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IMPLICATIONS

The purpose of the paper is to provide some understanding of the uncertainties meteorological
data introduce into the calculation of maximum ozone concentrations. The paper is intended to
provide guidance to managers on the resources that might be needed to develop an operational
ozone forecast system in the light of meteorological uncertainty and the tradeoffs involved
regarding model complexity, accuracy, and precision.

ABSTRACT

Several ozone modeling approaches were investigated to determine if uncertainties in the
meteorological data would be sufficiently large to limit the application of physically realistic
ozone forecast models. Three diagnostic schemes were evaluated for the period of May through
September of 1997 for Houston, Texas. Correlations between measured daily maximum and
model calculated ozone air concentrations were found to be 0.70 using a linear regression model,
0.65 using a non-advective box model, and 0.49 using a 3-Dimensional transport and dispersion
model. Although the regression model had the highest correlation, it showed substantial under-
estimates of the highest concentrations. The box model results were the most similar to the
regression model and did not show as much underestimation. The more complex 3-D modeling
approach yielded the worst results, likely resulting from ozone maxima that were driven by local
factors rather than by the transport of pollutants from outside of the Houston domain. The
highest ozone concentrations at Houston were associated with light winds and meandering
trajectories. A comparison of the gridded meteorological data used by the 3-D model to the
observations showed that the wind direction and speed values at Houston differed most on those
days in which the ozone underestimations were the greatest. These periods also tended to
correspond with poor precipitation and temperature estimates. It is concluded that better results
are not just obtained through additional modeling complexity but there needs to be a comparable
increase in the accuracy of the meteorological data.

INTRODUCTION

Incidents of elevated summer tropospheric ozone over the Middle Atlantic Region are typically
attributed to precursor pollutants accumulating near associated quasi-stationary high pressure
systems with strong inversions and no cloud cover'. These conditions occur regularly from May



through September, which has become known as the 0zone season’. However, Davis et al.?
found that in Houston, Texas high ozone concentrations are also associated with migratory
anticyclones which can extend the ozone season through October. Air concentrations during
these ozone events usually depend upon only a few meteorological variables, such as temperature
and wind speed, and therefore many of the current forecasting approaches have found that
regression methods* are satisfactory in situations where the ozone maxima depend primarily on
local meteorological variables for which data are available. Although more physically realistic
models can provide information on the timing and spatial distribution of ozone concentrations,
excessive computational demands and inherent variability in meteorological processes have
limited their broad application in ozone forecasting.

In anticipation of the development of ozone forecasting models based upon more
complete descriptions of physical mechanisms, emissions data, and forecast meteorological
parameters, an investigation into the prediction ability of such forecast systems has been
conducted. There are several factors to be considered. First, the design of the ozone
calculation scheme in conjunction with a dispersion model should be simple and fast enough to
be run operationally and still produce realistic results. Second, the system should be as easily
usable with historical data or meteorological forecasts for both diagnostic and prognostic
evaluation. Finally, the prognostic system should perform better than simpler statistical
methods. Houston, Texas was selected for this evaluation primarily because it experiences some
of the highest ozone values in the United States’. Daily forecast ozone maxima, calculated using
a non-advective box model and a 3-dimensional transport and dispersion model have been
compared with measured maximum ozone values for the summer of 1997. To obtain the
maximum computational speed a simple 3-equation steady-state chemical scheme, used to
compute ozone concentrations from precursor pollutants, was incorporated into the two models.
This same chemical model is used in all of the meteorological modeling variations tested, except
for the linear regression approach which is used to determine a predictability baseline.

The intent of this analysis is not to compare various ozone chemical calculation schemes,
because that has been addressed in past studies®, but to evaluate the ozone prediction sensitivity
to the meteorological data and the corresponding modeling approach. Considering that a
meteorological forecast will not be as accurate as the meteorological analysis fields, it is possible
to determine a baseline level of predictability using the analysis fields. The baseline is relevant
in the sense that the analysis fields are the best representation of the actual meteorological
conditions, but yet they may not be sufficiently accurate to obtain acceptable predictions of
ozone air quality.

The following sections will review the specifics of the three modeling approaches and
their data requirements, the general results for each model’s calculation of daily maximum ozone
concentration for the entire summer, and the results of a two week case study analysis of hourly
ozone values and their relation to the meteorological conditions.

MODELS



Although only one ozone calculation scheme and one set of meteorological data will be used in
the evaluation, an archive derived from the National Centers for Environmental Prediction
(NCEP) Eta forecast model analysis fields (EDAS - Eta Data and Analysis System), the
available meteorological data will range from using meteorological values at a single point in the
regression and the non-advective box models, to using the meteorological data at all grid points
in the fully 3-dimensional transport and dispersion model.

Ozone M od€

The ozone prediction method, a semi-empirical approach called the Integrated Empirical Rate
(IER) model developed by Johnson’, is incorporated as the ozone calculation scheme in two of
the modeling approaches evaluated in this study. The IER model, based on outdoor smog
chamber studies for conditions typical of Australian cities, is usually applied in conjunction with
monitoring data, to evaluate the age of photochemical smog® and to determine whether the air
parcel is in the NO, -limited or light-limited regimes. In the light-limited regime the smog
produced is only a function of the accumulated incident light and the hydrocarbon concentration.
In the NO,-limited regime, the concentration of smog produced is assumed to be independent of
the amount of incident light and the smog concentration can only increase by increasing the
amount of NO available. An updated version of the IER model’ was derived from the more
complete Generic Reaction Set (GRS ) and includes the loss of NO, to stable nitrate. Like IER,
GRS is also a semi-empirical approach, but it is written in terms of a chemical mechanism using
the reaction rate equations for the seven species. The GRS is not limited by the photo-stationary
steady-state assumption of the IER model. The IER model, as used in this study, is described in
more detail in the Appendix. In terms of implementation of either the IER or GRS models within
the framework of a meteorological transport and dispersion model, the primary difference
between the approaches is that the IER integration of the smog produced is linear and can easily
be incorporated into a Lagrangian model, while the GRS solution is non-linear and requires
adding the precursor contributions from all sources before integration.

