NOAA Technical Memorandum ERL ARL-101

DEMONSTRATION OF A LONG-RANGE ATMOSPHERIC TRACER SYSTEM
USING PERFLUOROCARBONS

Gilbert J. Ferber
Kosta Telegadas
Jerome L. Heffter
C. Ray Dickson

Russell N. Dietz
Philip W. Krey

Air Resources Laboratories
Silver Spring, Maryland
April 1981
noaa

NOAA Technical Memorandum ERL ARL-101

DEMONSTRATION OF A LONG-RANGE ATMOSPHERIC TRACER SYSTEM
USING PERFLUOROCARBONS

Gilbert J. Ferber
Kosta Telegadas
Jerome L. Heffter
Air Resources Laboratories
C. Ray Dickson

Air Resources Laboratories Field Research Office

Russell N. Dietz
Brookhaven National Laboratory
Philip W. Krey
Environmental Measurements Laboratory
Department of Energy

Prepared under Contract DE-AIO1-80EV10081 with the Department of Energy, Office of Health and Environmental Research

Air Resources Laboratories Silver Spring, Maryland April 1981

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
James P. Walsh, Acting Administrator

Environmental Research
Laboratories
Joseph O. Fletcher, Acting Director

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

Participants

H. Myers

Agronomy Research Station, Oklahoma State University
R. Dickson F. Mahoney
G. Ferber B. Olson
J. Heffter K. Telegadas

Air Resources Laboratories, NOAA
E. Cote R. Goodrich
R. Dietz

Brookhaven National Laboratory
I. Haskell
R. Lagomarsino
P. Krey
F. Wilson

Environmental Measurements Laboratory, DOE
M. Alei M. Fowler
J. Banar J. Frank
S. Barr P. Guthals
J. Cappis R. Perrin
D. Curtis D. Rokop
W. Shields

Los Alamos Scientific Laboratory
C. Clark L. Showell
J. Lee G. Wardius
J. Weaver

National Severe Storms Laboratory, NOAA
J. Loveless B. Spittler
T. Sinclair D. Whitman

National Weather Service Central Region, NOAA
E. Chapman T. Heimbigner
R. Hannigan R. Lee

Pacific Northwest Laboratory, Battelle

Col. Van Louven
Chief M/SGT. T. Greening, T/SGT. Milgrom
6th Air Weather Squadron, Tinker AFB, USAF

[^0]
TABLE OF CONTENTS

ABSTRACT 1

1. INTRODUCTION 1
2. PERFLUOROCARBON TRACER SYSTEM 2
3. 600-KM EXPERIMENT 6
4. 100-KM EXPERTMENT 37
5. EVALUATION OF PERFLUOROCARBON TRACER SYSTEM 39
6. SUMMARY 52
7. ACKNOWLEDGMENTS 54
8. REFERENCES 55
APPENDIX A. 15-minute average winds from KTVY tower - July 8, 1980 56
APPENDIX B. Rawinsonde observations from July 8, 0000 GM'T to July 12, 1200 GMT 58

LIST OF TABLES

No. Page

1. Comparative data on SF_{6} and perfluorocarbons 2
2. Tracer releases on July 8, 1980 7
3. Location of sampling sites at the 100 km arc 10
4. Sampling sites at the 600 km arc 13
5. Tinker AFB rawinsonde data for the July 8 experiment 17
6. Aircraft wind observations at 1250 meters (MSL) along the 100 km arc 19
7. Aircraft wind observations at 1525 meters (MSL) along the 600 km arc 19
8. Tracer concentrations along the 100 km arc, July 8, 1980 24
9. Dual-Trap Sampler results at Site 20 (100 km arc), July 8, 1980 26
10. Airborne whole-air sample concentrations 27
11. Tracer concentrations along the 600 km arc 30
12. Tracer releases on July 11, 1980 37
13. Tinker AFB rawinsonde data for the July 11 experiment 40
14. Tracer concentrations along the 100 km arc, July 11,1980 42
15. Performance of BATS sampling-analysis system 44
16. Comparison of BATS sequential sampler with whole-air sampler at the 100 km arc (July 8, 1980) 50
17. Sampling results and tracer comparison at Brownville, NE (16 km east of Site 13 on the 600 km arc) 53

LIST OF FIGURES

No. Page

1. Automatic sequential sampler (BATS) 4
2. Location of the sequential air samplers (BATS) and aircraft sampling path at 100 km from the tracer release site 9
3. Location of sequential samplers (BATS), LASL samplers, and aircraft sampling flight path at 600 km from the tracer re- lease site. The locations of rawinsonde stations are also shown 12
4. Surface weather map for 1200 GMT, Tuesday, July 8, 1980 15
5. Surface weather map for 1200 GMT, Wednesday, July 9, 1980 16
6. Wind observations at 1250 meters (MSL) along the 100 km arc aircraft sampling path 18
7. Wind observations at 1525 meters (MSL) along the 600 km air- craft sampling path 20
8. Calculated transport layer trajectories to the 100 km arc for the 3-hour tracer release on July 8 22
9. Comparison of the transport layer trajectory with the trajec- tory in a layer 150 to 600 meters above terrain 23
10. Average 45-min PMCH concentrations along the 100 km arc from the July 8 experiment 25
11. Comparison of PMCH concentrations aloft with surface con- centrations 28
12. Average 3-hour PMCH concentrations along the 600 km arc 35
13. Average 3-hour PMCH concentrations along the 600 km arc for the period July 9, 0800 GMT to July 11, 2000 GMT 36
14. Surface weather map for 1200 GMT, Friday, July 11, 1980 38
15. Calculated transport layer trajectories to the 100 km arc for the 3 -hour tracer release on July 11 41
16. Average $45-\mathrm{min}$ PMCH concentrations along the 100 km arc from the July 11 experiment 43
17. Comparison of PMCH and PDCH concentrations from the 100 km BATS samples on July 8 46

LIST OF FIGURES (cont'd)

No. Page
18. Comparison of PMCH and PDCH concentrations from the 600 km BATS samples 47
19. Comparison of PMCH and PDCH concentrations from the 100 km BATS samples on July 11 48
20. Comparisons of tracer concentrations in whole-air samples collected in the flight over the 100 km arc on July 8 51

Abstract

Regional-scale tracer experiments are needed to validate atmospheric dispersion aspects of air pollution models. The capability of a new system, using perfluorocarbon tracers (PFTs), for long-range dispersion experiments at reasonable cost was demonstrated in two experiments. Two PFTs ($\mathrm{C}_{7} \mathrm{~F}_{14}$ and C 8 F 16) were released simultaneously with SF_{6} and two heavy methanes.

The PFT system provides automatic sequential samplers and rapid, inexpensive analyses down to 2 parts per 10^{15} of air. PFT concentrations were measured 600 km away, up to three days after release. Performance of the PFT system was excellent and a consistent set of tracer data was obtained.

1. INTRODUCTION

Atmospheric transport and dispersion models are being used extensively to simulate the behavior of air pollutants and to estimate regional air concentrations. Increased concern over regional and international aspects of air pollution has created a need for reliable model calculations of concentrations as far as 1000 km from pollutant sources. Experimental verification of these calculations is essential to establish the credibility of the models and environmental assessments based on model simulations.

Attempts to verify model calculations with air quality data are complicated by the presence of multiple sources and imprecise knowledge of emission amounts. There is a need for nonreactive, nondepositing tracers that could be released at precisely controlled rates and measured accurately at very low concentrations. This would allow us to conduct tracer experiments which isolate atmospheric transport and dispersion from other variables and provide data for verification of this basic aspect of model calculations. Regional-scale experiments require tracers that can be unambiguously identified and measured as far as 1000 km from the release point. Sulfur hexafluoride, SF_{6}, has been used out to 100 km but its relatively high and variable background concentration militates against its use to much greater distances. Even at shorter distances, a tracer system is needed that would provide automatic sequential sampling and rapid, inexpensive sample analysis. A new atmospheric tracer system, using perfluorocarbons, has been developed to meet this need.

The capabilities of the perfluorocarbon tracer (PFT) system were successfully demonstrated in two long-range experiments described in this report. The experiments were designed to provide a proof-test of the perfluorocarbon tracer release, sampling, and analysis techniques and to demonstrate the feasibility of conducting long-range atmospheric dispersion experiments at reasonable cost. Each experiment involved simultaneous release of two PFT tracers along with SF6 over a 3-hr period with concentrations measured 100 km downwind. In the primary experiment, two heavy methanes, new tracers being developed at the Los Alamos Scientific Laboratory (LASL) were also released and the perfluorocarbons and methanes were measured at a distance of 600 km as well as 100 km . Intercomparison of the $\mathrm{PFT}, \mathrm{SF} 6$, and heavy methane results has established the validity of the new tracer systems.

The perfluorocarbon tracer data on the 600 km sampling arc present an interesting case of very fast transport by a night-time low-level jet and the reappearance of tracer over the arc on the day following its first arrival. Tracer concentrations were still measurable three days after release. This experiment provides a useful case study for verification of long-range transport and dispersion models.

2. PERFLUOROCARBON TRACER SYSTEM

Investigations by Lovelock (1974) indicated that a perfluorocarbon tracer system could be developed that would be ideal for long-range dispersion studies. The NOAA Air Resources Laboratories (ARL) contracted with Lovelock to develop three different samplers as the first step in the development of the new tracer system. Prototype instruments were delivered by Lovelock in 1976. Since then ARL has been working closely with the Department of Energy's Environmental Measurements Laboratory (EML) and Brookhaven National Laboratory (BNL) in a cooperative effort to develop a practical perfluorocarbon system.

The perfluorocarbons are extremely stable non-toxic compounds, measurable at very low concentrations by gas chromatography and electron-capture detection. At present, we are working with two perfluorocarbons, perfluoromonomethylcyclohexane ($\mathrm{PMCH} ; \mathrm{C}_{7} \mathrm{~F}_{14}$) and perfluorodimethylcyclohexane (PDCH; $\mathrm{C}_{8} \mathrm{~F}_{16}$). Comparative data on SF_{6}, PMCH and PDCH are shown in Table 1 . The atmospheric background concentration of PDCH is about 0.026 parts per trillion by volume (26×10^{-15}), about $1 / 25$ of the SF_{6} background. Background of PMCH is an order of magnitude lower than PDCH. The amount of tracer released in any experiment must be sufficient to distinguish the plume from background at the maximum sampling distance. The required release rate (by weight) for PDCH is about 10% that for SF_{6}; for PMCH it is about 1% of the SF_{6} rate. Taking the higher price of the perfluorocarbons into account, the PDCH required for an experiment would cost about 20% more than SF_{6}; the cost of PMCH would be about 10% of the SF_{6} cost.

Another factor in favor of the perfluorocarbons over SF_{6} is their very uniform background concentration. SF_{6} has a highly variable background because of many local sources throughout the country and the world.

Table 1. Comparative Data on SF_{6} and Perfluorocarbons.

Tracer	Sulfur- Hexa- fluoride	Perffuoro- Dimethyl- cyclohexane (PDCH)	Perf1uoro-Monomethy1cyc1ohexane (PMCH)
Formula	SF_{6}	$\mathrm{C}_{8} \mathrm{~F}_{16}$	$\mathrm{C}_{7} \mathrm{~F}_{14}$
Mol. Wt.	146	400	350
Background (pptv)	0.6	0.026	0.0024
Cost/kg	\$11	\$110.	\$110.
Relative Release Rate (by wt.)	100	12	1.0
Relative Cost/ Re1ease	1.0	1.2	0.1

2.1 Tracer Release Mechanisms

The two perfluorocarbon tracers, which are liquids at ordinary temperatures, were released as aerosol sprays. Each tracer is held in a 210-1iter tank on a trailer. Compressed nitrogen provides pressure to force the liquid out of the tracer tank.

The mechanics of the spray system are simple. The spray nozzle has two hoses, one from the tracer tank, and the other from a construction-type air compressor that delivers 100 psi at 100 cfm . The tracer is introduced into the fast-moving air stream, atomized through a small orifice, and released into the atmosphere. Tracer release rate is monitored with a calibrated rotometer.

A newly designed release system, which was not completed in time for these experiments, has since been tested and performed well in the DOE Atmospheric Studies in Complex Terrain (ASCOT) experiments in California in September 1980. This system, also trailer-mounted and designed to be completely self-contained (no air compressor required), vaporizes the tracer before release.

The tracer is mixed with a stream of N_{2} gas to evaporate it and to carry the tracer through the system. This mixture of nitrogen and perfluorocarbon gas flows through a tube furnace. Temperature of the tube furnace is kept above the boiling point of $\mathrm{PDCH}, 105^{\circ} \mathrm{C}$, to assure that the tracer is completely vaporized. From the tube furnace the mixture of N_{2} and tracer gas passes through a mass flow meter where the volume is accurately metered. From there the tracer is released to the atmosphere.

The design of this system provides back-up measurements of the actual amount of released tracer. The mass flowmeter provides both instantaneous and total volumes, and also supplies a $0-5$ volt dc output which is connected to a stripchart recorder. The recorded release rate shows the constancy of tracer release and provides a measurement of total output over the time of release. The system also has a large set of crane scales ($0-450 \mathrm{~kg}$) and a small balance ($0-40 \mathrm{~kg}$) to provide accurate weighings of the tracer tanks before and after release.

Both release systems were designed and built by the NOAA Air Resources Laboratories Field Research Office iṇ Idaho Falls, Idaho.

2.2 Automatic Sequential Sampler

Based on Lovelock's prototype, R. Dietz at BNL, developed an improved sequential sampler dubbed the Brookhaven Atmospheric Tracer Sampler (BATS). The sampler consists of an Air Flow Module (lid) and a Power Control Module (base). The entire unit, shown in Figure 1, measures $36 \times 25 \times 20 \mathrm{~cm}$ and weighs 7 kg . The lid contains 23 sampling tubes filled with 150 mg of $20-50$ mesh-type 347 Ambersorb* which traps all the perfluorocarbons in the air flowing through the tube. The base contains a constant volume pump which draws air through each sampling tube in a sequence controlled by an internal digital clock. Flow rates, controlled by critical orifices, are selectable from 2 to $50 \mathrm{cc} / \mathrm{min}$. The base also contains a digital printer that records the tube number, start time and number of pump strokes (which can be converted to air volume) for each sample. Controls in the base provide for automatic start at a preselected day and time for a preselected
*Trade name of Rohm and Hass Company.

Figure 1. Automatic sequential sampler (BATS).
number of samples and duration of sampling (1 min to 1 week per tube), as well as for automatic analysis with a gas chromatograph. Internal rechargeable batteries provide sufficient power for unattended operation for up to a month. After 23 samples have been collected, the lid unit can be removed for sample analysis (in the laboratory) and a fresh lid attached in its place to continue the sampling program.

The Air Resources Laboratories contracted with Gilian Instrument Corp. for final design and production of 60 complete BATS samplers which were delivered in May 1980 for use in the July experiments. An operations manual was also prepared by Gilian (1980).

2.3 Sample Analysis System

The determination of perfluorocarbon tracer concentrations from the BATS samples is accomplished with an analysis apparatus designed, built and operated at BNL. The tracer is recovered by thermal desorption from the BATS tubes with subsequent gas chromatographic separation prior to electron capture detection. The scheme also includes chemical processing of the recovered constituents in order to destroy and remove interfering components, such as chlorofluorocarbons, which are present in the air at concentrations orders of magnitude higher than that of the PFTs.

