements are being evaluated. However,
in part because the python scripting and the operating systems are virtually at no cost, function
in the open-source environment, and allow for greater freedom in regulating the operation of the
measurement system, the measurement suite can be viewed as a good model upon which other
systems could evolve.

Appendix A Python Program for Logging R. M. Young Sonic

Data: Version 1

from optparse import OptionParser
import datetime

import serial

import struct

def get_filename (stid):

filename=datetime . datetime . strftime (datetime . datetime . utcnow (), stid+ UTC%Y%j -9d9M. raw)

return filename

def get_sample_scan ():

global son_scan

global stid

global f0

global f1

global flg

global cntr

son_scan=ser(0.readline (eol="\r")

tn=datetime . datetime . utcnow ()

sondata=son_scan.split ()

if len(sondata) == 6:
vO=int (float(sondata[0])x100.)
vli=int (float(sondata[1])%x100.)
v2=int(float(sondata[2])*100.)
v5=int (float(sondata[5])%100.)
sondata =[]
ttn=tn . minute+60

ds=struct .pack(’<HHLhhhh’ ,tn . minute , tn.second, tn.microsecond ,v0,vl,v2,v5)
if ttn % 30 == 0 and tn.second == 0 and tn.microsecond < 50000 and flg==0:

print tn
fO.close ()
fname=get_filename (stid)
fO=open(fname, wb’)
fO.write (ds)
flg=1
cntr=0

else:
fO.write (ds)
flg=0

else:
cntr=cntr+1
print cntr,’len.=.",len(sondata),tn

HARAHRARAA HAATAARR G HAATARRR AR RRGAAAATRRRRGAAATRRRGAAAARRRR A A

main start

parser=OptionParser ()

parser.add_option ("—p
type="string” ,dest="srdv”,
help="serial .device”)

PR

»

parser.add_option ("—r”,”—stid”,action="store”,

type="string” ,dest="stid”,
help="station_identifier”)
(options , args) = parser.parse_args ()

stid=options . stid

295

son_scan=

fname=get_filename (stid)
fO=open(fname, 'wb’)

,’—srdv” ,action="store”,

obtain command line values

set station id from input
set up null string to concatenate

open file to which to write

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

serO = serial.Serial (options.srdv,38400,timeout=.05)
print serO.portstr

serO. flushInput ()
ser0.readline (eol="\r")

cntr=0
while 1:
get_sample_scan ()

configure the serial connection

flush

the sonic

buffer

64

66

68

70

Appendix B Python Program for Logging R. M. Young Sonic
Data: Version 2

Task: Collects maximum data output (32 Hz) from an R. M. Young sonic anemometer
and outputs to file.

Author: C. A. Vogel, NOAA/OAR/ARL/ATDD

Last update: 30 July 2011

from optparse import OptionParser
import os,serial ,struct
import datetime

def get_filename (stid):
filename=datetime . datetime . strftime (datetime . datetime . utcnow () , stid+ UTC%Y%j -9H7M. raw ’)
return filename

def check_data_file(to):
global stid , ftim ,f0,cntr
ti=to.minute+60
if ti % ftim == 0 and to.second == 0 and to.microsecond < 60000:
try:
fname=get_filename (stid)
fd=os.open(fname, os.O_.CREAT| os .O_EXCL | os .ORDWR,0644)
fO.close ()
print to
fO0=o0s.fdopen(fd, wb’)
cntr=0
except:
pass

def get_sample_scan ():
global stid , ftim ,f0,cntr
son_-scan=ser(0.readline (eol="\r")
tn=datetime . datetime . utcnow ()
check_data_file (tn)
sondata=son_scan.split ()
if len(sondata) == 6:
vO=int (float (sondata[0])*x100.)
vli=int(float(sondata[1])x100.)
v2=int(float(sondata[2])*x100.)
v5=int(float(sondata[5])%100.)
ds=struct.pack(’<HHLhhhh’ ,tn.minute , tn.second, tn.microsecond ,v0,vl,v2,6v5)
fO. write (ds)
sondata =[]
else:
cntr=cntr+1
print cntr,’len_=.",len(sondata),tn

#
main start

parser=OptionParser () # define command line parameters
parser.add_option ("—p” ,”—srdv” ,action="store”,
type="string” ,dest="srdv”,
help="serial _device”)
parser.add_option ("—r”,”—stid” ,action="store”,
type="string” ,dest="stid”,
help="station._identifier”)
parser.add_option ("—k” ,”—ftim” ,action="store”,
type="string” ,dest="ftim”,
help="data.file _period.(min)”)

(options , args) = parser.parse_args ()
#
stid=options . stid # set station id from input

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

ftim=int (options. ftim) # set file period from input

64
fname=get_filename (stid) # open file to which to write
fO=open(fname, 'wb’) 66
son_scan="" # set up null string to concatenate 68
cntr=0 # initialize ’no data’ counts

70
ser0 = serial.Serial (options.srdv,38400,timeout=.05) # configure the serial connection
print serQ.portstr 72
ser0. flushInput () # flush the sonic input buffer 74
ser0. flushOutput () # flush the sonic output buffer

76
while 1:

get_sample_scan () 78

References

Liechti, C., 2010: pySerial. http://pyserial.sourceforge.net/.

PSF, 2012a: Python v2.6.8 documentation: datetime — Basic date and time types. Python Software
Foundation, http://docs.python.org/release/2.6.8/library/datetime.html.

—, 2012b: Python v2.6.8 documentation: optparse — Parser for command line options. Python
Software Foundation, http://docs.python.org/release/2.6.8/library/optparse.html, v.1.5.3.

—, 2012c: Python v2.6.8 documentation: os — Miscellaneous operating system interfaces. Python
Software Foundation, http://docs.python.org/release/2.6.8/library/os.html.

—, 2012d: Python v2.6.8 documentation: struct — Interpret strings as packed binary data. Python
Software Foundation, http://docs.python.org/release/2.6.8/library/struct.html.

10