The GRS model has been evaluated by Venkatram et al.'' and Tonnesen and Jeffries'.
The smog production component of the IER approach was evaluated by Chang et al.” with
respect to NO, or VOC control strategies. They suggested some modifications to the
parameters, but felt that the IER observational approach, relating NO, to smog using measured
O;, NO, and NO, , could be competitive with more complete 3-D modeling approaches. The
accuracy of more complex models tends to be limited by uncertainty in the input data and
atmospheric processes. In the first complete modeling application of the IER scheme, Wratt et
al.'* applied the IER equations to an air parcel following a trajectory to determine the impact of a
proposed power plant near Auckland, New Zealand.

A simple test of the IER chemistry code would be to compare the model results to one of
the many smog chamber data sets for which the model was initially formulated. The results for



500 P E— experiment 136L, with initial conditions of 112
I ppb-C VOC, 109 ppb NO, and 110 ppb NO,, are
shown in Fig. 1 The test was conducted at an
outdoor chamber in Sydney, Australia, on
November 11, 1980 between 0527 and 1615 local
time. Naturally, the model results should be very
similar to the data, but more importantly, the
calculation tests the chemical model linkage with
Local Time (hr) the position, date, solar elevation, and cloud-cover
algorithms of the parent meteorological transport
Figure 1. Smog chamber results’ for experiment  and dispersion model. In addition, the results
136L and the results from the IER model using  clearly illustrate the initial ozone formation in the
observed chamber temperatures. light-limited regime, the rate of which is sensitive to
the VOC concentration, solar radiation, and the
subsequent constant ozone concentrations in the NO, limited regime. The results also show that
differences of about 10% between the IER model and measurements can be expected even under
the conditions for which the model was developed. This result is consistent with the other [ER
simulations and smog chamber results’.
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Although Tonnesen and Jeffries'? concluded that GRS compares well with more complete
descriptions of chemical reactions such as the Carbon Bond Four (CB4"® ) mechanism for
VOC/NO, ratios greater than 8, they questioned the applicability of GRS for ambient urban
ozone predictions. Typical initial ambient values for NO, of 10 ppb and VOC of 50 ppb-C yield
maximum ozone values (from Tonnesen and Jeffries, Figs. 1 and 2) of 120 ppb from CB4 and 80
ppb from GRS, indicating a bias toward lower concentrations from the GRS/IER approach than
from the more commonly applied CB4. This may not be a serious concern, in that a predictive
ozone forecast system does not necessarily need to contain all the chemical kinetic mechanisms
or detailed meteorological parameters. However the chemical model should respond properly to
the range of meteorological variables and reproduce realistic ozone air quality estimates for those
conditions. As long as the predictive system responds properly to changes in the primary forecast
parameters, a bias correction can be tolerated and statistically corrected, considering the less
demanding computational requirements of a simpler chemical prediction scheme.

Regression M odel

Regression models are one of the most common approaches to ozone prediction and can vary
considerably in complexity **'®!". In this analysis, the regression model results are only used to
demonstrate how much of the variance in ozone concentration can be explained by the
meteorological variables and will be the standard against which the other two more physically
realistic modeling approaches will be evaluated. Although it can be applied in a prognostic
mode, in this application the regression model is only intended to be used as an explanatory or
diagnostic tool. Subsequent modeling approaches will need to show a performance better than
the regression baseline. A simple linear model was applied to calculate the maximum daily
ozone value (ppb),



O;(max)=aU+bT+cRh+dZ +e, (1)

where U (m/s) is the wind speed, T (°K) the temperature, Rh (%) the relative humidity, and Z,
(m) the mixed layer depth, computed with the same algorithm used in the 3-D dispersion model.
The regression coefficients (a,b,c,d,e) were obtained using the daily maximum measured ozone
and meteorological values from the 925 hPa level of the EDAS archive averaged each day
between 0700 and 1900 LST for the period of May through September at the ozone
measurement location. Because the regression coefficients are obtained from the same ozone
data for which all the other models will be tested, the regression model results are not
independent and are only used for comparative purposes.

Non-Advective Box M odd

The next level of modeling complexity is the “box” approach, in which it is assumed that both
horizontal and vertical mixing are instantaneous and emissions are uniform over the ground
surface of the box. Although the box approach may appear simple, the corresponding chemistry
may be quite complex. An early application of a box model by Schere and Demerjian'® used 24
species in 38 reactions in an Eulerian framework, with a 20 km box centered over St. Louis,
always aligned with the wind direction. Measured ozone provided the upwind boundary
condition. An example of a Lagrangian box model is that of Eliassen et al.'”, where the box is
carried along a pre-computed trajectory accumulating emissions. Ozone was formed using 40
species in 100 reactions. In box model approaches, the resulting prediction is a spatial average
and may not be representative of a value at a specific measurement point. The resolution of sub-
grid cell details is a limitation of all box methods whether they use single cells or multiple cells
in complex 3-D Eulerian models.