Before the sample is thermally desorbed, the BATS tube is purged with carrier gas ($5 \% \mathrm{H}_{2}$ in N_{2}) for a short period of time to remove any traces of oxygen which otherwise would react with the PFTs during the $400^{\circ} \mathrm{C}$ desorption recovery. Desorption is accomplished by direct ohmic heating of the thin stainless steel wall of the BATS tube. The sample is purged from the BATS tube through a Pd catalyst bed at $260^{\circ} \mathrm{C}$ and then through a 120 cm Porasil F pre-cut column. The $10-\mathrm{cm}$ long catalyst bed reduces any chlerofluorocarbon compounds, as well as any remaining oxygen, to their hydrogenated form, thus rendering these interfering constituents non-electron-capturing. After the surviving PFTs elute from the pre-cut column, heavier molecular weight constituents, still within the column, are purged to the atmosphere by reversing the direction of flow. Meanwhile, the eluted PFTs are reconcentrated within a $10-c m$ long bed of Porapak QS adsorbent. The purpose of the bed is two-fold. First, only the PFTs are retained in the Porapak QS; any lighter constituents which might ultimately interfere are flushed away. Secondly, once the Porapak QS-trapped PFTs are released into the main analytical column, the next BATS tube recovery cycle can be initiated, thus halving the overall PFT recovery and analysis time by overlapping the stages.

When the Porapak QS trap has been heated to $200^{\circ} \mathrm{C}$, the PFTs are released into a second catalyst bed (2.5 cm long) for a final clean-up and flushed through a Nafion permeation dryer to remove traces of moisture before entering the main column, 6 meters of Porasil F, which is at the same temperature as the pre-cut column, $90^{\circ} \mathrm{C}$. The $22 \mathrm{~mL} / \mathrm{min}$ flow of carrier gas at this column temperature provides good resolution of the two PFTs. Automation is accomplished by interfacing the timing capability of the BATS with the INJECT command of a Varian CDS-111 integrator-controller, which provides the control capability for the involved valving and heating sequences within a Varian 3700 series gas chromatograph. Analyses of the 23 tubes on a BATS unit can be completed in just under 3 hours.

The present system incorporates a ${ }^{63} \mathrm{Ni}$ electron-capture detector which provides a measurement accuracy within $\pm 10 \%$ at concentrations as low as 2 parts per
10^{15} (approximate ambient concentration of PMCH) with a sampled volume of 8 liters of air. This is the approximate volume collected in the 600 km arc samples (3-hr duration). The uncertainty in measurements near the PMCH background level is somewhat greater (about $\pm 25 \%$) on the 100 km arc where the volume sampled was about 2 liters (45-minute duration).

2.4 Dual-Trap Sampler

Another prototype instrument, the Dual-Trap sampler, was designed by Lovelock to combine the sampling and analysis functions into a single unit. The unit contains two sampling tubes which are automatically cycled so that one tube samples while the other is being analyzed. This instrument provided readout of PDCH tracer concentrations (no PMCH) every five minutes at the sampling site.

The original prototype has been modified at EML and BNL to provide a more rugged instrument for field use, to collect and measure PMCH and PDCH simultaneously, and to improve its detection limit by more than two orders of magnitude.

Ambient PDCH (about . 03 ppt) can be measured with $\pm 15 \%$ precision and PMCH can be measured at concentrations slightly above its ambient level of about . 003 ppt. The attainment of this degree of sensitivity in a real-time field instrument is a major advance which will add significantly to long-range tracer capability.

2.5 Continuous Tracer Monitor

The third prototype sampler developed by Lovelock is a real-time continuous monitor intended primarily for use in aircraft sampling. Ambient air is drawn through a catalytic reactor that reduces the 0_{2} and other electron-absorbers, leaving the perfluorocarbons and nitrogen. This is passed directly to an electroncapture detector providing continuous concentration readout with only a 3-second delay.

Many problems have been encountered in the operation of this instrument, but the concept appears to be sound and work is continuing on the development of this sampler. If successful, it should be able to provide a continuous in-flight record of tracer concentrations down to 0.1 ppt or better.

3. 600-KM TRACER EXPERIMENT

A long-range tracer experiment was conducted on July 8, 1980 with the simultaneous release of two perfluorocarbons, SF_{6}, and two heavy methane tracers at the NOAA National Severe Storms Laboratory (NSSL) at Norman, Oklahoma. Samplers were deployed to measure tracer concentrations along arcs at 100 km and 600 km north of the release point. The objectives of the experiment were:

1) to provide a proof-test of the perfluorocarbon release, sampling and analysis techniques,
2) to test the concept of using the National Weather Service substation network for cross-country sampling,
3) to compare measurements of five different tracers to establish the validity of the new tracer techniques, and
4) to demonstrate the capability to perform long-range atmospheric transport and dispersion experiments, at reasonable cost, for verification and improvement of air pollution models.

3.1 Tracer Release

The five tracers were released simultaneously over a 3-hr period from 1900 to 2200 GMT (1400-1700 CDT) from an open field at NSSL. Release nozzles were about a meter above ground level. Flowrates were carefully monitored to assure a nearly constant release rate for each tracer. Release amounts are shown in Table 2. The amounts of perfluorocarbon and heavy methane released were calculated to produce concentrations well above the detection limit at the 600 km sampling arc. The amount of SF_{6} released was sufficient to be detected at the 100 km arc for comparison with the new tracers.

Table 2. Tracer Releases on July 8, 1980

\quad Tracer	Formula	Molecular Wt.	Release Amount (kg)
PMCH	$\mathrm{C}_{7} \mathrm{~F}_{14}$	350	192
PDCH	$\mathrm{C}_{8} \mathrm{~F}_{16}$	400	186
SULFUR HEXAFLUORIDE	SF_{6}	146	273
METHANE-20	$12_{\mathrm{CD}_{4}}$	13 CD	20
METHANE-21		21	0.153
			0.084

Tracer Release Ratios (by Volume)	
PMCH/PDCH:	1.18
$\mathrm{SF}_{6} / \mathrm{PMCH}$	3.41
$\mathrm{SF}_{6} / \mathrm{PDCH}$	4.02
$\mathrm{PDCH} / \mathrm{Me}-21$	116
$\mathrm{PMCH} / \mathrm{Me}-21$	137
$\mathrm{SF} 6 / \mathrm{Me}-21$	467

It should be noted that although very small amounts of heavy methanes are required, they are relatively expensive to produce. When the costs of tracer materials and sample analysis are taken into account, the cost per experiment is comparable for perfluorocarbons and heavy methanes.

The two perfluorocarbons (PMCH and PDCH) were released as aerosol sprays from separate tanks mounted on trailers a few feet apart. The tanks were weighed immediately before and after the experiment to determine the amount released from each tank. Since the commercially available PDCH contains about 8% (by weight) PMCH and the commercial PMCH has about 2% impurities, samples of the purchased tracers were assayed at BNL prior to the experiment, and samples from the release tanks were assayed after the second experiment. The release tank weighings and the chemical assays were used to calculate the PMCH and PDCH release amounts shown in Table 2. These values are accurate within $\pm 4 \%$.
SF_{6} was released as a gas from pressurized cylinders positioned between the perfluorocarbon trailers. The release amount was determined by weighing the cylinders before and after release and is accurate within $\pm 2 \%$.

The two heavy methane tracers were released as a calibrated mixture of gases from a single pressurized cylinder. The mixture was prepared at LASL and the ratio of the two methanes was determined by mass spectrometry. The total amount released was determined by weighings before and after release. Release amounts are accurate within $\pm 1 \%$.

The lower part of Table 2 gives the tracer release ratios, by volume, as calculated from the release amounts and molecular weights shown above. Ideally, if the tracer systems worked perfectly, these same ratios should be found in all air samples collected within the tracer plume (after ambient background concentrations are removed).

3.2 Sampling Array

Sampling arcs were established at 100 km and 600 km from the release point. Sites were selected in a sector to the north of the release site, based on a 5year climatology of July trajectories.

3.2 .1100 km arc

Thirty sampling sites were selected at $4-5 \mathrm{~km}$ intervals along the roadway of HWY 51 and HWY 33 as shown in Figure 2. The latitude-longitude azimuth, and distance from the release site of each sampling site are listed in Table 3. The operations center for the 100 km arc was set up at the Agronomy Research Station, Oklahoma State University at Stillwater, OK. National Weather Service instrument shelters were set up at each location to house the BATS sequential sampler. Only seventeen samplers were available, so the sites to be instrumented had to be selected just prior to the start of the tracer release. Based on the latest trajectory forecast, two EML sampling teams deployed the BATS samplers to Sites 12-28. The tracer release began at 1900 GMT (1400 CDT) and the samplers were set to take ten 45 -minute samples starting at 2100 GMT , before the tracer was expected to arrive.

A whole-air sampler (pump and plastic bag enclosed in a barrel) was colocated with each BATS sampler to collect a single sample starting when the BATS was placed at the site and ending when the 'BATS sampling was terminated. The purpose of the whole air samplers was to provide intercomparisons among the five tracers and aliquots were taken from each bag for perfluorocarbon, heavy methane, and SF_{6} analyses.

Figure 2. Location of the sequential air samplers (BATS) and aircraft sampling path at 100 km from the tracer release site.

Table 3. Location of sampling sites at the 100 Km arc.

Station No.	$\begin{aligned} & \text { Latitude } \\ & { }^{\circ} \mathrm{N} \end{aligned}$	Longitude	$\underset{\mathrm{Km}}{\text { Distance }^{(\mathrm{a})}}$	$\underset{\text { deg }}{\substack{\text { Azimuth }}}$
1	36.12	98.10	115	328
2	36.12	98.05	113	330
3	36.12	98.00	111	333
4	36.12	97.94	108	335
5	36.12	97.89	106	338
6	36.12	97.84	105	340
7	36.12	97.79	103	342
8	36.12	97.73	102	345
9	36.12	97.68	100	347
10	36.12	97.63	99	350
11	36.12	97.59	98	352
12	36.12	97.54	98	355
13	36.12	97.48	97	358
14	36.12	97.42	97	001
15	36.12	97.36	98	003
16	36.12	97.31	98	006
17	36.11	97.26	98	008
18	36.10	97.21	98	011
19	36.12	97.15	101	014
20	36.12	97.09	103	017
21	36.12	97.05	104	019
22	35.99	97.05	91	022
23	35.98	97.00	93	025
24	35.99	96.94	95	028
25	35.99	96.89	97	030
26	35.98	96.84	100	033
27	35.96	96.77	104	036
28	35.97	96.72	108	038
29	35.97	96.66	110	040
30	35.97	96.59	114	043
Tinker AFB	35.42	97.38		
Release Site	35.24	97.46		
KTVY Tower	35.58	97.48		

3.2.2 600 km arc

Sampling sites on the 600 km arc, in Nebraska and Missouri are shown in Figure 3. Deployment and operation of samplers over the long distances on this arc could have presented difficult logistic problems. Fortunately, we were able to secure the cooperation of the NOAA National Weather Service (NWS) to allow us to use their substation network as a fixed sampling array. This network is comprised of over 12,000 locations in the U.S. where cooperative observers, mostly volunteers, gather weather data for the NWS.

The BATS samplers were delivered, in advance of the experiment, by NWS substation specialists to the sites shown in Figure 3. At the time of delivery, the samplers were set to take 22 three-hour samples. On the day of the experiment, after the tracer release had begun, all observers were notified by telephone to set the samplers to start automatically at 0800 GMT (0300 CDT) on July 9. The station locations and cooperative observers are listed in Table 4.

The Los Alamos Scientific Laboratory had 6 cryogenic samplers available for deployment on the 600 km arc for the collection of heavy methanes. On the evening of July 8, based on the latest wind data and forecasts, they were advised by ARL to deploy the samplers to the sites indicated by double circles in Figure 3. Five sequential samples were taken at these locations at 3-hour intervałs beginning at 1100 GMT (0600 CDT) on July 9.

3.3 Airborne Sampling

The Battelle Pacific Northwest Laboratory provided a DC-3 aircraft and crew for sampling missions over the 100 km and 600 km arcs. It was intended to obtain plume profiles aloft with the Lovelock real-time continuous perfluorocarbon monitor and a modified version of this instrument developed at BNL. However, neither instrument was operational on the day of the experiment. Whole-air samples were collected in plastic bags, and analyzed for all five tracers. Frequent wind measurements were also made aboard the aircraft during both sampling flights.

Three sampling passes were made at the 100 km arc along the flight path shown in Figure 2 at an altitude of 900 meters above the ground (1250 m MSL) between 2300 GMT and 0000 GMT (6-7 PM). On each pass, a plastic bag was filled with outside air along each segment of the flight path.

The aircraft returned to Wiley Post Field in Oklahoma City, refueled, and then took off for Kansas City in preparation for the 600 km sampling flight the next morning. The plume had been forecast to arrive about 1300 GMT (8 AM) but the 0600 GMT wind data indicated faster plume travel and the aircraft was rescheduled for take-off at 1230 GMT (7:30 AM) and a sampling flight path north of the 600 km arc, shown in Figure 3 was chosen to compensate for the stronger winds. Bag samples of about 12 -minute duration were collected along each segment of the flight path from about 1240 to 1630 GMT at an altitude of 1200 meters above the ground (1525 meters MSL). Aliquots were transferred from each bag for later analysis by BNL and LASL.

3.4 Meteorology

On July 8-9 a broad area of high pressure dominated most of the U.S. A west-to-east oriented stationary front just north of the 600 km sampling arc was

Figure 3. Location of sequential samplers (BATS), LASL samplers, and aircraft sampling flight path at 600 km from the tracer release site. The locations of rawinsonde stations are also shown.

Table 4. Sampling sites at the 600 Km arc

Station No.	$\underline{\text { Location }}$	Observer	$\begin{aligned} & \text { Latitude } \\ & { }^{\circ} \mathrm{N} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Longitude } \\ { }^{\circ} \mathrm{W} \end{gathered}$	$\begin{aligned} & \text { Azimuth } \\ & \text { (a) } \\ & \text { deg. } \end{aligned}$
NEBRASKA					
A	Hastings	Ralph A. Powell	40.60	98.35	352
1	Clay Center 5W	Jim Chapman	40.53	98.15	354
2	Bradshaw	Jack Pugh	40.88	97.75	358
3	Fairmont	Andrew Anderson	40.63	97.58	000
4	Friend	Jim Hannon	40.65	97.28	001
5	Western	Kenneth Roesler	40.40	97.20	002
6	Crete	Dr. Delbert King	40.62	96.95	004
7	Lincoln (WSO)	Orval Jurgena	40.85	96.75	005
9	Firth	Roland Beach	40.53	96.60	007
10	Sterling	Raymond Zink	40.47	96.38	008
11	Tecumseh	Arthur Lempke	40.37	96.18	010
12	Table Rock 4N	Betty Vrtiska	40.23	96.08	011
13	Auburn 5NNE	Dary 1 Obermeyer	40.45	95.80	012
MISSOURI					
14	Fairfax	Dillard Price	40.33	95.40	015
15	Skidmore	Donald Brown	40.28	95.08	018
16	Maryville 2E	George Wolfe	40.35	94.83	020
17	Conception	Br. Damian Larson	40.25	94.68	022
18	King City	John Martin	40.05	94.52	023
19	Pattonsburg	Mrs. Kenneth Mason	40.05	94.13	026
20	Hamilton 2 W	William Kuhnert	39.75	94.03	028
21	Chillicothe	Sam Bowling	39.77	93.55	031
22	Coloma	Mrs. Freda Trussel	39.53	93.53	033
23	Carrollton	Harold Finley	30.37	93.50	034
24	Brunswick	John M. Smith	39.42	93.12	036
25	Marshall	Steve Hilton	39.12	93.18	038
26	New Franklin	Mrs. Ronda Thiessen	39.00	92.77	040
27	Boonville	Rolland Goode	38.97	92.75	041
28	Columbia (WSO)	Dave Horner	38.65	92.22	046
29	Jefferson City	Robert Block	38.58	92.15	048
30	Freedom	Mrs. Velma Niewald	38.47	91.70	052
31	Vienna	Henry Kaiser	38.20	91.98	053
32	Vichy (FAA)	Newton Lipplitt	38.12	91.77	055
33	Rolla	Dr. Al Spreng	37.95	91.77	057
34	Cook Station	Mrs. Ozella Brand	37.82	91.43	060
35	Salem	Warren Sellers	37.63	91.53	061
36	Bunker	Mrs. Grace Shaffer	37.45	91.22	064
37	Ellington	Billy Swyres	37.20	90.93	066
38	Van Buren	Gerry Whittle	36.98	91.02	068

associated with a weak low pressure center moving slowly eastward (see Figures 4 and 5). The wind flow in the boundary layer (surface to about 2500 m) over the central U.S. was predominantly from the south-southwest around a strongly persistent high pressure system centered in the southeastern U.S. This weather pattern was associated with the severe "heat wave" in the central U.S. during July 1980. Afternoon surface temperatures in the experimental area generally rose above $38^{\circ} \mathrm{C}$ $\left(100^{\circ} \mathrm{F}\right)$ during the entire period of the experiment.

3.4.1 Forecast tracer trajectories

In order to alert the sites in advance to prepare for sampling, forecast trajectories were prepared on a daily basis. Trajectories starting at 6-hour intervals were determined from a computer program using the NOAA National Meteorological Center forecast gridded wind fields. The forecast obtained the morning of July 8, based on 0000 GMT data, was for trajectories starting 18 to 24 hours later (for a planned tracer release time of 1900 GMT). The plume centerline was forecast to move to the northeast across the eastern part of the 100 km arc and then continue northeast-to-north crossing near the center of the 600 km arc. Based on the forecast, preparations continued for a 1900 GMT release. The last forecast before release was obtained at noon (based on 1200 GMT data) for a trajectory starting at 1800 GMT. The plume centerline was forecast to be in about the same position as before with a slight northeast shift at the 600 km arc. The tracer was released with the knowledge that backing (counter-clockwise shifting) of the local winds was forecast during the afternoon turbulent mixing. This insured that the plume would cross the 100 km arc shifting from east to west as time progressed.

3.4.2 Upper air observations

The wind direction and speed from the KTVY tower, about 40 km north of the release site, is given in Appendix A. The tower is instrumented at seven levels between the surface and 444 meters. The wind data at these levels were averaged over 15 -minute periods.

Special rawinsonde observations were taken at Tinker AFB, about 20 km NNE of the release site, starting on the morning of July 8. These data (height, temperature, wind direction and speed) are given in Table 5. In addition, a transport layer height, TLH, computed from each temperature sounding (Heffter, 1980) is given at the bottom of the table together with the average wind speed and direction in the layer.

Rawinsonde data at selected stations, for the period July 8, 0000 GMT to July 12,1200 GMT are given in Appendix B. These data, and the Tinker AFB soundings, have been included in the NAMER-WINDTEMP data tapes available at the National Climatic Center, Asheville, NC (see Appendix C, Heffter, 1980).

3.4.3 Aircraft winds

The PNL sampling aircraft took wind observations at the 100 km arc along the flight path shown in the lower part of Figure 6. The upper figure shows a plot of the winds by longitude (along the flight path) versus time. To locate the geographic position of any wind, read directly down (along a constant longitude) from the plotted wind position of the upper figure to the intersection along the flight path in the lower figure. The winds are tabulated in Table 6.
-
TUESDAY, JULY 8, 1980

Figure 4. Surface weather map for 1200 GMT, Tuesday, July 8, 1980.

Figure 5. Surface weather map for 1200 GMT, Wednesday, July 9, 1980.

TABLE 5. TINKER AFB RAWINSONDE DATA FOR THE JULY 8 EXPERIMENT.

Figure 6. Wind observations at 1250 meters (MSL) along the 100 km arc aircraft sampling path.

Table 6. Aircraft wind observations at 1250 meters (MSL) along the 100 km arc.

Time (GMT)	Direction $($ deg. $)$	Speed (m/sec)
2304	186	6.7
2315	205	2.6
2326	182	13.9
2332	181	19.6
2344	178	17.5
2347	176	6.2
2353	194	3.1
0000	205	7.2
0008	188	6.7
0009	198	5.7

The sampling aircraft also took wind observations at the 600 km arc along the flight path shown in Figure 7 (plotted similar to Figure 6). These winds are also tabulated in Table 7.

Table 7. Aircraft wind observations at 1525 meters (MSL) along the 600 km arc.

$\begin{aligned} & \text { Time } \\ & \text { (GMT) } \\ & \hline \end{aligned}$	Direction (deg.)	$\begin{gathered} \text { Speed } \\ (\mathrm{m} / \mathrm{sec}) \\ \hline \end{gathered}$	$\begin{array}{r} \text { Time } \\ \text { (GMT) } \\ \hline \end{array}$	Direction (deg.)	$\begin{gathered} \text { Speed } \\ (\mathrm{m} / \mathrm{sec}) \\ \hline \end{gathered}$
1304	267	20.1	1504	265	13.9
1313	271	19.0	1511	263	16.0
1316	271	19.0	1516	262	17.0
1327	272	19.0	1526	265	14.4
1328	272	19.0	1528	269	13.4
1340	327	10.3	1533	265	12.9
1346	332	13.4	1540	259	10.3
1352	318	12.9	1544	261	8.8
1358	312	12.4	1550	256	12.4
1404	309	15.4	1554	262	14.4
1416	279	11.8	1556	263	15.4
1427	254	18.0	1604	255	18.5
1440	277	12.4	1607	258	16.0
1449	267	13.4	1617	260	8.8
1452	255	17.0	1622	244	8.8

Figure ?. Wind observations at 1525 meters (MSL) along the 600 $k m$ aircraft sampling path.

3.4.3 Post-facto tracer trajectories

Tracer trajectories to the 100 km arc were hand-calculated using average winds in the computed transport layer as determined from the Tinker AFB soundings. Trajectories for the start and end of the tracer release are shown in Figure 8 with times (GMT) indicated along each trajectory. Also shown is the expected plume width. The calculated plume position and arrival time at the 100 km arc agreed well with the tracer data although the actual plume extended further to the west (see Section 3.5.1).

Tracer trajectories to the 600 km arc were computed using the ARL-ATAD model (Heffter, 1980). Meteorological input data were obtained from the NAMER-WINDTEMP data base. The computed trajectories are shown in Figure 9. The solid trajectory is determined from winds averaged in a computed variable transport layer; the dashed trajectory is from winds averaged in a constant layer 150 to 600 m above terrain. The calculated plume centerline at the 600 km arc using the variable transport layer was about 200 km east of the measured peak concentration; the calculated position using the $150-600 \mathrm{~m}$ layer was in better agreement, about 100 km east of the actual position.

3.5 Sampling Results

3.5.1 100 km sampling results

The BATS sequential samplers and whole air samplers were installed at Sites 12 through 28. The 45-minute sequential sample concentrations are given in Table 8. Due to analysis problems, no data are available for Site 17.

The PMCH sampling results on the 100 km arc are shown graphically in Figure 10. The sampling sites are plotted as a function of the azimuth from the release site. The scale gives the distance in kilometers between sampling sites projected onto the 100 km arc.

During the initial sampling period (2100-2145 GMT), the PMCH concentrations at all sampling sites are at or slightly above the background concentration of about 2.4 parts per 10^{15}. During the second sampling period (2145 to 2230 GMT), approximately 3 hours after the start of.tracer release, concentrations had increased by three orders of magnitude with the plume centered between Sites 12 and 16. The backing of the winds. with time carried the tracer plume further west than expected and the portion of the plume west of Site 12 was not sampled.

The next samples (2230 to 2315 GMT) show the peak PMCH concentrations. Later samples show decreasing concentration with the plume centerline shifting toward the west. As will be seen later, aircraft sampling data indicated that plume concentrations west of Site 12 probably decreased very rapidly.

During the sampling period 0130-0215 GMT (July 9), about 4 hours after the end of the release, concentrations along the 100 km arc had returned to nearbackground levels. Sites 23 through 28 had background concentrations during the entire sampling period.

The Dual-Trap sampler, described in Section 2.4 , was operated along the 100 km arc but the only non-background data obtained was at Site 20 from 2227 to 2314 GMT as shown in Table 9. The average PDCH concentration for this period was 228 parts

Figure 8. Calculated transport Zayer trajectories to the 100 km arc for the 3-hour tracer release on July 8.

Figure 9. Comparison of the transport layer trajectory with the trajectory in a layer 150 to 600 meters above terrain.

TABLE 8
100 KM ARC
TRACER CONCENTRATIONS (PARTS PER 10 ${ }^{15}$,

STATION	12		13		14		15		
	PMCH	PDCH	PMCH**	PDCH**	PMCH	PDCH	PMCH	PDCH	
$\begin{aligned} & \text { START } \\ & \text { TIME (GMT) } \end{aligned}$									
$\begin{array}{llllllllll}\text { JULY } 08 & 25 & 4 . & 28 & 4.7 & 26 & 4.9\end{array}$									
2100 2145	$650^{3.1}$	25 580	1300°	890	1010 !	920	860 !	760	
2230	4000°	2980	5900°	390	4670°	3500	2730	2380	
2315 284\% 2160 2700. 2000 1650. 20370 1260. 1110									
JULY 09			500.	390	1.82 .	1 A2	88.	96	
0000	21.40°	1707	$4{ }^{\circ}$	52	$4 \cdot 5$	28	4.0	25	
0130	4.6	32		3 ?	5.0	28	4.8	23	
0219	$4 \cdot 1$	30	4.	31	4.4	27	$5 . *$	28	
0300	3.6	26	$4{ }_{4}$	21 26	4.6 4.4	27 28	10 \%**	25	
0345	3.1	26	4.		4.4		10.*		
STATION	16		18		19		20		
	PMCH	POCH	PMCH	PDCH	PMCH	PDCH	PMCH	PDCH	
$\begin{aligned} & \text { START } \\ & \text { TIME GMT }) \end{aligned}$									
JULY 08210021452230					3.0	27	3.7	28	
	$1110^{3.0}$	980	290:0	210	130 .	150	16°	40	
	2810°	2440	2100.	1780	560.	480	2150	238 41	
UULY 09	1000.	920	340.	310	50.	66	14.		
	90.	101	3.*	23	3.*	25	$\begin{aligned} & 3: 8 \\ & 4: 5 \\ & 4: 1 \\ & 4: 2 \\ & 4: 2 \\ & 4: 1 \end{aligned}$	30	
0045	9.*	28	3.*	23	1.*	26		29	
0130	3.*	27	3.*	24	$3 \cdot *$	26		31	
0215	4.*	27	4.**	26 24	2.*	2.7		31	
0300 0345	10¢0*	28	3.*		1.*	26		31	
STATION	21				22		23-28		
Station									
	PMCH	PDCH			PMCH	PDCH	PMCH		
$\begin{aligned} & \text { START } \\ & \text { TIME (GMT) } \end{aligned}$				$\begin{aligned} & \text { START } \\ & \text { TIME (GMT) } \end{aligned}$					
$\begin{aligned} & \text { JUYY OX } \\ & 2205 \\ & 2250 \end{aligned}$					UULY OB				
	27.1		44		2130	$5 \cdot 7$	24		
	3.6	24 23		2300	4.1 3.4				
JUULY 09090020	2.8	23		2345	3.8	27			
	2.7	25		JULY 09					
0105	3.1	25		0030	$5 \cdot 7$	27			
0150 0235	3.9 2.8	24		0200	3.5	25			
0320	3.4	25		0245	4.2	29			
0405	$2 \cdot 8$	25		0330	4.3	26			
0450	2.5	25		0315	3.9	27			
NO	DATA								
* VALU	JE UNCE	TAIN	RIMARIL	TO CON	INATION	IN LAB	YZER.		
** POOR	R DESOR	TION P	, CORREC	ION EST	TED.				
A SAMP	$\begin{aligned} & \text { PLING SI } \\ & \text { CENTRAT } \end{aligned}$	$\begin{array}{ll} \text { TES } & 2 \\ \text { ONS } & \text { In } \end{array}$	$\begin{array}{r} \text { HAD BAC } \\ - \text { SAMPLE } \end{array}$	GROUND	H AND				

Figure 10. Average $45-\mathrm{min} P M C H$ concentrations along the 100 km are from the July 8 experiment.
per 10^{15}. The $P D C H$ results from the BATS sequential sampler at Site 20 for the 2230 to 2315 GMT sampling period (see Table 8) show an average PDCH concentration of 238 parts per 1015, in very good agreement with the Dual-Trap sampler.

Table 9. Dual-Trap Sampler Results at Site 20 (100 km Arc), July 8, 1980.

Sample Mid-Time (GMT)	PDCH
2227	60
2231	-
2236	180
2241	250
2246	660
2251	320
2255	400
2300	280
2304	160
2309	45
2314	35

A single whole-air bag sample for the entire sampling period was collected at each BATS sampling site. Laboratory analysis of aliquots from these samples, performed at BNL, indicated nearly all were severely contaminated and could not be used. It appears that the contamination (concentrations of SF_{6}, PMCH , and PDCH all were too high) most likely occurred while the aliquots (in small plastic bags) were stored at the BNL laboratory. Pin-hole leaks in the bags could have allowed a slow penetration of laboratory air which often has very high concentrations of all three tracers. Fortunately, aliquots from some of the same wholeair samples, taken by LASL for analysis, showed no evidence of contamination. Comparison of their results with the BATS data at the same sites is shown in Section 5.4.

3.5.2 Aircraft samples

Tracer concentrations measured on three passes over the flight path shown in Figure 2 are given in Table 10. Figure 11 shows the average PMCH concentrations on each segment of the flight path (solid bars) along with the average PMCH measurements obtained at the ground with the BATS samplers at about the same time (2230-0000 GMT). Concentrations aloft are quite comparable to those at the ground.

None of the PMCH data along segments $A-B$ and $E-F$ were usable because of sample contamination. However, the Methane-21 analyses (Table 10) showed background concentrations along these segments. The reported SF_{6} concentrations are probably very close to background as well. Other analyses done at LASL suggest that

Table 10. Airborne Whole-Air Sample Concentrations (parts per 10^{15}).

Path A to B

Sampling Time (GMT) (July 8, 1980)	PMCH ${ }^{(1)}$	PDCH ${ }^{(1)}$	$\mathrm{SF}_{6}{ }^{(2)}$	Me-21 ${ }^{(2)}$
2342-2346	?	?	1200	B
2348-2353	?	?	1300	B
	Path B to C			
2302-2305	990	835	3600	8.87
2337-2342	930	985	3100	6.21
2353-2357	880	810	3900	6.87
	Path C to D			
2306-2311	3200	3300	12700	36.6
2332-2337	2800	2400	8500	21.8
2357-0002	5400	4600	14500	29.6
	Path D to E			
2311-2316	1300	1400	4300	9.92
2327-2332	?	?	2100	3.65
0002-0007	?	?	1600	1.14
	Path E to F			
2316-2321	?	?	1200	B
2324-2327	?	?	1300	B
0007-0012	?	?	1300	B
(1) BNL analysis.				
(2) LASL analysis.				
? Bad data (contamination).				
B .Background	centratio			

Figure 11. Comparison of PMCH concentrations aloft with surface concentrations.

SF6 values on the order of 1100×10^{-15} obtained with their analyzer, are actually background values. Therefore, PMCH is estimated to be close to background (2.5 parts per 10^{15}) along segments $A-B$ and $E-F$ (dashed bars). The aircraft samples suggest that only a small portion of the plume extended west of Site 12 , where no surface samplers were deployed.

The whole-air samples obtained on this flight also provided critical data for intercomparison of PFT's, heavy methanes and SF_{6} measurements (see Section 5.4).

About half of the 600 km aircraft samples have been analyzed to date and all show only background levels.

3.5.3 600 km surface samples

Forecast trajectories based on 1200 GMT (July 8) wind data indicated that a tracer release starting at 1900 GMT would arrive at the 600 km arc at about 1300 GMT (July 9) with the centerline of the plume crossing over Site 20 (Hamilton, MO). All sampling sites (note that Site 8 had been eliminated) along the 600 km arc (Figure 3) were alerted to start sampling at 0800 GMT (July 9), five hours before the expected arrival time. A low level wind jet developed during the night transporting the tracer material faster than expected and further to the west.