In the application of the IER solution using the box model approach, it is assumed that
one box, fixed and centered about the sampling location, accumulates emissions from all
pollutant sources within the box. The vertical extent of the box is the mixed layer depth (Z)).

The air concentrations for all precursor species are computed from the sum of their masses in the
volume of the box,
t
CH) = Y q®) V() [ Ax Ay Z,(®) T At, %)
0

where q is the emission rate, V is the box ventilation factor, and At is the integration time step.
The product of the box sides, Ax Ay, represents the fixed box horizontal area and it should be
sufficiently large to incorporate most of the emission sources. Although emissions accumulate
with time, they are vented out of the box by the ventilation-advection factor,

V(t) = 1-kU®t) At Ax ', A3)

computed each time step from the scalar wind speed (U) at the 925 hPa level of the EDAS
archive. The last term of Eq. 3 represents the fraction of the pollutants within the box that are
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depleted each time step. The value of “k”, a free parameter chosen to give the best overall fit to
the measurements, was empirically determined to be 0.6. The “k” factor incorporates all the
remaining un-modeled meteorological effects such as wind shear and advection of pollutants into
the box, pollutant removal by clouds and boundary layer venting, errors in the emission
estimates and deposition, and even biases in the chemical model. Without the ventilation factor,
pollutants would accumulate within the box for the duration of the simulation resulting in
substantial over-estimation.

The optimum grid cell size for the box model was determined through a series of
sensitivity tests with various box sizes. Results are shown in Table 1. When going from a 50
km to 100 km box size, an increase in surface area of a factor of 4, the emissions also increase by
a factor of 4 (VOC:s slightly more). However going from a 100 km box to a 200 km box results
in an emission increase of less than a factor of 2 for NO, and VOC and about a factor of 4 for
isoprene. The ozone concentration increases substantially only between the 50 and 100 km
simulations and then decreases again for the 200 km simulation. The box model calculation is
expected to be relatively insensitive to the grid cell size as long as the additional emissions are in
the same proportion as the change in surface area. Concentration increases should be
compensated by an increasing box volume. Further increases in cell size lowers the
concentration due to the fact that the increased dilution factor is not compensated by increased
emissions; the larger cell boundaries are no longer within the dense urban emission area. The
only substantial change in air concentration, between the 50 and 100 km box simulations, are
due to a lower wind speed ventilation (Eq. 3), i.e., typical wind speeds of a few meters per
second do not provide a sufficiently long residence time for precursor pollutants to reach the
peak ozone concentrations in the smaller box size simulations.

Table 1. Sensitivity of average maximum ozone (ppb) and pollutant
emissions (10° kg/day) to horizontal grid cell size for Houston.

Cell size 50 km 100 km 150 km 200 km

O, 20 56 61 52
NO, 170 680 1000 1100
VOC 300 1400 2100 2400
Isoprene 120 480 1100 1900

Three-Dimensional Transport-Dispersion Model

The integration of a chemical model with a Lagrangian transport and dispersion model is a more
complex adaptation of an advective box model, where the chemical transformations occur in a
box following a pre-computed trajectory. In a fully 3-dimensional model, calculations are
performed with temporally-varying gridded meteorological data, using either archive or forecast
fields. The model used in this study is the HYbrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT)***' model. Pollutant particles or puffs are transported through the domain
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and the dispersion is calculated along the trajectory from the vertical diffusivity profile, wind
shear, and horizontal deformation of the wind field. Air concentrations are calculated on a grid
from the sum of the masses of each puff or particle within the cell.

A complete and detailed description of the model is available by Draxler and Hess >,
However, a brief summary follows. The trajectory of a particle or puff, or the change of its
position vector (P) with time,

P(t+At) = P(t) + 0.5 [ W(P,t) +W( {P(t) + W(P,t) At}, t+At ) ] At, (4

is computed from the average of the three-dimensional velocity vectors (W) at their initial and
first-guess positions. Particle dispersion is computed by adding an additional velocity term to
the advection equation (4) that includes a contribution from a turbulent velocity component,

W' (t+At) = R(At) W' (£) + W" ( 1- R(AL)? )3, (5)

which depends upon the turbulent velocity component at the previous time W'(t), a velocity auto-
correlation coefficient (R), and a computer-generated random component (W"). The vertical
turbulent velocity component is computed from the diffusivity profile which is a function of the
profiles of wind and temperature and the mixed-layer depth. The mixed-layer depth is estimated
to be the height at which the potential temperature exceeds the surface value by 2 degrees.

In HYSPLIT, puffs are released from each emission cell that has a non-zero value with
an initial horizontal radius that equals the area of the emission cell (50 km square) and with the
corresponding pollutant mass for each precursor species emitted. If the chemistry is linear, then
transformations can occur from one species to the other independently on each puff. The
pollutant’s air concentration at a location is simply the sum of the contribution from all the
nearby puffs. A non-linear process, such as ozone formation, requires a hybrid approach”. In
this situation, the transformation from one species to another is also a function of the local
concentration of one or more pollutants, i.e. information is required about all the puffs in the
vicinity of the one for which the chemical transformations are being computed. This was the
approach used in an earlier version of HY SPLIT* to compute sulfate deposition. To accomplish
the non-linear chemical transformation, the current version of HYSPLIT is set up with two
concentration grids, one with the averaging time desired for the air concentration output and the
other with no averaging for instantaneous (over one time-step) air concentrations of each species.
The instantaneous values are used in the chemical transformation equations which are solved in
an Eulerian framework on the concentration grid. The modeling system becomes a hybrid of a
Lagrangian-Eulerian approach; the transport and dispersion is computed along the pollutant
particle or puff trajectory, while the chemical transformations are solved on a grid. This is
similar to the approach used by Chock and Winker* in coupling their particle model with a
chemical system.