The 3-hour sample concentrations along the 600 km arc are given in Table 11. Sites that are not listed (14, 21, 22) failed to obtain samples.

The PMCH concentrations for the first 6 sampling periods are shown in Figure 12. The peak plume concentrations arrived at about the time sampling commenced. The plume centered between Site 9 (Firth, NE) and Site 15 (Skidmore, MO). By 2300 GMT (sampling period 6) the PMCH at all sites was near the background level of about 2 parts per 1015. Sampling sites east of Site 19 are not included in this figure since all samples at those sites showed background levels during the first 6 sampling periods.

The entire record of PMCH concentrations at all sites between July 9 (0800 GMT) and July 11 (2000 GMT) along the 600 km arc is shown in Figure 13. The ordinate shows the sampling sites plotted as a function of azimuth from the release site.

Solid dots indicate a measured PMCH concentration less than 3 parts per 10^{15} (for all practical purposes they can be assumed to be background concentrations) while crosses indicate concentrations at or above 3 parts per 10^{15}.

The initial plume probably arrived at the 600 km arc just before sampling began at 0800 GMT on July 9 with a duration of about 15 hours (2300 GMT, July 9) before background levels are seen at all locations. Background concentrations are seen for the next 15 hours, whereupon the July 11, 1400 to 1700 GMT samples (about 40 hours after release) show a secondary plume arriving at the $600 \mathrm{~km} \mathrm{arc}$.

The maximum concentrations of this secondary plume are about two orders of magnitude lower than the initial plume but they cover a much larger area. Although PDCH concentrations are close to background (26×10^{-15}) they confirm the presence of the secondary plume. The duration of this plume on the arc was about 30 hours. At present we are not sure whether this is a return of the initial plume or, possibly, tracer material that lagged behind the main plume. These data provide an interesting meteorological case study and will be investigated further.

- NO DATA
* VALUES UNCERTAIN DUE. TO LAB ANALYZER PROBLEMS.

TABLE 11 (CON'T)
600 KM ARC
TRACER CONCENTRATIONS (PARTS PER 10 ${ }^{15}$,

STATION	18		19		20		23	
	PMCH	PDCH	PMCH	PDCH	PMCH*	PDCH*	PMCH	PDCH
START TIME(GMT)								
ЈV\%0	2.4	27	2.6	28	1.8	18	2.6	28
1100	$2 \cdot 3$	26	2.6	28	1.7	. 18	$2 \cdot 5$	23
1400	2.5	27	?. 5	27	2.4	22	2.4	27
1700		-	2.5	27	2.9	24	2.5	26
2000	-		2.4	26	$2 \cdot 4$	23	$2 \cdot 3$	2.6
2300	-	-	2.4	27	2.3	22	2.3	25
JULY 10								
0200 0500	=	-	2.4	27 28	2.2	22 20	2.4	2.6
0800	-	-	2.4	28	2.1	22	2.4	27
1100	-	-	$2 \cdot 5$	28	2.1	22	2.4	27
1400	=	-	5.1	29	2.3	21	$2 \cdot 4$	27
1700	=	-	10.7	33	2.4	22	$2 \cdot 3$	26
2000 2300	-	-	6.7 7.4	31	1.6 2.4	14 23	$2 \cdot 3$	2.6
UULY 11								
0200	-	-	10.	35	$8 \cdot 7$	29	2.5	
8808	E	$=$	$9: 7$	34	9.6	27	$5: 7$	30
1100	-	-	8.7	53	5.3	26	2.9	2.7
1400	-	E	3.15	27	3.1	22	2.4	26
STATION	24		25		26		27	
	PMr.H	PDCH	PMCH	PDCH	PMCH	PDCH	PMCH	PDCH
0800	2.0	27	$2 \cdot 5$	27	$2 \cdot 2$	-	$2 \cdot 6$	26
1400	2.0 2.0	28	2.6	28	2.2	-	2.6	27
1700	3.0	28	2.5	25			2.4	26
2000	$2 \cdot 1$	28	$2 \cdot 4$	25	2.1	-	$2 \cdot 4$	27
JULY 10								
0200	2.0	26	2.5	27	1.9	-	$2 \cdot 5$	27
0500 0800	2.0	25 26	$2 \cdot 5$	28	$2 \cdot 1$	-	$2 \cdot 5$	27
110	2.1	27	2.6	-9	2.?	-		
1400	?. 1	27	P. 4	28	2.0	-		-
1700	2.1	27	? 5	27	1.9	-		$\underline{-}$
2000	?.1	27	2.4	27	1.9			
JULY 11	1. 9	26	2.4	28	1.9	-	-	-
0200	1.8	24	2.7	29	3.0			
0500	3.0	25	4.1	30	$5 \cdot 7$	-	-	-
0800	2.1	26	2.6	29	-	-	-	-
11100	4.4	29 33	2.5 2.4	29	2.4	-	-	-
1700	9.3	34	2. 4	28	2.2	=	-	-

- NO DATA
* Values uncertain, sample volumes had to re estimated.

TABLE 11 (CON'T)
600 KM ARC.
TRACER CONCENTRATIONS (PARTS PER 10^{15},

STATION	28		29		30		31	
	PMCH	PDCH	PMCH	PDCH	PMCH	PDCH	PMCH	PDCH
START TIME(GMT) JULY 09								
0800	$2 \cdot 3$	27	$2 \cdot 5$	28	2.0	27	$2 \cdot 9$	25
1100	$2 \cdot 7$	29	$2 \cdot 5$	29	2.4	29	3.3	26
1400 1700	$2 \cdot 0$	25 25	$2 \cdot 4$	29	1.9	26	2.8	26
2000	$2 \cdot 1$	25	\%	2 B	$1: 9$	25	3.1	25
2300	? 1	25	2.5	29	1.9	26	2.8	27
JULY 10 (0 ,								
0500	2.3	28	2.4	29	2.0	27	2.5	28
0800	2.3	28	2.5	50	2.0	27	2.6	27
1100	2.2	26	2.5	30	2.1	27	3.3	27
1400	$2 \cdot 2$	26	2.6	29	2.0	27	2.6	27
1700 2000	? 0	25 23	?.8	29	2.0	26	2.6	27
2300	1.9	22	2.5	28	2.0	26 26	2.6	27
JULY 11 (11								
0500	4.6	24	2.7	30	2.2	27	2.8	28
0800	4.3	22	3.0	31	2.3	28	2.8	29
1100	1.9	23	$2 \cdot 8$	30	$2 \cdot 2$	27	$2 \cdot 8$	29
1400	1.7	21	2. 5	29	$2 \cdot 1$	27	$2 \cdot 7$	27
1700	1.7	21	2.7	30	2.1	26	2.7	27
StATION	32		33		34		35	
	PMCH	PDCH	PMCH	PDCH	PMCH	PDCH	PMCH	POCH
STARTTIME GMT)JULY 09								
0800	$2 \cdot 8$	30	2.6	27	$3 \cdot 4$	27	$2 \cdot 3$	
1100	2.8	30	2.6	28	2.9	27	2.4	30
1400 1700	2.7	30	2.6	26	2.6	26	2.5	29
2000	'2.6	29	2.5	26	2.5	25	2.3	29
2300	2.6	29	2.5	26	2.6	25	2.3	30
JULY 10 20 2920								
0500	2.7	30	2.6	27	2.7	26	2.4	30
0800	$2 \cdot 7$	30	$2 \cdot 5$	28	2.9	26		30
1100 1400	2.8	31 30	2.6	28	2.8	27 26	2.5 2.5	30 30
1700	2.7	30	$3 \cdot 3$	33	2.6	26	2.5	30
2000	2.6	29	2.6	27	2.3	23		
2300	2.6	29	2.5	27	2.6	25		
JULY 11 - 70								
0500.	2.8	30	2.5	28	2.7	26		
0800°	2.6	30	2.6	29	2.6	24		
1100	$2 \cdot 7$	30	2.7	29				
1400 1700	?.7	30 29	$3 \cdot 1$	29	2.7 2.5	26		
- NO DATA								

		TRACER	$\begin{gathered} \text { TABLE } 11 \text { (CON•T) } \\ 600 \mathrm{KM} \text { ARC } \end{gathered}$			0^{15}				
		CONCENTRA	IONS	(PARTS						
STATION	36		37			38				
	PMCH		PDCH	PMCH	PDCH		PMCH	PDCH		
START TIME(GMT) JULY 09										
0800	2.1	26	2.6	27			-			
1100	$?$	26	$2 \cdot 3$	27		2.	27			
1400	2.0	25	2.3	'26		2.0	26			
1700	2.0	26	$2 \cdot 5$	27		1.8	26			
2000	3.	26	2.1	28		1.7	24			
2300	3.0	26	2.6	27		1.8	24			
JULY 10 25 20 2 200										
0200	$2 \cdot 2$	25	$2 \cdot 0$	26		$1:$	25			
0500	$2 \cdot 1$	26	$2 \cdot 3$	26		2.0	25			
0800	2.1	26	$2 \cdot 0$	28		2.4	31			
1100	$2 \cdot 2$	26	2.6	26		2.0	25			
1400	2.2	26	?. 8	26		2.0	24			
1700	5.0	26	2.5	26		1.9	2.4			
2000	1.	26	2.7	28		1.8	25			
2300	1.8	23	2.7	27		1.9	25			
JULY 1110										
0200	2.1					2.				
0500	2.0	24	?-2	27		2.0	26			
0800	1.	23	$2 \cdot 6$	54		$2 \cdot 2$	27			
1109	$?$	25	2.8	50		2.1	26			
1400	20	24	2	-		2.0	25			
1700	1.9	24	-	-		1.9	25			
- no Data										

Figure 12. Average 3-hour PMCH concentrations along the 600 km arc.

- Denotes Conc. < 3

PMCH Concentration (Parts per 10 ${ }^{15}$) \times Denotes Conc. $\geqslant 3$

Figure 13. Average 3-hour PMCH concentrations along the 600 km arc for the period July 9, 0800 GMT to July 11, 2000 GMT.

A second, more limited, tracer experiment was conducted on July 11, 1980 to provide another test of the perfluorocarbon system.

4.1 Tracer Release

The two perfluorocarbons and SF_{6} were released over a 3-hour period (19002200 GMT) using the same release systems at the same site in the first experiment. Release amounts, shown in Table 12, were calculated to produce concentrations well above the detection limits at the 100 km arc. Also shown are the tracer release ratios (by volume).

Table 12. Tracer Releases on July 11, 1980.

Tracer	Release Amount (kg)
PMCH	21.
PDCH	26
SULFUR HEXAFLUORIDE	283
Tracer Release Ratios (by Volume)	
PMCH/PDCH:	0.91
$\mathrm{SF}_{6} / \mathrm{PMCH}$:	33
$\mathrm{SF}_{6} / \mathrm{PDCH}$:	30

4.2 Sampling Array

In this experiment, sampling was done only at 100 km downwind of the release site, using the same array as in the first experiment. Based on the latest trajectory forecast, three EML sampling teams deployed the BATS sequential samplers to Sites 13-30. The tracer release began at 1900 GMT (2 PM) and the samplers were set to start at 2200 GMT (5 PM) and take nine 45 -minute samples. The same samplers were used in both experiments with sampling tubes $1-10$ being exposed in the July 8 experiment and tubes $12-20$ exposed on July 11 . As in the first experiment, a whole-air sampler was co-located with each sequential sampler to collect a single sample over the entire period for comparison of SF_{6} and perfluorocarbon concentrations.

4.3 Meteorology

As shown in Figure 14, on July 11 the broad area of high pressure continued to dominate most of the U.S. The wind flow in the boundary layer over the 100 km experimental area remained from the south-southwest.

FRIDAY, JUL Y 11, 1980

Figure 14. Surface weather map for 1200 GMT, Friday, July 11, 1980.

4.3.1 Special rawinsonde observations

Special rawinsonde observations up to 500 mb were again taken at Tinker AFB starting on the morning of July 11. Data are given in Table 13 for observations from July 11,1800 GMT to July 12,0000 GMT. The calculated transport layer height (TLH) and average wind speed and direction in the layer are given for each sounding.

4.3.2 Post-facto tracer trajectories

Tracer trajectories shown in Figure 15 were calculated for the start and end of the release period using the Tinker AFB soundings. Since the plume was still passing over the 100 km arc at the time of the last Tinker sounding, an average wind of 180 deg and $6 \mathrm{~m} / \mathrm{sec}$ was estimated to complete the 2200 GMT trajectory. The estimated plume width is shown in the figure. The calculated plume position and arrival time at the 100 km arc agree well with the measured tracer data (see Figure 16).

4.4 Sampling Results

The BATS sequential samplers were installed at Sites 13 through 30. The 45minute tracer concentrations are given in Table 14. Data for sites not listed were lost due to sampler malfunction (Site 13) or analysis problems (Site 25).

The PMCH results are plotted in Figure 16. The initial sampling period (22002245 GMT) showed concentrations near background at all sampling locations. The next sampling period (2245-2330 GMT) shows concentrations at Sites 14 through 24 at about 50 times background levels. During the third sampling period (2330-0015 GMT) peak plume concentrations are reached at Sites 14 through 21 with decreasing concentrations to the east.

During subsequent sampling periods, an orderly decrease in the PMCH concentration occurs at all sampling sites and by the eighth sampling period (0315-0400 GMT) the concentrations are approaching background levels again.

Since there was no sampling west of Site 14 , the plume width could not be determined but the trajectories (Figure 15) suggest that the plume did not extend much beyond Site 14.

Whole-air samples again were unusable due to contamination which apparently occurred in the BNL Laboratory.

5. EVALUATION OF PERFLUOROCARBON TRACER SYSTEM

These experiments were designed primarily as a proof-test of the perfluorocarbon tracer system. Our evaluation will focus on the performance of the release, sampling, and analysis systems, and the reliability of the tracer concentration measurements.

5.1 Tracer Release

The two perfluorocarbons were released via separate, but identical, aerosol spray mechanisms. In both experiments, 3-hour releases were accomplished without any problem and the actual release amounts were within 10% of the intended amounts.
table 13. tinker afb rawinsonde data for ihe july 11 experiment.

Fiyure 15. Calculated transport layer trajectories to the 100 km are for the 3-hour tracer release on July 11.

TABLE 14
100 KM ARC
TRACER CONCENTRATIONS (PARTS PER 10 ${ }^{15}$,

Figure 16. Average 45-min PMCH concentrations along the 100 km arc from the July 11 experiment.

A newly designed release mechanism, in which the tracers are vaporized, was not ready in time for these experiments but it was tested and used successfully in September, 1980. The new system provides more precise control and continuous recording of release rates.

5.2 BATS Sampling and Analysis System

The heart of the perfluorocarbon tracer system is the BATS automatic sequential sampler and the associated analysis apparatus.

The over-all performance of the BATS system was excellent in this first field trial. As shown in Table $15,72 \%$ of the 1121 scheduled•samples provided good tracer concentration data. Of the 28% lost, or poor data, 5% was due to human error (e.g., failure to turn on the sampler) and the remainder was about equally divided between sampler malfunctions and sample analysis problems. Sampler malfunctions were due most often to pump failures. Some units developed problems in the electronic control circuitry. Modifications to the design of the BATS sampler are under consideration to alleviate these problems.

Table 15. Performance of BATS Sampling-Analysis System.

Scheduled Samples	Number	Percent
Good Data	1121	100
Sampling Failures	810	72
Analysis Failures	134	12
Human Error	123	11
Total Lost or Poor Data	34	5

Several problems in the analysis apparatus and procedures became evident during analysis of the large number of samples. The most troublesome was the presence of a contaminant that interferred with the PMCH chromatograph peak in many analyses. Eventually, it was discovered that the contamination was coming from a screen used in the Porapak QS trap in the analysis apparatus. The resolution of this, and other minor problems, should reduce the amount of data lost in analysis to well below the 10% level experienced in this experiment.

Another problem that complicates the determination of tracer concentrations is the non-linear response of the present electron-capture detector. Various attempts to reduce this non-linearity, which shows a change in response factor as much as 2-fold, depending on the size of the sample being analyzed, have not succeeded. Evidence in the literature suggests that the strength of the 8 mCi 63 Ni foil in the electron capture detector is about an order of magnitude too intense for the strongly electronegative PFTs. Lower activity foils will be substituted in an attempt to correct this problem.

5.3 Reliability of BATS Concentration Measurements

The reliability of tracer concentrations obtained with the BATS sequential samplers can be checked by comparing the PMCH and PDCH measurements. If the tracers behave identically in the atmosphere and the tracer release, sampling, and analysis systems function perfectly, the measured PMCH/PDCH concentration ratio in every sample (after backgrounds are subtracted) would be the same as the ratio of the release amounts of the two tracers. Comparison of the measured tracer ratios with the release ratio therefore provides a good test of the entire tracer system.

Figure 17 shows a plot of PMCH versus PDCH concentrations measured with the sequential samplers on the 100 km arc in the July 8 experiment. Background concentrations (2.4 parts per 10^{15} for PMCH and 26 parts per 10^{15} for PDCH) have been subtracted out. Only those 22 samples where both tracers had concentrations at least twice background were used for this comparison. When the concentrations are near background, uncertainties in the background value can have a large effect on the tracer ratio. The straight line in Figure 17 represents the tracer release ratio of 1.18 . The measured mean ratio in the 22 samples is exactly what it should be and there is remarkably little scatter about the true ratio.

Very similar results were obtained at the 600 km arc (Figure 18). There are 13 samples with concentrations at least twice background and the mean measured PMCH/PDCH ratio is 1.19, again with very little deviation from the release ratio of 1.18. The inset shows a plot of PMCH versus PDCH for the highest concentrations observed during the second appearance of tracer on the 600 km arc on July 10 . The PDCH concentrations were less than twice background in all of these samples. It is, therefore, not surprising that the data show more scatter. The mean ratio of 1.09 is still quite close to the 1.18 release ratio.

Many samples obtained at the 600 km arc over the 3 -day period showed background concentrations. The background to be subtracted from each concentration was estimated separately from each sampler. Estimated background values varied from 2.2 to 2.5×10^{-15} for PMCH and from 24 to 28×10^{-15} for PDCH. The consistency of the background measurements attests to the good precision of tracer measurements at these levels.

Figure 19 shows a plot of PMCH against PDCH concentrations on the 100 km arc for the July 11 experiment. In this experiment there were 31 samples with concentrations at least twice background. The mean measured PMCH/PDCH ratio was 0.88 , with very little scatter about the release ratio of 0.91 .

In the two experiments there were a total of 66 BATS sequential samples with concentrations at least twice background. Most of the measured PMCH/PDCH ratios are within $\pm 5 \%$ of the release ratio, all are within $\pm 20 \%$, over a concentration range from 20 to 5000 parts per 10^{15}. These results are excellent but they do not constitute a complete test of the BATS'samplers. Any inaccuracies in sample volume or mechanical problems (e.g., timing errors) would have the same effect on both tracers. Therefore, as a further test, duplicate BATS samplers were set up at three of the sampling sites. As luck would have it, data from one sampler in each pair, were lost due to failure of the sampler or analysis problems. Some degree of independent verification of the BATS result was achieved by comparison with whole-air samples (Section 5.5).

Figure 17. Comparison of $P M C H$ and $P D C H$ concentrations from the 100 km BATS somples on July 8.

Figure 18. Comparison of $P M C H$ and $P D C H$ concentrations from the 600 km BATS samples.

Figure 19. Comparison of $P M C H$ and $P D C H$ concentrations from the 100 km BATS samples on July 11.

5.4 Comparison with Other Tracers

In the July 8 experiment whole-air samples were collected in plastic bags at the 100 km sequential sampling sites, at the 600 km cryogenic sampling sites, and on the sampling flights over both arcs; in order to compare $\mathrm{PFT}, \mathrm{SF}_{6}$, and heavy methane tracer measurements. Unfortunately, most of the whole-air sample aliquots sent to $B N L$ for analysis became contaminated with PFTs and SF_{6} (apparently at BNL) to an extent that made them useless for tracer intercomparisons. It should be noted that the BATS sequential samplers were designed to avoid the contamination problems that had been encountered previously in handling whole-air samples.

In spite of the contamination problem, some good data have been salvaged for intercomparisons. Whole-air bag samples, analyzed for SF_{6} and methane at LASL, are available for five of the BATS sampling locations on the 100 km arc. The PMCH and PDCH concentrations from the 45 -minute BATS sequential samples were averaged over the time interval that the whole-air sample was collected at each location. The concentration of each tracer is shown in the upper part of Table 16. Background concentrations were subtracted from each value and tracer ratios were determined as shown in the lower portion of the table. The mean PMCH/PDCH ratio from the BATS samplers is very close to the release ratio and the individual values are within $\pm 10 \%$ of the mean. The $\mathrm{SF}_{6} / \mathrm{Me}-21$ ratios from the whole-air samples are consistent though they are about 20% lower than the release ratio. The mean ratio between SF_{6} from the whole-air samples and PMCH from the BATS samplers is 3.31 , very close to the release ratio of 3.41 although the scatter of individual ratios is relatively large. The mean ratio between PMCH (BATS) and Me-21 (whole-air) is 115, about 15% lower than the release ratio. One reason for the discrepancy between the BATS results and the whole-air sampler results may be the failure of the whole-air sampler to pump air at a constant rate. It was discovered during the experiment that the bag sampler pumping rate was erratic, probably because it was not designed for the extreme heat encountered in this experiment. In spite of this problem, the correspondence between the BATS and whole-air sampler results is good; all measured tracer ratios are well within a factor of two of the release ratios.

Seven of the samples collected in the aircraft flight over the 100 km arc, analyzed for heavy methanes and SF6 at LASL, were free of contamination when analyzed for PFTs at BNL. After subtraction of background values: 2.4×10^{-15} for PMCH, 26×10^{-15} for PDCH and 600×10^{-15} for SF_{6} (Me-21 background is nil), the tracer concentrations were plotted in Figure 20. On the upper left, PMCH is plotted against PDCH. The PMCH/PDCH ratios are quite good in these samples with a mean value of 1.08 and little scatter about the line representing the release ratio of 1.18 . On the upper right, PMCH concentrations determined at BNL are plotted against SF_{6} concentrations determined at LASL. The mean $\mathrm{SF}_{6} / \mathrm{PMCH}$ ratio in these samples is 3.08 compared to the release ratio of 3.41 and the individual sample ratios show only slightly more scatter than the PMCH/PDCH ratios. The lower graph in Figure 20 shows PMCH concentrations plotted against Me-21. The mean PMCH/Me-21 ratio is 131 , very close to the release ratio of 137 and again the scatter is small. In all three comparisons shown in Figure 20, the mean of the measured tracer ratios is within 10% of the release ratio and all individual sample ratios are well within a factor of two of the release ratio.

Whole-air bag samples collected at the LASL cryogenic sampling site at Brownville, Nebraska, provide a comparison of PFT and methane tracer concentrations

Table 16. Comparison of BATS sequential samples with whole-air samples at the 100 km arc (July 8, 1980).

Site	Whole Air Bag Sampling Period (GMT)	$\begin{array}{r} \mathrm{T} \\ \mathrm{PMCH} \end{array}$	ncent PDCH	$\begin{aligned} & \text { (parts } \\ & \mathrm{SF}_{6} \end{aligned}$	$\begin{aligned} & \left.10^{15}\right) \\ & \mathrm{Me}-21 \end{aligned}$
12	2130-0435	1030	810	3250	7.93
13	2121-0427	1090	950	3530	8.10
14	2012-0418	700	570	4030	9.37
16	2032-0401	450	410	2060	3.92
17	2001-0357	700	600	2720	5.50

(1) BATS (sequential air sampler) concentration averaged over the period of the whole air bag sample (analysis by BNL).
(2) Whole air sample (analysis by LASL).

Tracer Ratios

Site	PMCH/PDCH	$\mathrm{SF}_{6} / \mathrm{Me}-21$	$\mathrm{SF}_{6} / \mathrm{PMCH}$	PMCH/Me-21
12	1.31	332	2.58	129
13	1.17	362	2.69	134
14	1.28	366	4.93	74
16	1.15	372	3.29	113
17	1.21	385	3.04	127
Mean Ratio	1.22	363	3.31	115
Release				
Ratio	1.18	467	3.41	137

\square

Figure 20. Comparisons of tracer concentrations in whole-air sarples collected in the flight over the 100 km arc on July 8.
on the 600 km arc. The bag samples were transferred to aluminum cylinders for storage at LASL and later shipped to BNL for PFT analyses. Methane concentrations determined at LASL from the cryogenic samples and PFT concentrations determined at BNL are shown in Table 17.

The PFT/Me-21 ratios are shown in the lower part of the table along with the percent deviation of the measured ratio from the release ratio. The worst PMCH/ Me-21 ratio shows a deviation of 34% and the worst $\mathrm{PDCH} / \mathrm{Me}-21$ ratio shows a deviation of 22% from the release ratio. For the four samples, the average PMCH/ Me-21 ratio is 113, a deviation of 18% from the release ratio of 137. The average PDCH/Me-21 ratio is 108, a deviation of only 7% from the release ratio of 116 . These results are quite good considering that the PFT samples were collected in bags and stored in cylinders far 6 months prior to analysis.

We conclude from these data that the perfluorocarbon and methane tracers behaved the same in the atmosphere, faithfully following the air motions with no significant depletion mechanism out to 600 km from the source. Considering that the heavy methane and perfluorocarbon determinations are made by totally different analysis techniques (mass spectrometry for the methane, gas chromatography followed by electron-capture detection for the PFTs) these results inspire confidence in both tracer systems.

5.5 Performance of Real-Time Samplers

The real-time continuous PFT monitor, intended for use in the sampling aircraft, was not available because of various malfunctions. Efforts to repair the instrument in the field were unsuccessful. The difficulties appear to be correctable and efforts are continuing to develop this instrument into a reliable continuous airborne monitor.

The Dual-Trap sampler functioned well and was used to provide field analyses of some of the whole-air bag samples as well as real-time tracer concentration measurements on the 100 km arc. Some difficulty was experienced in positioning the Dual-Trap sampler within the tracer plume because of shifting wind conditions at the arc. However, an excellent set of 5 -min plume concentrations was obtained alongside of a BATS sampler (see Table 9). Concentrations obtained with these two samplers show very good agreement. The Dual-Trap sampler was later used extensively in the ASCOT drainage wind experiments and provided hundreds of 5-minute samples with real-time readout of PMCH and PDCH concentrations.

6. SUMMARY

These experiments have successfully demonstrated the capabilities of the perfluorocarbon tracer system and the feasibility of carrying out atmospheric transport and dispersion experiments over distances of 1000 km or more. A release of $65 \mathrm{~kg} / \mathrm{hr}$ of PMCH produced concentrations at the 600 km arc almost three orders of magnitude above the background value of 2.4 parts per 1015. This suggests that a PMCH release rate of about $10 \mathrm{~kg} / \mathrm{hr}$ should be sufficient to provide plume measurements out to 1000 km from the release point.

Reliability of the BATS sequential samplers is judged to be very good for the first trial of a completely new system. About 12% of the 1121 scheduled samples were lost because of sampler malfunctions. Another 11% were lost in analysis.

Table 17. Sampling results and tracer comparisons at Brownville, NE (16 km east of site 13 on the 600 km arc).

Sampling Results

		Tracer Comparisons		
Sample	Tracer Ratio PMCH/Me-21	$\begin{aligned} & \text { Deviation } \\ & (\%) \end{aligned}$	Tracer Ratio PDCH/Me-21	Deviation (\%)
13-1	150	10	124	7
13-2	90	34	90	22
13-3	97	29	101	13
13-4	117	15	117	1
Avg. Ratio	113	18	108	7
Release Ratio	137		116	

Modification of the BATS pump and relatively minor changes in the analysis apparatus should significantly improve the reliability of the BATS system.

Simultaneous measurements of PMCH and PDCH concentrations with the BATS system were remarkably consistent. The $\mathrm{PMCH} / \mathrm{PDCH}$ ratios in all samples were very close to the tracer release ratio; most measured ratios were within $\pm 5 \%$ of the release ratio.

Most of the whole-air samples, intended for comparison of PFT measurements with SF_{6} and heavy methane tracers, were of no use because of contamination of the bag samples. However, a small number of samples, that could be analyzed for all five tracers, showed generally good agreement, sufficient to establish that all tracers behaved the same in the atmosphere out to 600 km .

Deployment of many samplers over the large area involved in a long-range experiment can be very costly and present difficult logistics problems. One of the objectives of this experiment was to test the feasibility of using the National Weather Service sub-station network of over 12,000 sites to deploy the BATS sequential samplers. Sub-station specialists delivered the samplers to 38 selected sites on the 600 km arc where cooperative observers, who take routine temperature and precipitation measurements for the NWS, operated the samplers. The 600 km sampling program was very successful as the cooperative observers carried out their assigned role with competence and enthusiasm. Future long-range tracer experiments should take advantage of the capability inherent in the NWS sub-station network.

7. ACKNOWLEDGMENTS

This work was supported by the Office of Health and Environmental Research, Department of Energy and the Environmental Protection Agency.

Development of the perfluorocarbon tracer system has been carried out by the Air Resources Laboratories, NOAA, in collaboration with the Dept. of Energy's Environmental Measurements Laboratory and Brookhaven National Laboratory.

We wish to acknowledge our debt to Dr. James E. Lovelock who first conceived the perfluorocarbon tracer system and designed the prototype samplers and analyzer.

The success of this experiment would not have been possible without the cooperation of the many individuals, from the different agencies and laboratories, listed at the beginning of this report.

To Dr. Edwin Kessler, Director, National Severe Storms Laboratory, we owe a debt of gratitude not only for the support he and his staff provided but also for the hospitality extended to the experimenters stationed at Norman, OK and the spirit of cooperation that prevailed.

To Dr. Harold Myers, Superintendent of the Agronomy Research Station, Oklahoma State University, we wish to express our appreciation for the assistance he and the OSU students provided in shipping, storing, and operating sampling equipment along the 100 km arc and also for providing work space at considerable personal inconvenience.

Without the excellent cooperation and dedication of the National Weather Service, and the cooperative observers listed in Table 4, this experiment would
not have been possible. We extend our thanks to Bernard Spittler, Chief Substation Management Branch, NWS, and his associates who were instrumental in setting up the 600 km sampling program and instructing the cooperative observers in the operation of the sequential samplers.

We wish to express our appreciation to Dr. Jeremy Hales, Battelle Pacific Northwest Laboratories, for his cooperation in providing a DC-3 aircraft and knowledgeable crew for airborne tracer sampling missions.

We wish to thank Paul Guthals and his colleagues at the Los Alamos Scientific Laboratory for participating in our 600 km experiment and providing heavy methane and SF_{6} analyses for comparison with perfluorocarbon measurements.

Special thanks are extended to Col. Van Louven, Chief M/Sgt. Greening and the members of the 6 th Air Weather Squadron, USAF, for taking special rawinsondes that provided data vital to the experiments.

8. REFERENCES

Gilian Instrument Corp. (1980): Brookhaven Atmospheric Tracer Sampler (BATS), Operations/Parts Manual. Gilian Instrument Corp., 1275 Route 23, Wayne, NJ 07470, 34 pp.

Heffter, J.L. (1980): Air Resources Laboratories Atmospheric Transport and Dispersion Model (ARL-ATAD). NOAA Tech. Memo, ERL-ARL-80, 25 pp.