In the implementation of the IER model within HYSPLIT, the total smog product (SP),
is integrated on the puff (Eq. A2) each time step, according to the local temperature and
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incoming solar radiation. Contributions from the precursor species of all the pollutant puffs are
summed to the concentration grid to obtain their air concentrations. Ozone is then calculated on
the concentration grid as a cell-average from Eqs. A9, A10, and A12. Note that the integration
of SP is independent of solution of the pollutants on the concentration grid.

Model Input Data

Precursor emissions of non-methane volatile organic hydrocarbons (VOC), NO,, and NO are
defined hourly based upon the 1985 National Acid Precipitation Assessment Program (NAPAP)
inventory® for a summer weekday and include all identified area, point, and mobile emissions.
More recent emissions data were not available at the time this study was designed. In the box
model calculation, all sources within the box emit the appropriate fractional mass each time step.
In the HYSPLIT simulations, puffs are released every hour from each emission grid cell.
Although the NAPAP emissions are given at a resolution of 20 km, they were aggregated into 50
km cells to speed the computation by reducing the number of emitted puffs, to reduce the
model’s sensitivity to the emission inventory, and to provide a certain degree of comparability
between the resolution of the non-advective box model and the 3-dimensional modeling
approach. However due to the nature of the 3-D model, its sensitivity to the emissions inventory
will always be a factor as compared with the box model. Only emissions in the region between
25N to 35N and 105 W to 90 W were included in the simulations.

Estimates of isoprene emissions were added to the VOC pollutant mix using a simple
formulation derived from Jacob et al.?’, where the emission flux,

Q, (kg km™ hr") =2 sin () exp [ 0.096 (T-298) ], (6)

is adjusted from a typical forest value (2 kg km™ hr') according to the local solar elevation angle
(o) and air temperature. Isoprene emissions are only computed from those grid cells defined to
have a forest land-use category based upon a 1 degree latitude-longitude inventory®’.

As noted earlier, meteorological data for all model simulations were derived from the
EDAS ** archive. The 3-hourly EDAS is an intermittent assimilation system consisting of
successive 3-h Eta model forecasts and Optimum Interpolation (OI) analyses for a pre-forecast
period on a 38 level, 29 km grid. The 3-h analysis updates allow for the use of high frequency
observations, such as wind profilers, radar, and aircraft data. For this study, the 29 km data are
archived on a 80 km, Lambert Conformal grid, covering the continental United States.

Hourly ozone measurements for the period 1 May through 30 September, 1997 were
obtained from a single monitor (CAMS-35, 29.67 N, 95.13 W) selected by the Texas Natural
Resources Conservation Commission (TNRCC - private communication) to be representative of
the Houston, Texas environment. Measurements from the monitor were compared with model
calculations of the average daily ozone maximum (always defined between 0700 and 1900 LST)
calculated each day. The hourly measurements also were compared to the individual hourly
model calculations.



GENERAL RESULTS

Daily maximum ozone predictions are compared to measurements for the regression model, the
box model, and the HYSPLIT model. It is assumed that the more complex models, which
include physics of the ozone formation chemistry, should be able to explain more of the variance
in the measured concentrations than a regression model based only upon meteorological
parameters. The non-advective box model is a substantial step up in complexity from the

Regression Model (ppb)

Box Model (ppb)

Hysplit Model (ppb)

|
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Figure 2 Daily maximum ozone
measured at Houston from 1 May
1997 through 30 September 1997
and calculated ozone using the
linear regression model (top
panel), the non-advective box
model (middle panel), and the
HYSPLIT-IER model (bottom
panel).

regression model. This model is almost as simple to run and it is
not based upon empirical coefficients derived from dependent
data. The regression model and box model use the same 3-h
meteorological data, extracted at one point at the mid-boundary-
layer level. The most complex approach considered, HYSPLIT,
is comparable to an Eulerian grid model. The regional emission
pattern and temporal and spatial variations in meteorology are all
included in the calculation. The basic meteorological data,
emissions, and chemical model, are the same as used in the non-
advective box model, although with considerably more spatial
definition.

Regression M odel

The regression model is intended to demonstrate how much of the
variance in the ozone can be explained by the meteorological
variables. Subsequent modeling approaches need to show a
performance better than the regression baseline. The regression
model is not designed to be a predictive tool because the
coefficients are derived from the observations and there is no
assurance that the model’s performance (with the same
coefficients) will be comparable in other years. The regression
coefficients for Eq. 1 were computed from all the daily maximum
ozone values from May through September of 1997 and the
daytime (1200 - 0000 UTC) average meteorological values from
the 925 hPa level at the location of the Houston sampler. The
values of the coefficients, sorted in the order that they could
explain the ozone variance, are a=-7.47, c=-1.08, b=-0.10, d=-
0.02, and e=258. Although the overall correlation coefficient of
0.70 explains about half the variance, the scatter diagram shown
in the top panel of Fig. 2 illustrates that the regression model
substantially underestimates the highest concentrations.
Underestimation of peaks is a common feature of regression
methods'”.