Lovelock, J.E. (1974): Improvements in the Experimental Methods for a LongRange Tracer Experiment. Unpublished report. Available at the Air Resources Laboratories, NOAA, Silver Spring, MD 20910.

APPENDIX A

15-MINUTE AVERAGE WINDS FROM KTVY TOWER - JULY 8, 1980

The base of the KTVY Tower is at an elevation of 350 meters above mean sea level (MSL) located at $35.58^{\circ} \mathrm{N}, 9.7 .48^{\circ} \mathrm{W}$.

The average weighted wind velocity from the surface to 530 meters assume that the wind velocity at the 444 meter altitude is representative of a layer from 355 meters to 530 meters.

NO TOWER DATA AVAILABLE FOR THE JULY 11, 1980 EXPERIMENT.

APPENDIX A 15 MINUTE AVERAGE WINDS FROM KTVY TOWER

$\begin{aligned} & \text { TIME } \\ & \text { ENDING } \end{aligned}$	SFC		METERS		METERS		$\begin{gathered} \text { METERS } \\ \text { DD } \end{gathered}$		$\begin{gathered} \text { METERS } \\ \text { MD VV } \end{gathered}$		$\begin{aligned} & \text { METERS } \\ & \text { DD } \end{aligned}$		$\begin{aligned} & \text { METERS } \\ & \text { DD VV } \end{aligned}$		$\begin{aligned} & \text { AVERAGE } \\ & \text { (A) } \end{aligned}$			
(GMT)	DD	VV	DD	VV	DD	VV				VV								
1815	179	46	171	52	177	53	176	61			171	62	176	64	193	56	180	58
1830	191	42	187	44	187	50	186	60	186	56	188	59	198	57	191	56		
1845	185	45	179	56	182	62	181	66	180	60	187	59	193	58	186	59		
1900	191	47	187	55	190	55	192	65	186	62	191	66	199	58	193	61		
1915	201	41	190	40	193	41	194	52	184	52	186	61	191	52	189	53		
1930	192	45	187	57	189	59	189	68	187	61	191	65	193	59	190	61		
1945	195	39	188	44	190	51	184	55	178	57	185	64	192	57	187	57		
2000	191	45	187	54	1.87	55	188	64	183	67	184	70	191	67	187	65		
	178	49	174	60	172	62	176	68	171	71	175	79	186	71	178	71		
2030	167	40	162	50	165	56	170	66	164	64	172	72	177	65	171	65		
2045	159	58	156	46	160	51	163	65	157	65	165	75	175	71	166	67		
2100	170	43	164	55	163	56	162	62	160	61	167	68	173	64	167	63		
2115	166	40	160	49	166	60	164	71	159	72	165	76	174	75	167	71		
2130	171	49	172	53	176	58	173	72	166	73	170	79	180	73	173	72		
2145	167	46	162	58	165	65	164	79	161	78	169	86	181	77	171	77		
2200	176	43	178	50	177	54	178	68	166	64	174	82	183	68	177	68		
2215	180	42	175	59	176	61	180	69	173	73	179	76	187	73	181	71		
2230	177	48	178	47	178	50	179	64	174	67	183	78	189	77	183	70		
2245	189	57	985	65	187	71	286	89	182	87	185	94	192	86	187	86		
2300	178	36	175	43	176	49	180	62	175	64	181	72	187	70	182	65		
	167	23	164	38	165	38	166	60	161	69	168	78	176	72	169	67		
2330	171	26	162	28	168	38	172	52	162	59	172	71	179	70	173	61		
2345	162	21	160	28	168	38	168	57	162	58	169	68	176	68	170	60		
0000	159	17	161	29	164	40	171	54	166	70	172	83	180	88	174	72		
0015	151	15	153	29	158	39	164	59	162	71	169	83	181	83	171	71		
0030	143	11	147	33	148	46	155	70	154	79	162	91	174	83	163	76		
0045	151	15	146	32	152	47	157	71	155	85	162	103	177	105	166	87		
0100	151	15	146	33	151	50	156	75	153	95	163	113	176	111	165	94		
0115	148	21	148	41	153			82		101	163	129			165	103		
0130	150	22	151	44	152	54	159	82	157	109	166	141	177	127	167	110		
0145	149	23	153	45	156	50	158	80	156	113	166	145	179	133	168	113		
0200	157	33	155	48	161	58	161	88	160	115	170	153	180	140	171	120		
DD: DIRECTION IN DEGREES																		
VV: SPEED (METERS PER SECOND)X10																		
(A) AVER	AGE	E I G	TED	IND	VELO	IT	FROM	SUR	ACE	TO	3 M	TER						

APPENDIX B

RAWINSONDE OBSERVATIONS FROM JULY 8, 0000 GMT TO JULY 12, 1200 GMT

OKC	JUL	08	002	OKC	JUL	08	122	OKC	JUL	09	122
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
969	392	37.2	20.5	971	392	25.6	8.2	970	392	23.9	7.9
962	460	33.5	17.0	953	556	26.0	6.3	959	492	26.4	6.7
904	1018	28.7	14.7	929	782	26.3	7.5	935	716	27.9	9.5
850	1561	23.2	10.7	850	1561	20.9	6.4	850	1556	22.8	9.7
777	2337	16.9	8.2	784	2255	15.1	3.5	802	2060	19.6	9.8
767	2448	16.5	15.0	774	2364	16.3	16.8	770	2410	17.1	15.2
753	2604	16.9	20.9	756	2564	16.5	22.4	700	3216	12.6	19.4
700	3222	13.0	22.0	700	3212	11.2	20.3	658	3732	10.1	21.9
500	5961	-3.9	30.0	628	4109	6.3	30.0	608	4382	4.4	19.7
				582	4727	1.4	30.0	500	5946	-5.3	30.0
				556	5094	0.4	30.0				
				500	5937	-5.1	30.0				
	HHHH	DDD	vV		HHHH	DDD	vV		HHHH	DOD	vv
	392		5.1		392	180	3.6		392	150	3.1
	612	170	9.8		669	201	17.0		684	203	17.5
	866	172	9.8		919	202	19.0		968	212	18.5
	1132	173	9.3		1148	202	16.0		1248	216	14.4
	1418	185	9.3		1377	214	12.9		1528	213	9.3
	1705	194	8.8		1610	221	10.8		1808	217	5.7
	1992	198	9.3		1858	225	7.7		2089	229	5.1
	2280	201	10.3		2133	221	6.7		2381	218	7.7
	2552	198	12.9		2342	198	11.8		2660	204	8.8
	2829	193	14.4		2618	194	15.4		2938	197	7.7
	3109	195	12.4		2888	191	12.9		3206	204	3.6
	3395	200	8.8		3158	187	8.8		3488	1.44	1.5
	3683	212	6.2		3423	175	7.7		3760	106	3.1
	3971	218	5.7		3687	169	9.3		4030	100	4.1
	4260	219	4.1		3951	169	7.7		4301	127	3.6
	4548	206	3.6		4217	174	4.1		4585	171	3.1
	4.837	191	3.6		4485	195	3.1		4875	184	3.1
	5125	176	3.6		4753	198	3.6		5164	193	4.6
	5413	171	4.1		5016	202	4.1		5454	206	5.1
	5702	176	5.1		5285	201	3.6		5743	221	4.6
	5990	173	5.1		5556	187	2.6		6029	215	3.6
					5828	195	3.6				
					6091	195	3.6				

OKC	$J U L$	10	002
PPPP	HHHH	$T T$	DP
969	392	38.9	22.4
961	463	36.1	19.8
850	1563	25.3	12.7
749	2656	14.6	5.7
742	2735	16.0	30.0
733	2839	16.6	30.0
700	3229	14.0	22.1
677	3510	13.4	30.0
551	5208	2.4	30.0
500	5983	-3.8	30.0

OKC	JUL	10	122		OKC	JUL	11	002
PPPP	HHHH	TT	OP		PPPP	HHHH	TT	OP
971	392	25.0	8.2	969	392	38.3	23.5	
949	590	27.4	9.5	953	539	34.5	19.6	
933	741	27.9	11.1	850	1560	24.7	14.5	
850	1561	22.4	11.3	774	2370	16.4	8.5	
775	2356	16.0	7.9	764	2481	17.2	19.8	
764	2478	16.6	16.6	757	2560	17.6	21.3	
770	3217	13.0	22.3	700	3223	13.7	30.0	
650	3834	8.2	21.4	636	4025	10.1	30.0	
622	4197	7.3	30.0	557	5111	2.1	20.1	
543	5299	-0.4	30.0	508	5846	-4.1	15.6	
500	5952	-5.1	19.4	500	5971	-4.0	3.0 .0	

HHHH	DDD	VV	HHHH	DDD	VV	HHHH	ODD	VV
392	180	5.7	392	150	3.1		392	120
657	186	8.2	665	207	14.4	6.2		
981	184	3.6	905	213	14.9	675	0	0.0
1304	183	4.1	1139	210	11.3	1016	0	0.0
1624	184	6.2	1373	209	8.8	1356	0	0.0
1927	186	6.2	1612	208	6.7	1695	0	0.0
2231	191	7.7	1868	207	4.1	2033	0	0.0
2534	198	7.7	2125	216	2.6	2370	0	0.0
2813	201	6.2	2386	218	3.1	2583	0	0.0
3131	192	4.6	2669	220	3.6	2811	0	0.0
3426	170	3.1	2943	177	3.1	3040	0	0.0
3722	162	1.5	3217	137	4.6	3277	0	0.0
4025	109	0.5	3486	135	5.7	3544	0	0.0
4329	142	0.0	3754	129	6.7	3811	0	0.0
4632	255	0.5	4030	121	6.7	4080	282	0.0
4935	265	1.5	4299	117	6.7	4351	38	0.5
5237	293	2.1	4556	107	6.2	4623	182	0.0
5536	307	1.5	4812	105	6.2	4894	39	0.5
5834	314	1.0	5068	104	5.7	5160	39	2.6
6131	44	0.5	5330	96	5.1	5405	45	3.1
			5641	87	4.6	5650	43	2.1

OKC	JUL	11	122	OKC	JUL	12	002	OKC	JUL	12	122
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
969	392	23.3	7.8	967	392	39.4	23.7	969	392	25.6	10.5 9.9
955	516	26.9	8.7	956	495	36.1	19.3	956	507	27.2	9.9
941	647	28.1	11.3	850	1549	26.0	14.9	921	838	28.9	13.7
932	732	28.4	12.3	729	2873	13.0	7.2	873	1313	26.5	13.0
925	799	28.1	12.2	718	3000	12.6	13.2	850	1548	23.8	11.9
850	1544	22.8	9.9	711	3083	15.0	30.0	734	2810	14.3	10.0
825	1804	21.0	9.7	700	3215	14.4	30.0	715	3032	12.7	11.1
806	2005	19.7	12.2	660	3710	13.0	30.0	700	3209	11.6	14.1
787	2210	18.5	12.9	557	5109	3.1	30.0	686	3378	11.2	30.0
781	2276	18.7	18.2	500	5973	-3.3	30.0	671	3562	11.0	30.0
751	2611	17.1	21.4					645	3891	9.7	30.0
707	3121	12.6	15.1					594	4569	5.1	3.0 .0
700	3205	12.4	17.0					577	4805	4.7	30.0
674	3521	11.3	22.1					500	5954	-4.1	30.0
671	3558	11.6	21.3								
598	4501	5.2	18.3								
547	5230	-0.3	15.9								
539	5348	0.3	30.0								
500	5947	-3.3	30.0								
	HHHH	DDD	VV		HHHH	ODD	VV		HHHH	DDD	vV
			3.1		392		5.1				2.6
	668	212	14.9		630	185	9.8		673	221	16.0
	928	228	16.0		854	186	8.2		957	226	18.0
	1184	21.5	12.9		1078	186	8.8		1254	227	13.9
	1441	222	10.3		1303	188	8.2		1522	226	10.3
	1717	219	5.7		1527	194	6.7		1825	219	8.8
	2005	174	2.1		1766	199	6.7		2133	225	5.7
	2332	153	2.1		2006	213	7.2		2441	261	3.1
	2611	169	2.6		2247	221	8.8		2749	328	1.5
	2894	152	4.6		2488	224	9.8		3057	50	3.1
	3205	140	6.2		2728	229	10.8		3344	101	4.1
	3468	133	6.2		2958	232	10.3		3622	130	4.6
	3726	137	7.2		3193	232	7.2		3920	123	5.1
	4006	145	7.2		3427	240	4.1		4215	117	4.6
	4286	150	5.1		3663	280	3.6		4510	132	4.1
	4565	144	3.1		3885	292	4.6		4836	164	5.1
	4842	117	1.5		4104	285	4.1		5147	183	6.7
	5120	163	1.5		4322	273	3.6		5457	194	7.7
	5377	206	3.6		4541°	244	3.6		5768	208	7.7
	5662	214	4.6		4759	226	4.1		6073	218	7.7
	5947	212	4.1		4978	225	3.1				
					5205	241	2.6				
					5445	263	2.6				
					5685	286	1.5				
					5925	270	1.5				
					6174	201	2.1				

APPENDIX B

UMN	JUL	08	002	UMN	JUL	08	122	UMN	JUL	08	182
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
967	438	35.3	16.1	967	438	23.6	3.4	968	438	33.6	13.2
963	471	33.9	14.5	942	671	27.0	6.9	955	558	29.7	11.0
850	1584	23.4	6.6	882	1253	25.3	12.0	903	1055	25.0	7.7
834	1750	21.8	6.5	868	1393	23.3	8.4	867	1411	21.3	4.5
795	2166	21.8	18.9	850	1576	23.5	16.5	850	1584	25.2	19.5
775	2387	21.2	19.0	829	1794	23.7	21.1	758	2578	17.4	17.7
700	3256	13.7	16.4	700	3242	12.4	14.4	700	3248	11.5	16.1
660	3747	8.9	14.1	645	3920	6.0	13.0	667	3649	8.2	14.8
642	3976	8.2	19.4	627	4151	4.4	15.3	648	3887	6.8	16.5
573	4900	-0.2	14.0	567	4960	-2.8	11.7	581	4770	-1.2	13.1
554	5171	1.1	20.5	565	4988	-1.2	30.0	580	4784	-0.9	30.0
500	5988	-4.0	19.5	562	5030	0.4	30.0	569	4938	1.5	30.0
				540	5351	0.5	30.0	500	5968	-3.9	30.0
				500	5964	-3.1	30.0				
	HHHH	DDD	V V		HHHH	DDD	VV		HHHH	DDD	VV
		230	3.6		438	210	3.1		438	240	6.2
	758	222	6.7		722	245	14.9		806	257	8.8
	1117	226	7.7		974	247	13.9		1144	246	8.2
	1476	232	7.2		1227	235	12.9		1440	242	8.8
	1802	248	8.2		1515	235	13.4		1718	241	10.3
	2062	256	10.8		1794	241	11.8		1986	239	9.8
	2332	253	10.3		2078	244	10.8		2254	235	9.3
	2626	245	9.3		2362	239	9.3		2522	218	8.8
	2926	233	8.8		2641	224	8.8		2809	206	9.3
	3226	225	8.2		2930	218	8.8		3102	205	9.3
	3516	224	7.7		3213	218	8.2		3382	209	8.8
	3798	226	6.7		3468	212	8.2		3649	205	8.8
	4060	235	6.7		3719	209	9.3		3942	191	9.3
	4340	237	7.2		3972	213	8.8		4218	187	9.8
	4620	232	6.7		4232	214	6.2		4494	192	11.3
	4900	226	4.1		4502	211	3.6		4770	203	10.8
	5200	239	2.1		4771	210	5.1		5015	228	8.2
	5492	227	0.5		5057	191	6.7		5273	245	7.2
	5783	64	0.5		5324	183	6.2		5530	241	7.2
	6075	83	1.0		5614	194	5.1		5788	236	6.7
					5906	219	3.6		6056	227	6.2
					6185	262	3.1				

UMN	JUL	09	182
PPPP	HHHH	TT	DP
968	438	34.2	13.6
951	593	29.6	10.3
881	1269	22.6	5.7
872	1359	22.9	7.5
869	1389	23.3	9.8
850	1582	22.6	13.4
841	1674	21.5	12.3
834	1747	22.6	17.4
804	2064	20.2	15.4
700	3243	12.7	19.5
626	4168	5.3	18.4
589	4664	3.1	18.9
571	4915	2.1	30.0
500	5973	-4.8	18.1

UMN	JUL	10	002	UMN	JUL	10	122
PPPP	HHHH	T T	DP	PPPP	HHHH	T T	$D P$
965	438	36.5	16.2	967	438	25.1	5.5
955	534	33.8	15.6	924	839	27.8	9.2
890	1166	27.4	11.6	903	1043	27.3	12.0
850	1571	23.0	7.9	850	1576	23.6	10.2
824	1841	20.5	6.2	817	1921	21.4	9.9
814	1947	20.1	7.1	787	2245	20.7	19.1
797	2129	20.8	19.1	738	2797	17.4	20.6
744	2721	18.6	30.0	719	3018	15.2	10.1
700	3239	14.2	30.0	700	3245	13.5	12.8
631	4104	7.2	20.4	661	3725	10.3	14.8
605	4448	3.8	5.1	594	4603	2.9	4.9
598	4542	3.4	1.4	569	4950	0.3	4.9
590	4652	2.1	1.7	537	5413	-2.2	8.8
581	4776	2.3	11.3	527	5562	-2.4	8.5
578	4818	1.9	6.8	510	5822	-5.0	8.7
561	5058	0.3	6.5	500	5977	-5.7	17.9
553	5174	0.2	14.6				
519	5680	-1.9	15.2				
500	5976	-4.2	17.9				

HHHH	DDD	VV	HHHH	DDD	VV	HHHH	DDD	V V
438	220	5.1	438	200	5.1	438	240	2.1
735	243	8.2	794	214	8.8	802	240	18.0
1091	251	9.3	1166	221	7.7	1106	248	16.5
1359	248	9.8	1436	232	8.2	1419	254	12.9
1605	243	10'. 8	1706	243	8.8	1719	276	8.2
1832	242	11.8	1973	258	9.3	2018	298	5.1
2043	241	12.4	2224	272	8.8	2337	293	3.6
2305	235	12.4	2461	287	6.2	2643	280	2.1
2573	233	10.3	2698	302	4.1	2981	135	1.0
2841	236	9.3	2967	300	4.1	3279	161	3.1
3109	238	9.3	3239	291	4.6	3622	131	3.1
3372	245	8.8	3518	291	5.1	3953	101	3.1
3628	246	7.7	3797	308	5.1	4278	60	3.6
3885	232	6.7	4076	328	4.6	4603	43	5.1
4142	241	5.7	4342	334	4.1	4919	41	5.1
4416	270	5.1	4608	336	5.1	5248	33	4.6
4689	296	5.7	4862	330	6.7	5562	25	5.7
4943	312	7.7	5081	319	7.7	5899	21	5.1
5221	310	8.8	5326	310	8.2	6232	17	5.1
5499	308	8.8	5579	307	8.8			
5778	305	8.2	5858	308	7.7			
6057	297	8.8	6151	302	7.2			

UMN	JUL	11	002	UMN	JUL	11	122	UMN	JUL	12	002
PPPP	HHHH	TT	DP	PPPP	HHHH	T T	DP	PPPP	HHHH	T T	DP
965	438	36.7	18.9	966	438	23.4	4.8	964	438	36.6	21.0
957	515	35.0	15.8	952	565	26.8	7.8	959	484	35.0	19.1
876	1308	26.5	12.2	915	916	27.5	11.4	850	1560	23.8	11.8
850	1574	24.5	9.9	850	1566	24.0	11.5	793	2162	18.9	10.1
817	1920	22.7	18.4	839	1997	22.1	20.9	783	2271	19.3	22.2
801	2092	22.4	20.7	745	2707	18.0	20.6	757	2561	19.1	30.0
725	2948	16.1	17.8	700	3236	13.6	15.1	700	3228	14.9	14.6
700	3245	13.7	12.6	680	3479	11.7	15.1	576	4842	2.6	19.1
676	3538	11.6	14.9	652	3829	8.6	8.7	500	5974	-3.3	18.8
652	3840	9.3	11.6	608	4403	4.7	11.3				
607	4429	4.9	4.5	590	4648	2.7	7.1				
572	4911	1.3	6.6	578	4814	1.7	11.0				
555	5154	0.2	6.4	565	4997	0.4	12.8				
546	5285	0.2	14.0	537	5402	-3.1	11.9				
535	5448	0.5	20.2	523	5611	-3.1	19.4				
500	5988	-2.5	19.9	500	5966	-4.6	18.3				

HHHH	DDD	VV	HHHH	DDD	yV	HHHH	DDD	VV
438	260	5.1	438	250	2.1	438	210	5.1
683	231	6.2	700	253	13.4	659	218	6.2
924	226	6.2	973	257	12.4	909	221	6.2
1164	231	5.1	1255	257	9.8	1159	218	6.2
1415	242	4.6	1538	252	9.8	1410	211	6.2
1680	244	4.1	1843	247	9.8	1665	204	6.2
1944	235	4.6	2134	239	6.7	1926	201	6.7
2196	238	4.6	2407	218	4.1	2189	205	7.7
2455	260	3.6	2680	191	2.6	2474	211	10.3
2715	291	3.1	2945	178	3.6	2734	206	11.8
2975	294	3.6	3209	176	4.1	2981	197	11.3
3245	294	2.1	3435	174	3.1	3228	193	10.3
3490	229	1.5	3712	186	3.1	3488	197	8.8
3739	217	3.1	3986	163	2.6	3749	213	6.7
3993	239	1.5	4248	138	1.5	4009	235	3.6
4249	330	1.5	4512	171	2.1	4269	263	1.5
4505	9	2.6	4814	211	3.1	4530	36	0.5
4759	25	3.6	5055	240	4.1	4790	204	1.5
5008	45	3.6	5344	245	5.1	5074	231	5.1
5259	67	4.6	5666	239	5.7	5364	250	5.7
5499	69	5.7	5939	235	6.7	5654	273	6.7
5756	61	4.6	6197	230	5.1	5945	277	9.3
6014	54	3.6				6217	281	10.3

UMN	JUL	12	122	TOP	JUL	08	002	TOP	JUL	08	122
PPPP	HHHH	T T	DP	PPPP	HHHH	T T	DP	PPPP	HHHH	T T	DP
965	438	24.4	6.9	980	268	37.2	18.0	983	268	27.2	7.5
933	734	27.4	10.5	976	305	37.8	23.9	930	761	29.3	12.1
850	1553	22.2	10.5	945	600	35.5	23.3	850	1557	24.6	14.7
776	2338	17.1	8.3	850	1549	26.5	17.0	746	2684	15.7	10.6
763	2482	16.5	16.8	776	2342	18.6	11.9	726	2915	15.5	20.1
744	2697	15.6	20.6	758	2543	16.6	16.6	700	3223	13.7	21.0
700	3211	13.7	30.0	735	2805	16.8	30.0	590	4633	2.6	19.3
500	5950	-4.8	18.3	700	3218	13.8	30.0	581	4758	2.9	30.0
				610	4357	4.4	19.6	535	5421	-0.5	30.0
				595	4560	5.1	30.0	500	5958		30.0
				500	5955	-4.2	30.0				
	HHHH	DDD	VV		HHHH	DDD	VV		HHHH	DDD	VV
	438	220	3.1		268	210	8.8		268	200	5.1
	734	238	17.0		541	211	8.2		576	223	19.0
	998	241	16.0		871	211	11.3		889	229	22.7
	1262	236	12.4		1210	212	12.9		1207	231	19.0
	1526	238	10.3		1549	216	10.8		1525	236	14.4
	1814	259	9.3		1894	221	12.4		1817	240	10.3
	2105	286	7.7		2239	224	14.4		2106	235	6.7
	2410	298	5.7		2543	233	16.5		2395	216	4.1
	2673	288	3.6		2805	239	18.0		2684	193	4.6
	2940	236	1.5		3080	244	17.0		3007	208	7.2
	3211	194	2.1		3376	248	16.5		3319	217	8.8
	3500	198	3.1		3693	251	13.9		3639	216	8.8
	3788	204	3.6		4009	255	11.3		3960	222	8.2
	4076	232	4.1		4326	263	10.8		4281	231	6.2
	4365	255	3.1		4621	270	8.2		4601	237	5.7
	4653	278	0.5		4924	265	5.7		4902	246	5.7
	4941	78	1.0		5227	249	6.2		5190	262	4.6
	5230	204	0.5		5531	243	7.2		5484	254	4.1
	5518	275	3.6		5834	242	7.7		5800	241	5.1
	5806	273	5.7		6139	237	9.3		6123	234	5.1

TOP	JUL	08	182	TOP	JUL	09	002	TOP	JUL	09	062
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
983	268	33.9	10.2	980	268	36.1	16.1	980	268	32.2	13.8
972	372	32.2	11.8	966	396	37.6	20.1	850	1538	25.5	11.6
954	540	31.1	14.3	850	1548	26.8	14.0	700	3213	13.8	11.5
850	1560	21.2	6.5	803	2047	21.5	9.7	641	3948	8.8	16.2
836	1704	19.7	5.7	726	2912	13.9	3.2	615	4289	5.5	5.5
820	1870	19.7	12.6	700	3219	12.8	19.7	581	4753	3.8	17.9
771	2397	15.6	12.5	690	3340	12.8	30.0	577	4809	4.1	20.7
749	2643	15.8	21.8	567	4952	0.9	18.3	500	5957	-4.0	19.0
700	3213	11.7	21.3	542	5314	0.5	30.0				
668	3601	8.1	20.9	500	5957	-3.0	30.0				
597	4521	3.7	30.0								
544	5270	0.2	30.0								
500	5939	-5. 3	30.0								
	HHHH	DDD	vV		HHHH	DDD	vv		HHHH	DDD	vv
	268	210	6.7		268	190	7.7		268	190	5.1
	540	226	10.8		521	213	8.8		602	204	19.0
	783	226	11.3		772	212	8.8		937	213	22.7
	1026	223	11.3		1022	210	9.3		1271	223	21.1
	1268	218	10.3		1273	208	9.8		1600	232	16.5
	1511	217	8.8		1523	209	10.3		1910	242	11.3
	1770	220	8.8		1744	211	10.8		2220	255	7.7
	2065	215	8.8		1960	212	11.3		2530	282	6.7
	2342	213	9.3		2200	211	11.8		2841	300	6.2
	2643	222	8.8		2454	213	12.9		3151	307	6.2
	2914	227	8.2		2708	217	12.9		3469	307	6.2
	3186	219	8.2		2959	222	12.4		3788	305	7.7
	3504	210	8.2		3195	235	11.3		4103	310	9.3
	3796	214	7.2		3449	247	11.3		4413	311	8.2
	4075	226	7.7		3722	251	11.3		4722	297	7.7
	4354	231	8.2		3996	253	9.3		5039	283	8.2
	4636	234	7.2		4269	258	8.2		5367	276	9.3
	4924	229	7.2		4542	256	8.8		5694	272	10.3
	5213	221	8.2		4816	256	8.8		6018	268	12.4
	5514	216	9.8		5091	250	8.8				
	5818	211	10.3		5366	241	9.8				
	6109	209	9.8		5623	240	11.3				
					5880	246	12.4				
					6147	251	12.9				

APPENDIX B

TDP	JUL	09	122	TDP	JUL	09	1.82	TDP	JUL	10	002
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
981	268	27.2	7.0	982	268	35.6	11.6	978	268	37.8	15.5
965	410	27.6	8.6	965	422	33.6	13.9	966	385	41.1	23.5
850	1532	25.4	13.8	954	526	32.8	17.5	850	1548	29.0	16.1
700	3205	13.0	5.7	850	1551	23.0	10.5	801	2073	24.4	12.6
685	3387	12.6	7.0	801	2067	21.6	14.7	743	2725	18.0	7.2
645	3888	7.0	3.2	762	2498	18.6	12.8	700	3233	13.0	2.6
$61 / 3$	4306	5.2	6.1	700	3220	13.4	16.0	687	3391	11.5	1.5
561	5024	-0.5	2.4	630	4096	6.6	14.3	648	3878	8.8	9.4
541	5313	-2.9	2.1	616	4279	4.7	10.8	632	4084	6.7	9.5
500	5935	-5.8	11.8	598	4520	2.7	13.7	589	4659	2.5	3.7
				590	4629	1.5	14.9	556	5124	-0.7	3.8
				564	4990	-1.3	10.0				
				556	5104	-1.7	11.1				
				529	5499	-4.6	12.6				
				500	5940	-7.7	12.0				
	HHHH	DDD	VV		HHHH	DDD	vv		нннн	DDD	vv
	268	170	4.6		268	230	6.2		268	200	6.2
	608	204	12.9		579	240	7.7		517	212	7.7
	938	234	19.6		841	246	9.8		781	212	7.7
	1268	246	23.7		1104	253	10.3		1046	218	7.7
	1591	254	21.1		1367	259	10.3		1310	224	8.2
	1884	264	20.6		1642	276	10.3		1576	229	8.2
	2178	272	20.6		1946	291	11.3		1852	237	7.7
	2471	276	19.0		2252	285	12.4		2135	243	7.7
	2765	273	15.4		2556	274	13.4		2446	248	8.8
	3058	266	12.4		2844	269	12.4		2754	252	8.8
	3357	262	10.3		3133	271	10.3		3035	254	8.2
	3652	260	9.8		3424	278	9.8		3327	257	8.8
	3944	257	9.8		3716	290	8.8		3634	272	8.8
	4222	253	10.3		4008	300	8.2		3924	296	7.7
	4534	254	12.4		4279	306	7.7		4180	301	7.7
	4861	262	13.9		4575	318	10.3		4500	299	8.8
	5185	267	12.9		4892	326	11.3		4814	313	10.3
	5483	269	9.8		5195	318	9.3		5124	319	10.8
	5766	269	9.3		5499	297	9.8				
	6055	270	10.3		5838 6132	294	11.8 129				

APPENDIX B

TOP	JUL	10	122	TOP	JUL	11	002
PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
982	268	28.3	9.8	979	268	38.3	15.5
971	366	30.7	12.7	964	414	39.9	23.9
935	904	29.7	15.4	850	1557	29.9	19.3
909	956	31.0	19.0	700	3241	12.8	6.5
850	1554	27.5	17.6	682	3460	10.7	3.7
700	3235	14.0	5.9	673	3571	12.6	11.9
645	3920	8.1	3.9	627	4160	6.9	8.1
601	4500	3.4	0.0	595	4588	4.1	14.8
550	5215	-1.7	1.7	541	5353	-2.8	3.9
542	5332	-2.5	4.4	519	5682	-2.6	30.0
534	5450	-2.0	17.5	500	5977	-4.8	30.0

TOP JUL 11122
PPPP HHHH TT DP
$981 \quad 268 \quad 23.9 \quad 5.9$
$972 \quad 349 \quad 27.1 \quad 7.8$
$910 \quad 937 \quad 30.917 .1$
$8501544 \quad 26.916 .8$
700322214.317 .7

6024473 4.5 9.8
560 5058-0.1 6.8
536 5407-2.9 10.4
$500 \quad 5955$-6.6 8.1

HHHH	DDD	vv	HHHH	DDD	vV	HHHH	ODD	vv
268	240	3.6	268	280	5.1	268	130	1.0
581	248	16.0	659	205	6.2	584	229	8.8
893	255	22.1	1067	232	6.2	878	245	7.7
1196	265	20.1	1475	235	6.2	1158	262	6.7
1494	277	15.4	1844	240	5.1	1434	262	6.2
1813	283	11.8	2202	240	5.1	1718	218	5.7
2136	280	10.3	2560	242	7.2	2007	237	5.7
2459	276	9.3	2919	241	7.7	2296	302	5.7
2783	277	7.7	3272	241	6.2	2586	349	5.1
3106	280	8.2	3571	260	4.6	2875	296	3.6
3441	280	9.3	3881	280	4.6	3164	250	5.1
3783	282	8.8	4186	282	5.1	3460	253	5.1
4113	281	8.8	4454	280	6.7	3758	256	4.1
4436	284	8.8	4725	282	8.8	4056	260	3.6
4772	289	8.2	4998	290	9.8	4354	260	4.6
5113	296	7.2	5271	299	9.3	4649	0	0.0
5450	326	8.8	5545	290	6.2	4941	0	0.0
5777	338	11.8	5816	258	4.6	5208	0	0.0
6106	330	11.3	6086	252	3.6	5462	0	0.0
						5736	0	0.0
						6008	0	0.