More complex forecasting approaches, such as neural networks, step-wise regression,
and lagged regression (using the previous day’s ozone as a predictor) were compared with
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measurements at 8 different cities by Comrie*. He found that the simple regression approach
explained from 0.15 to 0.59 of the variance, with the majority of values above 0.5. It is certainly
possible that better regression models may be employed for the Houston data that would capture
its more complex meteorological environment. For instance, Bloomfield et al.'® were able to
explain 80% of the variance in maximum ozone concentrations at Chicago using a non-linear
model. Other regression methods were also evaluated at Houston, such as using the previous
day’s maximum ozone value as a predictor, but they did not substantially raise the correlation,
nor change the basic structure of underestimation of the highest concentrations. A regression
approach using principal component analysis by Davis et al.’ was able to explain 54% of the
overall variance of 0zone maxima at Houston, while results for individual meteorological
clusters was as high as 73%. The main result for this analysis is that large scale meteorological
factors can explain about half the variance in ozone at Houston. This appears to be consistent
with other studies, and provides a baseline upon which future predictive schemes can be judged.
Clearly, a better and well-conditioned statistical model may still be a superior choice over a
chemical model for a customized prediction scheme.

Box M odel

The non-advective box model includes the same single-point meteorological assumptions as the
regression approach, but the IER chemical model is used to compute the ozone concentrations.
The box model is almost as simple to run as the regression model and it is not based upon
empirical coefficients derived from the dependent data. The box model uses the same single-
station 3-hr extract meteorological data. However, in this case, the model is integrated (at 15
min time steps) to produce hourly ozone values from which a maximum daily predicted value is
obtained. The results of the box model computation are shown as a scatter diagram in the middle
panel of Fig. 2. Although the computation shows a slightly lower correlation (0.65) than the
regression model (0.70), the results do not show any bias at the highest concentrations.

Moreover the scatter appears to be much greater above 100 ppb. Because the model is derived
independently from the Houston ozone data, it can reasonably be expected to be comparable in
performance for other years. One important difference between the regression model and the box
model is that the box model does not assume a linear relationship between the meteorological
conditions and the resulting ozone maxima.

HYSPLIT-IER

The HYSPLIT-IER model combination is comparable to a 3-dimensional Eulerian model in that
the Lagrangian component is used to compute the advection and dispersion while the chemical
equations are solved on the concentration grid. The regional emissions and both temporal and
spatial variations in meteorology are included in the calculation. The emissions and chemical
model are the same as are used in the non-advective box model. In the Houston HY SPLIT-IER
simulations, pollutant puffs were released each hour from every non-zero emission grid cell with
appropriate masses of VOC, NO,, and NO, that correspond to the total area, point, and mobile
emissions in that cell. Puffs were released at the first time step of each hour’s integration at 429
cells over the south central U.S. (primarily Texas and excluding Mexico) modeling domain. In

10



200

r Measured
Calculated

150

100

Ozone (ppb)

50

40 60 80 100

Cumulative Percent

Figure 3 Cumulative frequency distribution of maximum

ozone, measured and calculated at Houston using the
HYSPLIT-IER, Box, and Regression models.

addition, biogenic hydrocarbon (Eq. 6)
emissions were added to each cell that is
dominated by a forest land-use category.
Pollutant particles were then tracked and
dispersed for 48 hours according to the
meteorological analysis fields (EDAS) from the
Eta model. The model’s computational domain,
centered at 30 N and 97.5 W, covers about the
same area as the emissions grid (a 1200 km
square). The concentration grid was defined at
about a 50 km horizontal (0.5 deg) resolution
and in 5 vertical layers (0-500 m, 500-1000 m,
1000-2000 m, 2000-5000 m, 5000-10000 m)
AGL. An ozone background concentration of
20 ppb was assumed for all hours. Mueller

reported background levels (assumed to be at the 5™ percentile) in Great Smoky National Park
(GSNP) on the order of 10 to 30 ppb, but perhaps 20 ppb might be too low for the Houston

region.

The HYSPLIT-IER scatter diagram results are shown in the bottom panel of Fig. 2 and
they show the least correlation (0.49) of the three methods, only explaining about 25% of the
variance. In addition, the highest concentrations are underestimated as well. The marked
difference between the box model and an advective model (HYSPLIT) results cannot be
explained by the chemical prediction scheme, identical for both methods, nor by
unrepresentativeness of the driving meteorological data, both sets from the EDAS. The primary
difference is that the HY SPLIT-IER approach includes a more sophisticated advection process.
The wind in the box model is used only to ventilate pollutants out of the box. There are no

200

sources defined outside of the box to provide
an upwind boundary condition for precursor

R=0.49
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Calculated

150
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pollutants or ozone. The HYSPLIT
approach transports pollutants over the entire
modeling domain, permitting them to enter
and exit the Houston concentration grid cell.
The fact that the additional modeling
complexity provided a less satisfactory result
suggests that the high ozone events at
Houston are dominated by local emissions
occurring when winds are weak -- a common
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Figure 4 Time series from 1 May 1997 through 30
September 1997 of daily maximum ozone concentrations

measured at Houston and calculated using the HY SPLIT-
IER models.

150 scenario for the ozone season.

The HYSPLIT-IER calculation
included a predetermined background
concentration of 20 ppb and this implicit
under-prediction is consistent with known
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biases of the GRS/IER chemistry schemes. The box model, also using IER chemistry, did not
show such a large bias. The difference is in part due to how the background was treated in each
approach. In the box model, the background was implicitly included by the 0.6 factor of Eq. 3,
while in the HY SPLIT approach 20 ppb was explicitly added to the ozone calculation result.
Frequency distributions for the daily maximum ozone values, measured and calculated, are
shown in Fig. 3. The figure shows that the 95" percentile concentration is under-predicted by
about 20 ppb by all the models. For HYSPLIT, this additional under-prediction and previously
assumed background of 20 ppb gives an overall bias of 40 ppb, comparable to what was
expected from the results of Tonnesen and Jeffries'>. Although the biases of each modeling
approach are comparable at the highest ozone concentrations, only the box model shows about
the same bias over the entire predictive range, suggesting that it may be the nearest
approximation to reality, especially after properly adjusted for ambient background levels.

Although the scatter diagram and associated bias of the HY SPLIT-IER approach suggests
that there may be limitations to the modeling approach, the corresponding time series of
maximum measured and calculated ozone, shown in Fig. 4, shows a very reasonable agreement
between model calculations and measurements for most of the multi-day ozone episodes. Poor
agreement, when model results and observations are paired in both space and time, is not
uncommon when results are controlled by random atmospheric processes. Although the model
bias is still evident in the time series results, the model captures virtually all of the short-term
peaks and, although perhaps of less interest in a forecast environment, very faithfully reproduces
the longer-term trends in ozone. This can be seen in Fig 5, which shows the correlation between
measured and calculated ozone with increasing
averaging time. The correlation quickly rises to
near 0.7 for multi-day episodes and then stays at
that level until it rises to near 0.9 for monthly
ozone estimates.

0.8

0.7

Correlation

One aspect not directly addressed in this
study is the potential degradation of the model’s
ozone predictive ability when meteorological
b forecast data are used rather than the EDAS
4 e ‘1‘0 — ., analysis fields. The short-term error for forecasts

of 24 h or less is expected to be small. Ryan®
compared a 24 h regression ozone forecast with
the post-facto calculation using observed
meteorological data and found that the overall
correlation only increased from 0.73 to 0.79.
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Figure 5 Correlation coefficient between daily
measured and HY SPLIT-IER model calculated ozone
at Houston as a function of averaging time.

CASE STUDY ANALYSIS
It is somewhat discouraging that the more complex HYSPLIT-IER simulation does not provide

any improvement over the box model. One possible explanation, noted earlier, is that the high
ozone events are dominated by local emissions and that the inclusion of the additional
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140

Measured complexity of advection and dispersion only

20 Caleulated adds the potential of errors to accumulate in the

100 calculation if the meteorological data do not
accurately represent the flow field. In
simulations of this kind, perhaps more detailed
estimates of emissions, transport direction, and
output grids are required for increased accuracy
g 5 of model predictions at specific locations,
il /h 4 Lk W WAL ) perhaps even including consideration of sea-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
breeze and other mesoscale features. An
August 1997 (Day) . . ..
examination of the hourly predictions may

Figure 6 Hourly measured and HYSPLIT-IER provide some insight to model performance.
calculated ozone at Houston from 1 August 1997

through 15 August 1997.

80 —

60 —

Ozone (ppb)

40

20

The HYSPLIT-IER model simulations
were usually run for fortnight intervals because this matched the

H ‘1 ; {p-l—— structure of the meteorological data files. One such period
L A3 starting on August 1%, 1997 provides an interesting example for
A ‘ — "1” || study because measured ozone values were high during the first

AUGUST 3-5

| S
~os 402 ¥ 4{’ it v o L week (60 - 120 ppb) and dropped dramatically (20 - 60 ppb)
o during the second week. The model and measurement results

|
7‘{—" , “% ’ ’f’"ﬂ“T‘" are shown in Fig. 6 for this period. Note that no background
TS =" ozone concentration has been added to the hourly calculations -
(T ] ] T background values were only included for the previous
| NN = _lis7 maximum concentration predictions. During the first four days
) \| * L the model performance is quite good with both measurements

AUGUST 5-7

e o 7&(%’ f&{ bbb b and predictions of the daily maxima near 60 - 80 ppb. The

| advection during the last two days of this period is illustrated by
24-h back trajectories, calculated at 6-h intervals, and shown in
the top panel of Fig. 7. The trajectories, started at 925 hPa,
represent the flow typical of air within the mixed layer and the
transport component that was an integral part of the HY SPLIT-
IER ozone calculation. Most of the trajectories did not go very
far and are consistent with the higher ozone values and good
model performance (i.e. good performance corresponds to weak
advection).

AUBUST 7-9

The 6™ and 7™ of August showed the highest measured
Figure 7 Twenty four hour back ~ 0zone during the period and the largest model under-prediction.
trajectories calculated every 6 hours The trajectories (Fig. 7 - middle panel) show a flow that is

from Houston for the period 1200 slightly stronger than before and with a more consistent

IiTC to 1120(; [;ZC frortn 3'% (ﬁuguSt directional component from regions of low emissions (the Gulf
(top panel), 3-7 August (middle of Mexico), potentially explaining some of the model’s under-
panel), and 7-9 August (bottom o ) ; ,

panel). prediction. Davis et al.” also found that Houston’s lowest

ozone concentrations were associated with flow from the Gulf
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Figure 8 Daily vector average 10 m level
wind direction and speed measured at Houston
and the corresponding value from the EDAS
meteorological data archive.

of Mexico. This suggests that the flow fields from the
EDAS archive may not be representative of the true
conditions in Houston during this time and that the
ozone is still controlled by emissions in the Houston-
Galveston corridor.

The third period, starting on the 8" of August
shows a large drop in both measured and predicted
ozone, and the trajectories (Fig. 7 - bottom panel) are
long, indicating strong winds, from the south with little
curvature from a region of little precursor emissions.
Other studies, summarized by Stohl*, have shown that
computed trajectories are much more accurate in strong
wind situations than during light winds.

Clearly there is a pattern in the direction of the
upwind flow and associated ozone measurements, but
the correspondence of the trajectory directions with
model performance is not at all clear, considering that
these same trajectories are the basis of the ozone
prediction. It is possible that the wind direction error (or

representativeness) of the EDAS archive is different in each flow regime, a suggestion consistent
with previous trajectory studies®’. One explanation of a potential source of trajectory error is
shown in Fig. 8, where the 10 m level daily vector average EDAS wind is compared with the
measured vector average at Houston. The largest differences between measured and model
winds, in both direction and speed, occur between August 4™ and 8", on the order of 90° in
direction and 2 to 4 m/s in speed. More significantly, the wind speed is substantially over-
predicted, supporting the earlier contention that the 3-D model computed too much advection of

cleaner air into the Houston cell. This certainly
does not explain all the error, as the period of

Precipitation (mm)

Lol emi bl L

1 2 3 4 5 6 7 8 9 10 11 12 13

August 1997 (Day)

Figure 9 Precipitation accumulated into 3 hour bins from
the EDAS archive and measured at Houston. Trace

measurements were assumed to equal 1 mm.

the most consistent trajectories (7" - 9™) also
showed errors in the wind prediction. However,
when trajectories originate from low emissions
regions, directional errors have little
consequence.

Although the model calculation did not
include any wet or dry deposition, the
1 | occurrence of rain would certainly be expected
s e to lower measured ozone values, while model
predictions during periods of model rain (which
may or may not match observations) will still
have some effect in reducing ozone values due
to the increased cloud amounts and reduction in
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photolysis. Rainfall amounts measured at Houston are compared with the EDAS values on Fig.
9. Rainfall prediction is probably one of the most difficult challenges for any meteorological
model. The results show a general over-prediction of rain. Not unexpectedly, the largest rainfall
amounts, both measured and predicted, are associated with the lowest ozone concentrations,
especially during the 8™ and 9" of August. The model’s sensitivity to rain is surprising in that
precipitation was not explicitly treated and sensitivity tests with the box model showed only a
slight dependence on cloud amount. It is more likely that the model’s rain dependence is only an
indicator of the quality of the entire meteorological prediction, including wind direction,
temperature, cloud amount -- all factors that will affect the subsequent ozone calculation.
Perhaps it is only coincidence, but the largest ozone under-prediction (on the 6™ ) is associated
with model-predicted rain but no measured rain, while the largest ozone over-prediction on the
13" is associated with the largest measured rainfall
but only a small rainfall prediction for that day.

40.0

[ Observed
S EDAS

The relationship of the rain prediction to the
other meteorological parameters can be seen in Fig.
10 as well, where the 2 m EDAS air temperature is
compared with temperatures measured at Houston.
In general the EDAS estimates are quite good -
especially the maximum values - and the EDAS

23 a5 e 7 s o9 0 nononouwos e archive does not appear to have the same under-
August 1997 (UTC Day) predictive bias found by Ryan®’ for NOAA’s
Figure 10 Hourly air temperature measured at 2 m at Nested Grid Model. However, minimum EDAS
Houston and from the EDAS archive from 1-15  temperatures are consistently higher than the
August 1997. observations. The period between August 8" and
11™ shows the poorest model performance from the EDAS and also corresponds with the period
of over predicted rainfall.

Temperature (C)

SUMMARY AND CONCLUSIONS

Several ozone modeling approaches were investigated to determine if the uncertainties in the
meteorological data would be sufficiently large to discourage the application of more physically
realistic ozone forecast models. Three computational schemes were evaluated: a linear
regression model to provide a baseline to show how much of the variability in maximum ozone
can be attributed to meteorological factors, a non-advective box model that couples the local
meteorological conditions with a simple ozone formation scheme (the IER” model), and a fully 3-
dimensional transport and dispersion model also coupled with the IER scheme. Correlation
between measured daily maximum ozone and model predicted ozone was found to be 0.70 for
the regression model, 0.65 for the box model, and 0.49 for the 3-D model. Absolute error
statistics (in terms of ppb) are summarized in Table 2 for all daily maximum ozone
concentrations and for those days that the measured ozone maximum exceeded 100 ppb.
Although in general the errors are large, the root mean square error and the mean absolute error
are smaller for the regression approach than for the other two methods. However, it is important
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to note that all of the models have a free parameter which is chosen to give the best overall fit to
the measurements: the regression model by definition, the box model through the ventilation
factor, and the 3-D model through the selection of a background concentration. For the highest
concentrations, the box model error results were more similar to the regression model than the
3-D model and showed less underestimation of the mean ozone concentrations.

Table 2. Model Evaluation Statistics (ppb) for 5 months of daily maximum ozone for each day (All) and for those
days where the observed ozone maximum exceeded 100 ppb (>100).

Model Regression Box 3-D

All >100 All >100 All >100
Observed mean 63.6 126 63.3 126 63.7 126
Predicted mean 63.6 88.4 55.8 95.8 58.5 81.1
Mean absolute error 18.7 37.2 23.3 40.1 23.8 48.7

The results are consistent with those found by other researchers using more complex
models. A median correlation of 0.5 for maximum daily ozone was reported®? over a 120 station
European network between 1989-1996 using a Lagrangian box model with a more complete
chemical prediction scheme (45 species, 100 reactions)**. Although the more complex 3-D
HYSPLIT-IER model could only account for 25% of the variance in the daily ozone maxima,
similar to the European network results, the 5 month time series of measured and predicted
concentrations showed that the model predictions were very good for multi-day episodes
(correlations approaching 0.7).

The more complex 3-D modeling approach showed poorer results than the non-advective
box model because the Houston ozone maxima were dominated by local factors rather than
transport of pollutants from the surrounding region and the transport was not always modeled
correctly. One conclusion is that better results are not just obtained by the incorporation of
additional modeling complexity but that there needs to be a comparable increase in accuracy. A
comparison of the EDAS wind direction and speed values at Houston showed the largest
difference from the observations on those days in which the ozone underestimates were the
greatest. These periods also tended to correspond with poor precipitation and temperature
estimates. Perhaps some of these predictions may be improved with better spatial resolution in
the meteorological data. Gaza** showed that it is important for ozone forecast models to
simulate the formation and movement of smaller scale features such as the sea-breeze front and
troughs, although he suggested that many of the currently available mesoscale models may not
be able to accurately handle these features. The issue of accuracy and resolution is not just a
meteorological one, but includes improvements in the spatial definition of emissions and higher
resolution sampling grids. All the factors that influence the transport of pollutants from source to
receptor will not be well resolved for larger grid cell sizes and may degrade the calculation of
more complex modeling approaches.
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There are still considerable uncertainties to be addressed in future studies, including the
importance of accurately modeling small scale flow features, the importance of better emissions
inventories (considering the population of Houston more than doubled between the 1980 and
1990 census), and how a more complete chemical scheme, although at greater computational
cost, might improve the ozone forecast. The results of this study suggest that in regions where
there are extensive existing measurements, it would be difficult to design a more physically
realistic system that would perform better than a site specific regression technique although the
box model approach seemed to have a superior performance over a broader range of
concentration levels. Perhaps a hybrid regression-box model methodology can be developed
that would take advantage of the strengths of each method. More physically realistic models, if
run at sufficiently fine resolution with input data at comparable resolution, have the potential to
address these modeling complexities. However, it would still be necessary to demonstrate that
the underlying variability of the atmospheric would not limit the precision of such a system.
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APPENDI X

The Integrated Empirical Rate (IER) model is an algebraic solution of the Generic Reaction Set
(GRS), and is based upon the definition of a quantity called the smog produced (SP),

{SP} = {05}, - {05}, + {NOj, - {NO}, (AD)

which is defined as the ozone produced plus the oxidized nitric oxide. The formation of SP is
linear with the precursor concentrations and sunlight. In the light-limited regime
t
{SP},=[ Zk, dt (A2
0
where the integration represents the photolysis of nitrogen dioxide to nitric oxide. In the NO,
limited regime
{SP}, =B {NOJ, (A3)

and where the {SP} at any time will be the minimum from the two regimes,
{SP} =MIN[ {SP},, {SP}, ], (A4)

which may be limited by the amount of NO, available. The NO, stochiometric coefficient , 8, for
the maximum SP formation equals 4.09. The “Z” term is defined by

Z=(A, {ROC} + A, {ISOP} ) g'00v(V/T-1/316) (A5)

where v is an empirical constant (4.71) derived from the smog chamber studies, T (°K) is
temperature, and A, is the average activity coefficient (0.0067)* for non-methane hydrocarbons
and A, is the activity coefficient (0.0117 - Cope, private communication) for isoprene/voc
mixtures. The rate coefficient for NO, photolysis '® is given for three different zenith angles by

k, = [4.23 x 10*+ (1.09 x 10*/ cos 0) ] S 0° <0<47°
k,=[5.82x 104 S 47°< 0 < 64° (A6)
k, = [-0.997 x 10+ 1.20 x 10° (1-cos0) ] S 64°< § < 90°

where 0 is the solar zenith angle, S (W m™) is the total solar radiation at the ground. The SP
concentration is also used to compute the loss of NO, which is assumed to occur due to
conversion of smog to Stable Non-Gaseous Nitrate (SNGN) particles and is defined as a linear
proportion to the SP concentration

{SNGN},=0.125 {SP}, (A7)
and where the losses are limited by the NO, concentration
{NO,}, = {NO,}, - MIN[ {NO}, , {SNGN} ], (A8)

21



and NO, is defined by
{NO} = {NOj + {NO},. (A9)

The IER systems of equations is solved using the photo-stationary state equation assumption to
balance the formation and destruction (nitric oxide-ozone titration reaction) of ozone,

{05}, =k, {NO,},/k, {NO},, (A10)
and where the k, titration reaction constant® is
k,=9.24x10° T T, (A11)
The remaining species are determined from the algebraic solution of Egs. Al, A9, and A10:
{NO} = 0.5[(k,/k,+{C})*+ 4k, /k,{NO}] ** - 0.5(k,/k,+{C}), (A12)

where
{C} = {SP}, +{O}, - {NO},. (A13)
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