TOP	JUL	12	122	OMA	JUL	08	002	OMA	JUL	08	122
PPPP	HHHH	T T	DP	PPPP	HHHH	T T	DP	PPPP	HHHH	TT	DP
980	268	24.4	5.5	963	400	35.8	13.0	967	400	22.3	5.0
906	968	31.2	16.8	953	497	35.9	18.8	943	616	24.5	3.1
850	1538	28.1	18.2	850	1524	26.7	15.2	926	776	26.4	7.5
726	2910	16.8	11.6	765	2444	20.3	15.5	850	1532	25.0	14.0
700	3220	14.1	8.1	700	3202	14.3	20.5	785	2226	21.8	14.0
631	4086	6.9	5.2	669	3583	12.7	30.0	700	3202	13.3	8.3
594	4580	2.7	0.0	500	5948	-5.0	30.0	655	3762	8.3	7.1
560	5055	-1.0	0.1					633	3979	6.4	8.3
550	5199	-1.3	2.8					627	4122	5.9	11.0
527	5538	-4.0	0.0					613	4307	6.0	30.0
500	5953	-6.1	0.0					573	4855	1.2	7.5
								557	5082	-0.1	17.4
								518	5659	-4. 5	18.5
								510	5781	-5.2	30.0
								500	5937	-5.7	30.0

HHHH	DDD	VV
268	360	2.1
524	270	4.1
782	250	9.3
1053	250	9.3
1356	274	7.7
1652	291	7.7
1938	283	6.2
2224	253	4.6
2510	263	6.2
2795	274	8.2
3079	275	8.2
3355	276	8.8
3626	271	4.6
3896	212	1.5
4173	217	2.1
4464	227	3.1
4758	262	3.1
5055	295	3.6
5312	296	3.1
5598	287	2.6
5894	254	2.1
6187	257	2.1

HHHH	DDD	VV
400	209	5.7
725	217	12.9
1011	222	13.9
1296	226	13.9
1584	233	14.9
1880	242	15.4
2177	258	15.4
2476	273	15.4
2792	285	12.9
3107	293	9.8
3424	281	5.7
3739	254	3.6
4050	263	3.1
4361	271	3.6
4672	264	5.1
4984	258	7.2
5295	261	8.2
5606	270	8.8
5917	275	10.3
6211	274	10.3

HHHH	DDD	VV
400	60	4.1
696	113	3.1
997	224	5.7
1311	248	10.3
1622	254	22.7
1924	255	22.7
2226	257	12.4
2533	252	9.8
2839	241	8.2
3146	230	6.7
3441	228	6.2
3733	236	4.1
4036	250	2.6
4337	233	3.1
4642	209	2.6
4952	218	3.1
5264	226	4.6
5568	234	4.6
5885	250	6.7
6205	262	9.8

6＊ \mathcal{L}	292	2965		S．91	くらて	S96S					
$6^{\circ} \mathrm{E}$ L	S S 2	$1<95$		サ・Sし	サクて	¢895					
6＊$\underbrace{\circ}$	しS2	2685		$6^{\circ} \mathrm{\varepsilon}$ l	8ヶ2	20ヶ5		8＊0し	しをて	6009	
サ・をし	しら2	8605		サ・£し	ちら2	0215		£ 6	622	0895	
サ・ ¢ し	6ヶ2	9¢8\％		$6^{\circ} \mathrm{Z}$ l	292	6ヶ8ワ		8．8	822	65 ¢ S	
0＊91	6ヶ2	Sくら		8・しし	692	285\％		8•8	2¢2	9SOS	
$5 \cdot 91$	ちら2	862ヶ		を・しし	2＜2	くしを〉		2＊	りてて	Sをくり	
S．91	LS 2	020\％		サ「し	2＜2	じ0ヶ		2＊	ちを2	60ヶ\％	
S．91	952	でくを		6＊$£$	2く2	19くを		ع＊ 6	くてZ	360%	
ヶ＊¢	952	ら9ヶを		リ・Sし	992	し8ヶを		$\varepsilon \cdot 6$	くして	0188	
サ・ウし	くりて	く818		6＊し	952	2.028		2•8	りして	6058	
6・ヶし	9£て	0262		0．91	サクて	1262		8－8	212	Oして\＆	
0＊<1	しをて	\＆ 592		0．91	くをて	8092		8＊6	802	8062	
し・して	くてZ	98£		6－「し	SてZ	£ 2 ¢		£ 01	OL2	9092	
1．22	く22	6しして		サ・ウし	602	9ヶ0て		£ 01	Sl2	£ 0 \＆ 2	
9＊し2	くてZ	2581		6＊21	861	2くくし		8－8	く22	＜66	
9＊ 2	とてて	S851		$8^{\circ} 01$	061	しOSl		£ 6	しら2	1691	
く－22	をてて	Oしをし		2．8	$0<1$	O\＆てし		2•8	S92	S $<\varepsilon 1$	
く．\＆ 2	してて	し¢Oし		く－9	をヶし	6 S 6		l•S	8ち2	¢ $\mathrm{O}^{\text {l }}$	
9．02	802	021		2．9	Sしl	889		\mathfrak{l} •	Sl2	SOL	
L＇S	081	OO\％		9＊ε	08	O 07		$1 \cdot 2$	O21	OO\％	
$\wedge \wedge$	000	HHHH		$\wedge \wedge$	000	HHHH		$\wedge \wedge$	000	HHHH	
								ع ${ }^{\circ} 6$	し「ワ	¢ >65	005
				0＇0\＆	0・ワ－	926 S	005	L．6l	1•0	OSヶ5	2¢S
				$0^{\circ} 0$ ¢	l•0	2605	955	0＊0\＆	$8^{\circ} 0$	9664	695
1．6l	し「－	8265	005	$0^{\circ} \mathrm{E}$	$6^{\circ} 0$	ヶ6くり	LLS	O＊OE	£ $\cdot 9$	912\％	029
$5 \cdot L$	9＊$\varepsilon-$	$52<5$	£しS	$\varepsilon \cdot \varepsilon$	$1 \cdot 5$	くをで	819	0＊0\＆	S•9	S00\％	9 ¢ 9
サ「とし	ヶ＊－	25ヶ5	し¢S	0＊OL	く・乏し	202を	002	$8^{\circ} 01$	$\varepsilon \cdot 9$	2068	ヶケ9
\boldsymbol{y}°	$5^{\cdot} 0$	¢815	6ヶ5	し．S	$\varepsilon \cdot \varsigma \downarrow$	220\＆	Slく	ヶ＊S	6°	889を	199
6•1	0＊1	286\％	¢95	8－8	S．91	8 S L	8£	$\varepsilon \cdot L$	$0^{\circ} \mathrm{Z} 1$	0してを	002
$5^{\circ} 0$	9•1	ちしくら	285	く・しし	0．61	りをちて	991	$6^{\circ} \mathrm{Zl}$	2＊6l	9ちヶ2	591
9°	を「けし	く81を	002	$5 \cdot L$	\＆． 22	く061	418	2•91	$1 \cdot 92$	8¢5	058
9＊S	$9^{\circ} \mathrm{LZ}$	¢0Sl	058	0．8	6・ワ2	8251	058	5・しし	2．5 2	SlOし	£ 06
2＊${ }^{\text {－}}$	$6^{\circ} 0$ \＆	S <6	206	2．21	サ・しを	199	L\＆6	6．9	£． 82	¢94	096
$5 \cdot 8$	く－0\＆	O0ヶ	296	9•8	し「と	OO\％	†96	2＊8	$6 \cdot 62$	OO\％	$\angle 96$
dO	11	HHHH	dddd	do	11	HHHH	dddd	do	11	HHHH	dddd
290	60	7ח	\forall WO	200	60	7ח	VHO	281	80	7ח	VHO
					c	ICNAd					

APPENDIX B

OMA	JUL	09	122
PPPP	HHHH	TT	DP
963	400	22.7	1.4
927	738	28.0	6.2
850	1505	23.7	9.5
700	3172	13.5	15.3
645	3856	9.0	12.4
599	4464	4.4	14.7
572	4839	4.1	20.3
500	5919	-2.7	30.0

OMA JUL 09 OMA JUL 182002

PPPP	HHHH	TT	DP	PPPP	HHHH	TT	DP
966	400	30.6	6.7		964	400	36.6
946	586	28.0	5.8	850	1531	26.8	14.1
924	795	27.5	11.2	788	2194	21.1	10.1
850	1531	24.4	14.7	761	2496	20.3	22.0
814	1909	23.0	15.1	700	3209	14.0	10.3
700	3202	12.6	7.4	673	3539	11.2	11.3
677	3481	10.8	12.4	614	4299	5.5	3.6
565	4962	0.7	19.8	556	5102	-1.0	4.1
529	5487	-3.4	12.5	527	5528	-3.9	10.1
520	5622	-3.4	30.0	519	5648	-4.2	30.0
500	5931	-5.7	30.0	500	5942	-4.2	30.0

HHHH	DDD	VV	HHHH	DOD	VV	HHHH	DOD	V V
400	240	2.1	400	230	3.1	400	170	1. 5
682	305	9.8	705	256	3.1	714	175	3.6
984	313	10.8	1010	277	4.1	1028	197	4.1
1290	310	9.8	1316	296	6.2	1312	229	7.2
1592	316	10.8	1626	296	7.7	1646	246	9.3
1885	309	12.4	1939	288	8.8	1935	253	10.3
2177	301	12.9	2232	288	9.8	2217	261	11.3
2470	296	13.4	2526	291	12.4	2449	273	13.9
2763	294	14.4	2820	290	12.9	2699	279	15.4
3055	295	15.4	3114	284	12.9	2954	278	15.4
3343	290	15.4	3398	282	13.4	3209	276	15.4
3628	289	14.9	3685	290	14.9	3463	274	15.4
3917	283	14.9	3975	296	16.0	3729	273	17.0
4230	285	15.4	4265	298	17.5	4000	278	18.5
4532	277	15.4	4555	298	17.5	4271	278	19.0
4868	258	15.4	4846	297	17.0	4511	284	19.6
5160	250	16.0	5172	298	19.0	4748	285	21.1
5452	254	16.0	5514	299	18.5	4984	286	21.6
5744	261	16.5	5808	291	17.0	5235	286	20.1
6038	266	14.9	6124	283	19.0	5501	287	18.0
						5746	292	17.5
						5995	295	20.6

OMA	JUL	10	122	OMA	JUL	11	002	OMA	JUL	11	122
PPPP	HHHH	TT	DP	PPPP	Hhнн	TT	DP	PPPP	HHHH	TT	DP
966	400	24.4	0.7	966	400	33.4	8.7	965	400	27.2	2.9
937	670	25.3	0.1	941	641	31.9	14.7	906	963	30.3	15.3
924	795	29.0	8.2	873	1310	25.9	8.6	850	1530	25.9	14.5
908	950	27.5	9.8	850	1545	25.2	13.2	762	2484	20.2	13.3
877	1259	29.3	20.4	834	1712	24.5	19.6	700	3209	13.9	8.5
850	1537	26.8	12.5	744	2702	19.4	30.0	614	4297	4.2	1.2
797	2102	23.2	19.2	700	3221	14.7	30.0	500	5949	-3.5	0.0
700	3213	13.1	17.0	644	3917	8.0	15.2				
633	4049	6.9	15.0	630	4098	7.2	30.0				
582	4731	-0.1	3.8	602	4471	5.3	30.0				
577	4800	-0.1	11.4	530	5496	-2.9	30.0				
559	5055	1.8	30.0	500	5955	-5.5	30.0				
545	5260	2.1	30.0								
500	5948	-3.5	30.0								
	HHHH	DDD	vV		HHHH	DDD	vV		HHHH	DDD	vv
	400	60	1.5		400	40	2.1		400	120	3.6
	701	60	2.1		697	97	4.1		696	159	8.8
	981	319	4.1		975	141	4.6		995	186	7.7
	1290	325	6.7		1254	145	3.6		1310	228	6.2
	1599	330	8.2		1601	143	0.5		1632	251	10.3
	1914	321	10.3		1877	321	4.1		1973	253	13.9
	2225	313	14.4		2152	313	6.2		2331	249	13.4
	2534	310	15.4		2437	308	7.7		2648	246	12.4
	2842	308	12.4		2702	310	10.3		2978	244	12.4
	3151	304	12.9		2991	309	11.8		3311	243	11.8
	3452	296	13.4		3275	301	11.8		3651	243	11.8
	3750	287	15.4		3543	292	12.4		3991	238	12.9
	4049	282	19.0		3810	291	12.9		4332	238	13.9
	4359	283	20.6		4098	290	10.8		4684	238	14.4
	4669	288	19.6		4385	285	9.3		5035	239	13.4
	4960	303	18.0		4670	277	8.8		5387	252	12.4
	5291	316	19.0		4955	270	8.2		5738	264	11.8
	5604	315	20.1		5239	271	8.2		6115	266	13.9
	5917 6220	311 308	20.1		5524	278	8.8				
	6220	308	19.0		5811 6095	$\begin{aligned} & 277 \\ & 265 \end{aligned}$	9.3 9.3				

APPENDIX B

OMA	JUL	12	002	OMA	JUL	12	122
PPPP	Hhнн	TT	DP	PPPP	HHHH	TT	DP
962	400	36.2	14.5	965	400	33.6	8.1
955	468	35.4	18.9	936	674	28.9	30.0
905	954	32.2	19.0	850	1527	26.7	30.0
850	1514	27.4	16.5	819	1853	24.1	30.0
779	2280	23.4	21.4	807	1981	24.3	30.0
700	3201	15.8	14.6	718	2987	15.4	30.0
640	3953	8.8	8.8	700	3201	14.1	18.5
604	4403	4.8	5.8	677	3483	12.9	19.7
540	5332	-2.3	2.3	627	4120	7.9	15.0
534	5421	-1.7	30.0	576	4811	1.1	2.5
519	5647	-2.1	30.0	545	5254	-2.3	1.1
500	5948	-4.6	15.1	500	5934	-6.9	3.4
	HHHH	DDD	vV		HHHH	DDD	vV
	400	250	2.6		400	360.	5.1
	695	255	8.8		705	26	12.4
	1013	251	9.8		1009	17	9.3
	1303	239	10.8		1314	4	7.7
	1603	236	12.9		1616	3	9.3
	1897	245	16.5		1917	2	11.3
	2193	253	16.5		2218	354	9.8
	2476	262	13.4		2514	340	7.2
	2754	274	10.3		2809	316	6.7
	3033	283	9.3		3109	295	8.8
	3321	287	9.3		3398	294	10.8
	3622	293	8.8		3695	300	11.8
	3922	297	9.3		3999	304	11.3
	4205	29.7	9.3		4293	302	10.8
	4495	295	8.8		4581	295	9.3
	4805	293	9.8		4866	281	8.2
	5115	298	12.9		5143	268	9.3
	5449	305	12.4		5417	268	9.8
	5736	306	10.8		5689	260	9.3
	6038	296	11.3		5962	253	9.3

[^0]:

