NOAA Technical Memorandum ERL ARL-80

MEASURED WEEKLY AND TWICE-DAILY KRYPTON-85 SURFACE AIR CONCENTRATIONS WITHIN 150 KM OF THE SAVANNAH RIVER PLANT (MARCH 1975 THROUGH SEPTEMBER 1977) - FINAL REPORT

K. Telegadas G. J. Ferber R. R. Draxler

Air Resources Laboratories

M. M. Pendergast A. L. Boni

Savannah River Laboratory

J. P. Hughes J. Gray

Argonne National Laboratory

Air Resources Laboratories Silver Spring, Maryland January 1980

UNITED STATES DEPARTMENT OF COMMERCE Philip M. Klutznick, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Richard A. Frank, Administrator Environmental Research Laboratories Wilmot N. Hess, Director

MEASURED WEEKLY AND TWICE-DAILY KRYPTON-85 SURFACE AIR CONCENTRATIONS WITHIN 150 KM OF THE SAVANNAH RIVER PLANT (MARCH 1975 THROUGH SEPTEMBER 1977)

FINAL REPORT

<u>Abstract</u>. A cryogenic air sampling network of 13 stations surrounding the Savannah River Plant operated continuously taking weekly or twice-daily ⁸⁵Kr samples from March 1975 to September 1977. These data are reported together with the monthly ⁸⁵Kr emissions at the plant and associated meteorological data. The ⁸⁵Kr sampling data have also been averaged into monthly, seasonal, and annual concentrations. These data should prove useful to air pollution modellers for model improvement and verification.

1. INTRODUCTION

In recent years, there has been increasing concern about industrial air pollution and the need to determine atmospheric transport and dispersion of airborne material to distances of a hundred kilometers or more from a pollutant source. Many models have been developed to estimate pollutant concentrations at these distances but there are very few data available for verification of these calculations beyond a few kilometers.

An air sampling experiment was designed by the Air Resources Laboratories (ARL) of the National Oceanic and Atmospheric Administration (NOAA) and the Savannah River Laboratory (SRL) of E.I. DuPont de Nemours and Co. with the following objectives:

- Provide weekly average air concentrations for model verification at distances from about 25 km to 150 km from a quasi-continuous point source.
- Provide verification of estimates of long-term air concentrations and dose-to-man from routine Savannah River Plant (SRP) emissions.
- Conduct several periods of intensive short-term sampling (twice-daily) to provide more detailed data for model development and verification.
- 4) Test the adequacy of standard stability-wind rose techniques for estimating monthly, seasonal, and annual air concentrations out to 150 km from a continuous source.

The sampling program was designed to take advantage of the Krypton-85 (⁸⁵Kr) plume produced by routine emissions from the operation of chemical

separations facilities at the SRP and the availability of 13 cryogenic air samplers used by ARL in a 1974 dispersion experiment (Ferber et al., 1977). A program of weekly air sampling at 13 locations surrounding the SRP began in March 1975. Pendergast et al. (1979) reported the weekly data for the first 1½ years (March 1975 through August 1976) of this sampling program. This final report includes those data along with weekly and twice-daily samples collected from September 1976 through mid-September 1977. Continuous sampling over this relatively long period provides air concentration data over a wide range of meteorological conditions as well as seasonal and annual average concentration patterns.

Because ⁸⁵Kr is an inert gas (radioactive half-life of 10.76 years), its use as a tracer enables one to study the effects of atmospheric transport and dispersion free of the complications introduced by wet and dry deposition, and chemical transformations.

This sampling program provides a unique set of data for verification of atmospheric dispersion calculations used in air pollution models. The ⁸⁵Kr emissions data and meteorological data provided in this report and associated data tapes may be used as input for model calculations of monthly, seasonal and annual concentrations to be tested against the measured concentrations.

2. DESCRIPTION OF SITE AND SAMPLING NETWORK

The Savannah River Plant is the major production facility of the U.S. Department of Energy (DOE). The SRP includes a nuclear fuel manufacturing facility, three production reactors, two chemical separations plants, a heavy water production plant and various waste management activities. These facilities are located on a $770 - \text{km}^2$ site south of Aiken, South Carolina.

The terrain within 150 km of the SRP is gently rolling hills ranging in elevation from 150 m above sea level to the northwest to about 25 m toward the southeast. The SRP is covered with mixed hardwood and pine forests; the surrounding area consists of equal amounts of mixed forests and cleared farm land.

Krypton-85 is released during dissolving operations from the two chemical separations plants located near the center of the SRP. The ⁸⁵Kr is released as a non-buoyant plume through two 62 m stacks.

The ⁸⁵Kr samplers were located at 13 sites surrounding the SRP as shown in Figure 1. Table 1 gives the approximate azimuth and distance to each site from a point midway between the two ⁸⁵Kr source areas (F and H).

3. SAMPLE COLLECTION AND PROCESSING

The cryogenic air sampler (Figure 2), concentrates the krypton in the atmosphere from an abundance of about one part per million in the ambient

Figure 1. Krypton-85 cryogenic air sampling stations, meteorological towers and surface weather stations within 200 km of the SRP source. Dashed circles indicate earlier sampling location (see Table 1).

Location	Station No.	Latitude ^O N	Longitude ow	Distance, ^a km	Azimuth, ^a deg
Warrenton, GA	2	33.40	82.65	94	278
(Moved 9-22-76)	2	33.46	82.56	· 87	283
Millen, GA	3	32.80	81.95	60	207
Swainsboro, GA	4	32.60	82.34	9 9	220
Statesboro, GA	5	32.35	81.80	104	187
(Moved 3-30-76)	5	32.46	81.78	92	187
Ridgeland, SC	6	32.50	80.95	109	142
St. George, SC	7	33.20	80.60	100	95
Bamberg, SC	8	33.30	81.05	57	88
St. Mathews, SC	9	33.66	80.78	93	63
Wagener, SC	10	33,65	81.36	50	34
Columbia, SC	11	34.00	81.05	98	36
Greenwood, SC	12	34.20	82.15	1 12	336
Camden, SC	13	34.25	80.65	144	41
Bush Field (Augusta, GA)	14	33.35	81.95	28	286
Source F		33.28	81.68		
Source H		33.28	81.64		
1					

Table 1. Locations of the 13 Cryogenic Sampling Sites

^aMeasured from a point midway between the two ⁸⁵Kr emissions areas at the Savannah River Plant.

Figure 2. Cryogenic air sampler.

air to about one part per hundred in a 900 cc sample cylinder. The krypton is concentrated by continuous liquefaction of the incoming air, using liquid nitrogen (about 20 liters per day) as the cold source, and allowing the more volatile atmospheric components to boil off.

The sampler consists of a main unit and a small air compressor both operating on 120 V, 60 Hz AC power. The main unit consumes 120 watts and the compressor 380 watts. The sampler is 61 cm wide x 74 cm long x 159 cm high and weighs 114 kg including the compressor.

The cryogenic air sampler can be programmed to process the incoming air for any desired sampling period from six hours to a week or more. Following the sample collection period, the sampler is programmed to enter the Sample Isolation Period (SIP) for one hour. During the SIP, the collected enriched sample is automatically warmed by a refrigerant gas system and transferred to the sampling cylinder. After completion of the SIP, the filled sample cylinder must be removed and a new cylinder installed manually.

The cryogenic air sampler was programmed to collect seven-day samples at a continuous flow rate of 8 ℓ /min. Daily observations of flow and several pressure gages were recorded by field operators in order to maintain adequate operation of the sampling units. The units were serviced each week at which time liquid nitrogen was supplied in 160 liter interchangeable dewars and the sample cylinders returned to the SRL.

The sample cylinders were logged in and checked before shipment to Argonne National Laboratory (ANL) where the krypton was isolated in a highly purified state by a gas chromatographic separation technique. The amount of 85 Kr contained in the sample was then determined by measuring its radioactivity.

During the twice-daily sampling periods (day and night, with each sample of about 10-hour duration), the sampler was programmed to collect at a continuous flow rate of 20 ℓ/min .

Constant maintenance was required to maintain the network of 13 stations at a 90% operational level. Moisture buildups within the cryogenic system periodically reduced the efficiency. There is some question as to whether changes in the efficiency of collection of krypton may have been great enough, at times, to significantly affect some of the concentration values. In an effort to resolve this question, two cryogenic air samplers were operated side by side at the SRL, after the sampling program terminated, from October 10, 1977 to January 20, 1978. The results of this intercomparison are given in Section 6.

4. MONTHLY KRYPTON-85 EMISSIONS

The total amount of ⁸⁵Kr released from the SRP has been tabulated on a quasi-monthly basis to correspond to the weekly sampling periods from March 3, 1975 through September 19, 1977 as given in Table 2.

Total Monthly Kr-85 Emissions (Curies) from the Savannah River Plant from March 1975 through September 1977. Table 2.

1977	76) 64,700 (Jan. 3-31)	71,000 (Jan. 31-Feb. 28)	98,000 (Feb. 28-Apr. 4)	65,800 Apr. 4-May 2)	53,400 (May 2-30)	46,000 (May 30-July 4)	32,300 (July 4-Aug. 1)	11,700 (Aug. 1-29)	2,300 (Aug. 29-Sept. 19)			
1976		00 (Feb. 2~Mar. 1)	00 (Mar. 1-29))0 (Mar. 29-May 3))0 (May 3-31)	00 (May 31-June 28))0 (June 28-Aug. 2)	00 (Aug. 2-30))0 (Aug. 30-Oct. 4)	00 (Oct. 4-Nov. I)	00 (Nov. 1-29)	00 (Nov. 29-Jan. 3, 1977)
975			3-31)	31-Apr. 28)	28-June 2)	2-30)	30-Aug. 4)	4-Sept. 1)	-		3-Dec. 1)	(Dec. 1-29) 61,200
			51,200 ^a	51,200 ^a	51,200 ^a	51,200 ^a	51,200 ^a	4,200	7,400	17,500	43,800	Dec. 89,300 (1
		1976 55,800 (Dec. 29,'75-Feb. 2,'76)	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 31-Apr. 28) 64,100 (Mar. 29-May 3) 65,800	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 31-Apr. 28) 64,100 (Mar. 29-May 3) 65,800 51,200 ^a (Apr. 28-June 2) 35,400 (May 3-31) 53,400	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 31-Apr. 28) 64,100 (Mar. 29-May 3) 55,800 51,200 ^a (Apr. 28-June 2) 35,400 (May 3-31) 53,400 51,200 ^a (June 2-50) 65,100 (May 31-June 28) 46,000	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 31-Apr. 28) 64,100 (Mar. 29-May 3) 55,800 51,200 ^a (Mar. 21-0) 53,400 (May 3-31) 53,400 51,200 ^a (Apr. 28-June 2) 35,400 (May 3-31) 53,400 51,200 ^a (June 2-50) 65,100 (May 31-June 28) 46,000 51,200 ^a (June 30-Aug. 4) 79,600 (June 28-Aug. 2) 32,300	1975 1975 1975 1975 $64,700$ 55,800 (Dec. 29, '75-Feb. 2, '76) $64,700$ $81,200$ $(Feb. 2.4mr. 1)$ $71,000$ $51,200^{a}$ (Mar. 3-31) $62,100$ $(Mar. 1-29)$ $98,000$ $51,200^{a}$ (Mar. 331) $62,100$ $(Mar. 1-29)$ $98,000$ $51,200^{a}$ (Mar. 21-May 3) $64,100$ $(Mar. 29-May 3)$ $98,000$ $51,200^{a}$ (Mar. 21-May 28) $64,100$ $(Mar. 29-May 3)$ $98,000$ $51,200^{a}$ (Mar. 23-June 2) $35,400$ $(Mar. 29-May 3)$ $53,400$ $51,200^{a}$ (June 230) $55,100$ $(Mar. 29-May 3)$ $53,400$ $51,200^{a}$ (June 230) $55,100$ $(Mar. 29-May 3)$ $53,400$ $51,200^{a}$ (June 230) $55,100$ $84,000$ $46,000$ $51,200^{a}$ (June 30-Aug. 4) $79,600$ $(June 28-Aug. 2)$ $32,500$ $4,200$ (Aug. 4-Sept. 1) $46,500$ $Aug. 2.30$ $11,700$ <td>19751976197655,800(Dec. 29,'75-Feb. 2,'76)$64,700$$51,200^a$(Mar. 3-31)$81,200$$64,700$$51,200^a$(Mar. 3-31)$62,100$(Mar. 1-29)$98,000$$51,200^a$(Mar. 31-Apr. 28)$64,100$(Mar. 29-May 3)$55,800$$51,200^a$(Apr. 28-June 2)$55,400$(May 3-31)$53,400$$51,200^a$(June 2-50)$55,100$(May 3-31)$53,400$$51,200^a$(June 2-50)$55,100$(May 31-June 28)$46,000$$51,200^a$(June 30-Aug. 4)$79,600$(June 28-Aug. 2)$32,300$$4,200$(Aug. 4-Sept. 1)$46,500$(Aug. 2-30)$11,700$$7,400$(Sept. 1-29)$86,400$(Aug. 30-Oct. 4)$2,300$</td> <td>1975 1976 1976 55,800 (Dec. 29, '75-Feb. 2, '76) $64,700$ 81,200 (Feb. 2-Mar. 1) 71,000 51,200^a (Mar. 3-31) $62,100$ (Mar. 1-29) $98,000$ 51,200^a (Mar. 31-Apr. 28) $64,100$ (Mar. 1-29) $98,000$ 51,200^a (Mar. 31-Apr. 28) $64,100$ (Mar. 29-May 3) $55,800$ 51,200^a (Mar. 31-Apr. 28) $64,100$ (Mar. 29-May 3) $53,400$ 51,200^a (June 2.3c) $55,400$ (May 3-31) $53,400$ 51,200^a (June 2.30) $65,100$ (May 3-31) $53,400$ 51,200^a (June 30-Aug. 4) $79,600$ (June 28-Aug. 2) $32,300$ 51,200^a (June 30-Aug. 4) $79,600$ (June 28-Mag. 2) $32,300$ $4,200$ (Aug. 4-Sept. 1) $46,500$ $64,00$ $32,300$ $4,200$ (Sept. 1-29) $86,400$ $60c. 4)$ $2,300$ $7,400$ (Sept. 1-29) $86,400$</td> <td>1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200^a (Mar. 31-Apr. 28) 64,100 (Mar. 1-29) 98,000 51,200^a (Apr. 28-June 2) 35,400 (May 3-31) 53,400 51,200^a (June 2-50) 65,100 (May 2-30) 11,700 4,200 (June 30-Aug. 4) 79,600 (June 2-30) 32,300 4,200 (Aug. 4-Sept. 1) 46,500 (Aug. 2-30) 11,700 7,400 (Sept. 1-29) 86,400 (Aug. 2-30) 2,300 17,500 (Sept.</td>	19751976197655,800(Dec. 29,'75-Feb. 2,'76) $64,700$ $51,200^a$ (Mar. 3-31) $81,200$ $64,700$ $51,200^a$ (Mar. 3-31) $62,100$ (Mar. 1-29) $98,000$ $51,200^a$ (Mar. 31-Apr. 28) $64,100$ (Mar. 29-May 3) $55,800$ $51,200^a$ (Apr. 28-June 2) $55,400$ (May 3-31) $53,400$ $51,200^a$ (June 2-50) $55,100$ (May 3-31) $53,400$ $51,200^a$ (June 2-50) $55,100$ (May 31-June 28) $46,000$ $51,200^a$ (June 30-Aug. 4) $79,600$ (June 28-Aug. 2) $32,300$ $4,200$ (Aug. 4-Sept. 1) $46,500$ (Aug. 2-30) $11,700$ $7,400$ (Sept. 1-29) $86,400$ (Aug. 30-Oct. 4) $2,300$	1975 1976 1976 55,800 (Dec. 29, '75-Feb. 2, '76) $64,700$ 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) $62,100$ (Mar. 1-29) $98,000$ 51,200 ^a (Mar. 31-Apr. 28) $64,100$ (Mar. 1-29) $98,000$ 51,200 ^a (Mar. 31-Apr. 28) $64,100$ (Mar. 29-May 3) $55,800$ 51,200 ^a (Mar. 31-Apr. 28) $64,100$ (Mar. 29-May 3) $53,400$ 51,200 ^a (June 2.3c) $55,400$ (May 3-31) $53,400$ 51,200 ^a (June 2.30) $65,100$ (May 3-31) $53,400$ 51,200 ^a (June 30-Aug. 4) $79,600$ (June 28-Aug. 2) $32,300$ 51,200 ^a (June 30-Aug. 4) $79,600$ (June 28-Mag. 2) $32,300$ $4,200$ (Aug. 4-Sept. 1) $46,500$ $64,00$ $32,300$ $4,200$ (Sept. 1-29) $86,400$ $60c. 4)$ $2,300$ $7,400$ (Sept. 1-29) $86,400$	1975 1976 55,800 (Dec. 29,'75-Feb. 2,'76) 64,700 81,200 (Feb. 2-Mar. 1) 71,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 3-31) 62,100 (Mar. 1-29) 98,000 51,200 ^a (Mar. 31-Apr. 28) 64,100 (Mar. 1-29) 98,000 51,200 ^a (Apr. 28-June 2) 35,400 (May 3-31) 53,400 51,200 ^a (June 2-50) 65,100 (May 2-30) 11,700 4,200 (June 30-Aug. 4) 79,600 (June 2-30) 32,300 4,200 (Aug. 4-Sept. 1) 46,500 (Aug. 2-30) 11,700 7,400 (Sept. 1-29) 86,400 (Aug. 2-30) 2,300 17,500 (Sept.

(a) Average monthly emissions for the period August 1975 through September 1977 are used for these five months (see text).

Questions concerning the actual monthly emission for the first five months (March 3, 1975 through August 4, 1975) have not been completely resolved. We, therefore, have substituted the arithmetic average monthly emission (for the period August 1975 through September 1977) for the first The average value is believed to be within +20% of the actual five months. values for March through June 1975 but the July 1975 value has a much larger uncertainty. For the purpose of calculating long-term (seasonal, annual) mean concentrations, the 85Kr release may be assumed to be continuous. and at a uniform rate, during each month. Actually chemical separations operations are done as a batch process in separate runs lasting 10 hours or longer and there are many days with no emissions. Emission rates may vary by more than a factor of three during a run. However, separation is done around the clock (no day-night bias) on most days including weekends and the fluctuations in emission rate should not seriously affect long-term concentrations (Draxler, The percent of time ⁸⁵Kr was emitted from the Savannah River Plant 1980). from March 1975 through September 1977 is given in Table 3.

If more detailed data are desired, the best estimate of the hourly emission rates between March 3, 1975 and September 19, 1977 is available on magnetic tape (see Section 9). These data are classified as CONFIDENTIAL RESTRICTED DATA and are available to researchers with the appropriate clearance from the DOE Headquarters, Division of Nuclear Fuel Cycle and Production, Washington, DC 20585.

5. METEOROLOGICAL DATA

Meteorological data for the years of the ⁸⁵Kr Savannah River Experiment (SRE), 1975, 1976 and 1977, have been stored on magnetic tape for the region within and surrounding the Savannah River Plant. There are separate Meteorological Data Bases (MDB) for hourly surface weather observations, twice-daily rawinsonde observations, and hourly-averaged meteorological tower observations. These were combined to make a SRE-MDB tape.

In addition to the raw meteorological data, the on-site 62 m meteorological tower data has been used to compile wind-rose statistics representative of the source area and an acoustic sounder located at the SRP has been used to compile vertical mixing characteristics of the lower atmosphere.

The following sections describe in more detail, the individual data bases, the data included in the combined SRE-MDB tape, and the wind-rose and acoustic sounder data.

5.1 Surface Weather Observations

Surface weather observations at stations between $100^{\circ}W$ and $60^{\circ}W$, $50^{\circ}N$ and $20^{\circ}N$ have been provided on magnetic tape (see Appendix A for the tape format) by the National Climatic Center, NOAA (NCC, 1978a). About 600 surface weather stations report each hour in this area. As many as 35 items and meteorological observations are recorded for each station. All stations appear in sequence by block-station number each hour. Approximately one month of data are stored on a magnetic tape (1600 bpi).

Month	Percent	During Sampling	Period*
	1975	1976	1977
Jan.		55	. 77
Feb.		73	62
Mar.	47	73	73
Apr.	43	58	56
Мау	47	45	57
Jun.	38	68	35
Jul.	14	65	33
Aug.	15	49	7
Sept.	49	55	51
Oct.	50	50	
Nov.	57	46	-
Dec.	71	50	

Table 3. Percent of time Kr-85 was being emitted from the Savannah River Plant from March 1975 through September 1977

*See Table 2 for dates included in each sampling period.

5.2 Rawinsonde Observations

Upper-air observations are usually made every twelve hours (a few report every six hours) and are available from the National Climatic Center, NOAA (NCC, 1978b) on magnetic tape (see Appendix B for the tape format) for approximately 150 stations in the United States and Canada. Winds and temperatures are tabulated separately for each sounding. One year of data are stored on two magnetic tapes (1600 bpi).

5.3 Meteorological Tower Observations

Meteorological data collected at power plant sites in the area near the Savannah River Plant were provided by local utility companies (Carolina Power and Light Co., Duke Power Co., Georgia Power Co., South Carolina Electric and Gas Co.). These sites have been assigned a standard WMO type-block station number from 72001 through 72007. The block-station numbers, location, and period of data are given in Table 4 for each of the seven power plant towers.

In most cases the measurements include hourly wind speed, direction and directional range at one to three levels and ambient temperature, dew point, vertical temperature gradient, precipitation and solar radiation when available.

	Table 4. Met	eorological	Tower Loca	tions
Site	Block-Station Number	North Latitude	West Longitude	Available Period
Newberry, SC	72001	(degr 34.30	81.32	1/1/75 - 12/31/75
Hartsville, SC	72002	34.40	80.15	1/1/75 - 12/31/77
Southport, NC	72003	33.95	78.00	1/1/75 - 12/31/77
Baxley, GA	72004	31.75	82.40	1/1/75 - 12/31/77
Girard, GA	72005	33.05	81.80	4/1/77 - 12/31/77
Seneca, SC	72006	34.80	82,90	1/1/75 - 12/31/77
Rock Hill, SC	72007	34.95	81.00	12/15/75 - 12/31/77
WJBF-TV, SC	72008	33.40	81.83	1/11/75 - 12/31/77
SRP, SC	72009	33.28	81.66	1/1/75 - 12/31/77

In addition to the seven power plant towers, meteorological data from the WJBF television tower, about 21 km from the SRP source, are included with the other data. The TV tower is instrumented at seven levels between 2 and 335 m above ground with temperature sensors and turbulence-quality wind sensors. Data at three levels (10 m, 91 m and 243 m) were averaged over 15 min. periods and tabulated at one-hour intervals.

Adjacent to the main SRP operating areas, seven on-site towers with a wind sensor at 62 m are located in pine forests within a 10 km radius of the SRP source. The 15 min. average wind speeds and direction were tabulated at one-hour intervals. Because any individual 62-m tower usually does not have a continuous record, an hourly arithmetic average of the wind velocity from all on-site towers was calculated from the available data at one-hour intervals. This arithmetic average is assumed to be representative of the wind conditions at 62 meters (source area stack height) at a location midway between the two source areas, F and H. The averaged hourly values are included on the tape as SRP tower - 72009.

The towers within 200 km of the SRP are shown in Figure 1. The format of the tower data tape is given in Appendix C.

5.4 Savannah River Experiment - Meteorological Data Base Tape

The three types of data from Sections 5.1, 5.2, and 5.3 (surface, upperair sounding, and tower) are included on the SRE-MDB magnetic tape. The data appear in time sequence in the format given in Appendix D.

5.4.1 Surface weather observations

Surface weather stations located between 86°W and 77°W, 37°N and 30°N are included in the SRE-MDB. About 60 stations report in this subgrid each hour. The surface stations within 200 km of the SRP source are shown in Figure 1. Ten parameters per station have been extracted for the SRE-MDB tape. These are World Meteorological Organization (WMO) block station number, station longitude and latitude, station elevation above mean sea level, wind direction, wind speed, station pressure, dry bulb temperature, dew point depression, and the previous 6-hour precipitation amount.

In addition, the Pasquill stability category (A to G represented by 1 to 7) as defined by Turner (1964), has been added to each surface observation. The stability category is based on the cloud cover, cloud ceiling, solar elevation angle, and wind speed observed each hour.

5.4.2 Rawinsonde observations

The SRE-MDB tape includes only those observations within the surface weather stations subgrid. Four rawinsonde stations regularly take observations every twelve hours in this area: Waycross and Athens, Georgia; Greenville and Charleston, South Carolina. To simplify data handling, wind and temperature were combined in a single tabulation on the SRE-MDB tape. All winds were included. Temperatures were linearly interpolated to a wind level where no corresponding temperature existed. Temperatures at levels where no winds were available were excluded.

5.4.3 Meteorological tower observations

For the SRE-MDB tape the tower sites were treated as rawinsonde stations in terms of format. Hourly wind direction, wind speed and temperature for as many as three levels are included. The tower heights range from 40 to 100 m except for the TV tower which includes a level at 243 m.

5.5 Wind-rose Statistics

Wind-rose statistics based upon the average SRP tower wind are available on magnetic tape for each month during the experiment.

The monthly period is chosen to correspond to the start and end date of the air sampling periods (see Table 2 and Table 9a-c). The wind-rose statistics provide the joint frequency distribution for direction (16 sectors), speed (6 classes) and stability (7 categories). The stability class was determined from observations of the standard deviation of wind azimuth at 62 m height.

The format of the wind-rose magnetic tape data is given in Appendix E. Also described in Appendix E is the original average hourly SRP tower wind data from which the wind-rose statistics were derived and from which the onsite SRP tower data (72009) were extracted (see Appendix C).

5.6 Acoustic Sounder

An acoustic sounder located at the SRP provides continuous measurements of the vertical mixing characteristics of the lower atmosphere. These data are recorded on facsimile paper and subjectively analyzed at 1-hour intervals. During unstable conditions, the acoustic mixed depth may exceed the 1 km range of the instrument.

Table 5 is a summary of the average monthly acoustic mixing depth at the SRP for day and night between March 1975 and September 1977. The climatological average maximum monthly mixing depths interpolated from Holzworth's maps (1972) are substituted for hours when the acoustic mixed depth is above 1 km.

The hourly acoustic mixed depths for the entire period are available on magnetic tape (see Appendix F for tape format). This tape contains acoustic data which have been reduced manually to provide hourly estimates of the mixing depths and a characterization of the acoustic record into one of the 17 categories shown in Table 6. The mixing depth is frequently a straightforward measurement from the acoustic record. The characterization of the acoustic record, however, can be quite subjective. The major value of the acoustic categories is to place confidence limits on the mixing depth estimates because more subjectivity is required to estimate mixing depth in some categories than others.

		D	AYTIME		NI	GHTTIME ^C	
Month	Year	Mean Std. Dev. m	Maximum ^d	N	Mean Std. Dev. m	Maximum	N
March	1975	459 (311)	1300	181	357 (109)	700	226
Apri1		464 (359)	1600	29 1	352 (117)	800	307
May		511 (430)	1700	63	349 (75)	550	74
June		496 (461)	1730	269	311 (88́)	500	285
July		464 (459)	1760	319	238 (105)	600	333
August		505 (455)	1800	225	306 (95)	600	251
September		477 (451)	1750	193	300 (117)	600	175
October		425 (347)	1600	3 9 5	325 (144)	700	425
November		391 (299)	1400	246	364 (158)	900	239
December		397 (276)	1275	225	447 (198)	1000	214
January	1976	450 (55)	500	6	560 (52)	600	10
February		351 (208)	1000	102	436 (272)	1000	90
March		469 (282)	1300	407	398 (124)	900	432
April		602 (352)	1600	322	556 (166)	1000	329
May		660 (431)	1700	110	463 (150)	1000	116
June		565 (471)	1730	105	309 (76)	500	81
July		525 (462)	1760	407	314 (75)	500	385
August		501 (438 <u>)</u>	1800	344	319 (89)	600	438
September		541 (414)	1750	242	395 (102)	800	286
October		530 (390)	1600	73	327 (92)	600	92
November $^{\mathscr{C}}$							
December [¢]							
January	1977	482 (209)	1125	226	462 (155)	1000	283
February		475 (199)	1000	211	474 (138)	950	217
March		500 (293)	1300	31.4	468 (158)	1000	381
April		452 (242)	1600	337	500 (145)	1000	382
Мау		461 (361)	1700	363	427 (95)	800	372
June		486 (390)	1730	353	485 (127)	950	362
July		497 (427)	1760	206	394 (57)	650	223
August		467 (467)	1800	29	394 (40)	450	16
September		410 (438)	1750	379	225 (97)	600	330

Table 5. Average Hourly Acoustic Mixed Depth for each Month During the Savannah River Experiment.

a. Statistics are based upon monthly estimates of mixing depth obtained with an acoustic sounder located at SRP. N is the hours of data used to compile the statistics. Elevation of the acoustic sounder is 85 m MSL. The mixing depths are in meters.

b. Daytime defined as the period between 1400 GMT and 0100 GMT inclusive.

c. Nighttime defined as the period between 0200 GMT and 1300 GMT inclusive.

d. Maximum vertical extent of acoustic sounder is 1000 m. When mixing depth exceeds 1000 m, it is assumed to be given by the climatological average obtained from Holzworth.

e. Data not available.

- Table 6. Categories of Atmospheric Boundary Layers as Identified by Acoustic Sounder
- Category 1: Abrupt change from stable multiple layers to a well-mixed layer
- Category 2: Back-scattered layer
- Category 3: Back-scattered layer with waves
- Category 4: Very complex; many waves in the bottom layer
- Category 5: Two layers in the bottom
- Category 6: Two layers, separate one over the other, large separation from the top to the bottom layer
- Category 7: Multiple weak layers with waves
- Category 8: Strong multiple layers with waves
- Category 9: Ascending layer from the surface
- Category 10: Ascending layer, but not starting at the surface
- Category 11: Descending layer, but not merging with the surface
- Category 12: Descending layer merging with the surface layer
- Category 13: Thermal plumes only
- Category 14: Stable multiple layers
- Category 15: Inversion layer with waves
- Category 16: Wind and rain noise
- Category 17: Inoperative

6. INTERCOMPARISON OF CRYOGENIC AIR SAMPLERS

As noted in the report presenting the first 1½ years of sampling data (Pendergast et al., 1979), the actual collection rate of krypton was often lower than the programmed rate and the volumes collected sometimes varied in an erratic manner from one sampling period to the next. This would have no effect on the ⁸⁵Kr concentration of the sample if the collection rate were nearly uniform throughout each individual sampling period. However, if the collection rate varied during a sampling period, and the ambient ⁸⁵Kr concentration could be the case when a plume was present, the sample concentration could be significantly different from the average air concentration of long-term (seasonal and annual) mean concentrations from the sampling data but some of the individual measurements would not represent the true mean values during the sampling period.

In an effort to resolve this question, two cryogenic air samplers were operated side by side at the SRL from October 10, 1977 (Julian day 283) through January 20, 1978 (Julian day 20). For convenience, the instruments were set up in a laboratory about 10 km from the source. Twice-daily samples (AM and PM) were collected for the first two weeks, followed by eleven ` weekly samples, and a final 12-day period of twice-daily samples. Routine maintenance was not performed on the samplers in a deliberate attempt to induce erratic behavior.

Figure 3 shows the concentration ratios of Samplers A and B plotted versus Julian date (starting date is indicated for the weekly samples). The individual volumes of krypton collected by each sampler are plotted in the bottom figure. In all cases the ratio of concentrations (dots in the upper figure) obtained from the two samplers is very close to 1. However, most of the concentrations are at the background level (14-15 pCi/SCM) and tell us little about the performance of the samplers. Only those cases where a plume is present during the sampling period and the volume record suggests that at least one of the samplers was performing erratically, can shed light on the problem. All data points where concentrations were distinctly above background (> 16 pCi/SCM) are circled in the upper figure and arrows indicate the cases (8) of interest, where the volume also appears to be erratic.

With a few exceptions the volumes suggest that both samplers were performing well during this period of twice-daily sampling. The worst concentration ratio (0.89) occurred on day 294, but the concentration was too close to background to indicate whether a serious problem may have existed. The volumes collected were good for both samplers although sampler A was a little low compared to the previous and following period. The PM sample on day 295 had the highest concentration seen during the side-by-side intercomparisons; more than ten times background. Both samplers collected a good volume during this period but the sampler B volume during the previous period had been too small to assay, which might lead us to suspect that the collection rate may not have been constant during the 295 PM period. However, the two measurements agree within 3%.

15

During the period of weekly sampling beginning on day 297 both samplers showed considerable week-to-week fluctuations in volume of krypton collected. Plumes were seen on four of the weekly samples (those started on day 304, 325, 361, and 03) and concentrations measured by the two samplers agree within a few percent in each case. Results for the last two weekly samples (361, 03) are particularly encouraging. On sample 361, sampler A collected a low volume and sampler B was even lower with a very large drop in the collection rate from the previous week, yet the concentrations (17.2, 16.9) agreed within 2%. For the following week, sampler A again collected in low volume, while the sampler B collection rate increased greatly. The average concentration for this period was about five times background, so an erratic collection rate could have resulted in a very large percentage error, yet the two samplers agree within about 5%.

During the final period of twice-daily sampling, both instruments were functioning so poorly that many samples were too small to assay. Two plumes were seen. On day 09, both samplers appear to be functioning reasonably well and the concentrations agree within 5%. On day 16, sampler A volume was good, sampler B was behaving poorly, yet the measured concentrations are the same.

The results of this intercomparison are very encouraging in that we see erratic collection volumes, but no serious discrepancy in measured concentrations in the eight cases where plumes were present. The following conclusions can be drawn concerning the 2½ years of sampling data.

- Measured concentrations above background definitely indicate that a plume was present at some time during the sampling period.
- 2) It is possible that a small number of measured values may greatly overestimate or underestimate the true <u>average</u> concentration during the sampling period, due to fluctuations in the collection rate. However, the measured concentration must have existed in the ambient air at some time during the sampling period.
- 3) The great majority of measured concentrations are within +10% of the true average ambient air concentration during the sampling period.
- 4) Long-term mean concentrations (e.g., seasonal or annual) obtained from these data are believed to provide reliable estimates of the true long-term averages.

7. SAMPLING DATA

7.1 Weekly Average ⁸⁵Kr Concentration

The weekly average ⁸⁵Kr concentrations at the 13 cryogenic sampling locations were measured during the following periods:

1. March 1975 through September 1976.

2. December 1976 through January 1977.

3. March 1977

4. May 1977 through June 1977.

5. August 1977 through mid-September 1977.

These data are listed in Appendix G. The first column identifies the sampling site (see Figure 1 and Table 1). The second and third columns give the Julian date (day of the year) and the time (GMT) each sample collection began. Julian data calendars are provided in Tables 7 and 8 (note that 1976 was a Leap Year). Samples were scheduled to start each Monday morning and run for seven days. For convenience, the calendar date is given for each Monday.

The fourth and fifth columns give the Julian date and time the sample was terminated followed by the sample duration (days). Some samples ran more or less than seven days due to malfunctions or human error. Scheduled samples that are omitted from the listing were lost due to sampler malfunction or sample processing problems.

A mentioned in Section 2, the cryogenic air sampler was programmed to enter a Sample Isolation Period of about one hour, therefore, there should be an hour break between the time off and time on of consecutive samples. Examination of the data in Appendix G reveals that, at times, the time off and subsequent time on for consecutive samples are identical. This is due to human error in recording the times but is not considered to be a serious problem.

The last column of the table shows the average 85 Kr concentration during the sampling period in units of picocuries per standard cubic meter of air (pCi/SCM computed at 76 cm Hg and 0°C) decay corrected to day of sampling using a half-life of 10.76 years.

Ferber et al., (1977) found a ⁸⁵Kr concentration background of about 14 pCi/SCM at their midwest sampling locations during early 1974. A ⁸⁵Kr background of about 14 pCi/SCM was also determined by Pendergast et al. (1979) based on the first year of data (March 1975 through February 1976) collected around the SRP site. One may therefore subtract a background of 14 pCi/SCM from the concentrations listed in Appendix G to obtain the excess ⁸⁵Kr, that is, the concentration due to SRP plumes.

The weekly average ⁸⁵Kr concentration data are available on magnetic tape (see Appendix I for tape format).

JULIAN DATE CALENDAR

(PERPETUAL)

Day	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Day
1	001	032	060	091	121	152	182	213	244	274	305	335	1
2	002	033	061	092	122 -	153	183	214	245	275	306	336	2
3	003	034	062	093	123	154	184	215	246	276	307	337	3
4	004	035	063	094	124	155	185	216	247	277	308	338	4
5	005	036	064	095	125	156	186	217	248	278	309	339	5
6	006	037	065	096	126	157	187	218	249	279	310	340	6
7	007	038	066	097	127	158	188	219	250	280	311	341	7
8	008	039	067	098	128	159	189	220	251	281	312	342	8
9	009	040	068	099	129	160	190	221	252	282	313	343	9
10	010	041	069	100	130	161	191	222	253	283	314	344	10
11	011	042	070	101	131	162	192	223	254	284	315	345	11_
12	012	043	071	102	132	163	193	224	255	285	316	346	12
13	013	044	072	103	133	164	194	225	256	286	317	347	13
14	014	045	073	104	134	165	195	226	257	287	318	348	14
15	015	046	074	105	135	166	196	227	258	288	319	349	15
16	016	047	075	106	136	167	197	228	259	289	320	350	16
17	017	048	076	107	137	168	198	229	260	290	321	351	17
18	018	049	077	108	138	169	199	230	261	291	322	352	18
19	019	050	078	109	139	170	200	231	262	2 9 2	323	353	19
20	020	051	079	110	140	171	201	232	263	293	324	354	20
21	021	052	080	111	141	172	202	233	264	294	325	355	21
22	022	053	081	112	142	173	203	234	265	295	326	356	22
23	023	054	082	113	143	174	204	235	266	296	327	357	23
24	024	055	083	114	144	175	205	236	267	297	328	358	24
25	025	056	084	115	145	176	206	237	268	298	329	359	25
26	026	057	085	116	146	177	207	238	269	299	330	360	26
27	027	058	086	117	147	178	208	239	270	300	331	361	27
28	028	059	087	118	148	179	209	240	271	301	332	362	28
29	029	ļ	088	119	149	180	210	241	272	302	333	363	29
30	030		089	120	150	181	211	242	273	303	334	364	30
31	031		090		151		212	243		304		365	31

.

JULIAN DATE CALENDAR

FOR LEAP YEARS ONLY

Day	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Day
1	001	032	061	092	122	153	183	214	245	275	306	336	1
2	002	033	062	093	123	154	184	215	246	276	307	337	2
3	003	034	063	094	124	155	185	216	247	277	308	338	3
4	004	035	064	095	125	156	186	217	248	278	309	339	4.
5	005	036	065	096	126	157	187	218	249	279	310	340	5
6	006	037	066	097	127	158	188	219	250	280	311	341	6
7	007	038	067	098	128	159	189	220	251	281	312	342	7
8	008	039	068	099	129	160	190	221	252	282	313	343	8
9	009	040	069	100	130	161	191	222	253	283	314	344	9
10	010	041	070	101	131	162	1 9 2	223	254	284	315	345	10
11	011	042	071	102	132	163	193	224	255	285	316	346	11
12	012	043	072	103	133	164	194	225	256	286	317	347	12
13	013	044	073	104	134	165	195	226	257	287	318	348	13
14	014	045	074	105	135	166	196	227	258	288	319	349	14
15	015	046	075	106	136	167	197	228	259	289	320	350	15
16	016	047	076	107	137	168	198	229	260	290	321	351	16
17	017	048	077	108	138	169	199	230	2 6 1	291	322	352	17
18	018	049	078	109	139	170	200	231	262	2 9 2	323	353	18
19	019	050	079	110	140	171	201	232	263	293	324	354	19
20	020	051	080	111	141	172	202	233	2 6 4	294	325	355	20
21	021	052	081	112	142	173	203	234	265	295	326	356	21
22	022	053	082	113	143	174	204	235	266	296	327	357	22
23	023	054	083	114	144	175	205	236	267	297	328	358	23
24	024	055	084	115	145	176	206	237	268	298	329	359	24
25	025	056	085	116	146	177	207	238	269	299	330	360	25
26	026	057	086	117	147	178	208	239	270	300	331	361	26
27	027	058	087	118	148	179	209	240	271	301	332	362	27
28	028	059	088	119	149	180	210	241	272	302	333	363	28
29	029	060	089	120	150	181	211	242	273	303	334	364	29
30	030		090	121	151	182	212	243	274	304	335	365	30
31	031		091		152		213	244		305		366	31

7.2 Twice-Daily Average Krypton-85 Concentrations

Twice-daily sampling (day and night, with each sample of about 10-hour duration) were made during the following periods to represent the four seasons:

- 1. Fall, October 4 through November 19, 1976
- 2. Winter, January 31 through February 27, 1977
- 3. Spring, April 1 through May 1, 1977
- 4. Summer, July 1 through July 31, 1977.

Due to personnel limitations, twice-daily sampling at most stations was not conducted on weekends.

The twice-daily samples are listed in Appendix H. The calendar date is given along with the corresponding Julian date. The individual days are grouped into AM and PM samples. The first column identifies the sampling site (see Figure 1 and Table 1), the second column gives the time (GMT) each sample collection began. The third column gives the sample duration in hours. The last column shows the average 85 Kr concentration (pCi/SCM) during the sampling period. Scheduled samples that are omitted from the listing were lost due to sampler malfunction or sampling processing problems.

As with the weekly data, one may subtract a background of 14 pCi/SCM from the concentration data in Appendix H to obtain the excess 85 Kr, that is, the concentration due to the SRP plume.

The twice-daily ⁸⁵Kr concentration data are available on magnetic tape (see Appendix I for tape format).

8. MONTHLY, SEASONAL AND ANNUAL KRYPTON-85 CONCENTRATIONS

The average monthly, seasonal and annual ⁸⁵Kr concentrations for each sampling location has been calculated and listed in Table 9.

About 10% of the weekly samples were lost due to sampler malfunction or human error. Those lost data were replaced by a subjective estimate of the weekly concentration based on data from surrounding samplers. The number of days of missing data are given in parenthesis next to the average concentration. Stations 6 (Ridgeland) and 12 (Greenwood) were alone in their respective sectors and, therefore, their monthly means, where data were missing, would have a larger uncertainty. These are indicated in Table 9 by an asterisk. Use of estimated weekly values where data were missing had less than a 10% effect on the seasonal and annual averages (Telegadas et al., 1978).

The twice-daily sampling data were also used to determine monthly average concentrations. As mentioned previously, twice-daily samples

Table 9a.

	MARCH	APRIL	MAY	SPRING
Sampling Period	Mar 3 - Mar. 31, 1975	Mar. 31 - Apr. 28, 1975	Apr. 28 - June 2, 1975	Mar. 3 - June 2, 1975
Station		Concentration (D	ays missing)	
2	38.1	38.8	19.7	31.2
3	22.6	30.7	19.8	24.0
4	19.7	23.8	18.1 (9)	20.3 (9)
5	28.1	17-7	17.9	21.0
6	17.5	17.5	15.4 (3)	16.7
7	19-7 (1)	29. 1	21.1	23.1 (1)
8	17.9 (7)	33.1	55-9	37.2 (7)
9	17.2	37.7	54.8	38.0
10	76.6	55.4	55.5 (7)	63.5 (7)
п	33.3	32.6	26.8	30.6
12	18.8 (1)	21.6 (1)	23.7	21.5 (2)
13	29.5 (6)	23.3	20.5	24.1 (6)
14	86.7	100.9	73.2	85.9

AVERAGE MONTHLY AND SEASONAL KR-85 CONCENTRATIONS (pCI/SCH)

	JUNE	JULY	AUGUST	SUMMER
Sampling Period	June 2 - June 30, 1975	June 30 - Aug. 4, 1975	Aug. 4 - Sept. 1, 1975	June 2 - Sept. 1, 1975
Station		Concentration (D	ays missing}	
2	80.0 (8)	16.6	14.5	35.5 (8)
3	30-4	17.2	16.0	20.9
4	32.7 (8)	- 18.6	16.2 (10)	22.2 (18)
5	23.5	14.8	15.1	17.6
6	15.4 (14) [≜]	14.5	14.3	14.7 (14)
7	31.3 (2)	15.0 (21)	14.3 (21)	19.8 (44)
8	32.5 (10)	14.8	14.6	20.2 (10)
9	26.4	20.5	16.8	21.2
10	23.6	57.1 (14)	27.4	37.7 (14)
11	18.8 (7)	21.4	18.6	19.7 (7)
12	34.1	15.3	14.5	20.8
13	18.1	17.7 (14)	15.6 (9)	17.2 (23)
14	66.6 (6)	21.1	16.3	33.6 (6)
	20.0 (*)		2	

	SEPTEMBER	OCTOBER	NOVENBER	FALL		DECEMBER	JANUARY	FEBRUARY	VINTER
Sampling Period	Sept. 1 - Sept. 29, 1975	Sept. 29 - Nov- 3, 1975	Nov. 3 - Dec. 1, 1975	Sept. 1 - Dec. 1, 1975	Sampling Period	Dec. I - Dec. 29, 1975	Dec. 29, 1975 Feb. 2, 1976	Feb. 2 - Mar. 1, 1976	Dec. 1, 1975 Mar. 1, 1976
Station	Ćc	ncentration (Da	iys missing)		Station	c	oncentration (Da	ys missing)	
2	16.1 (18)	16.0 (1)	46.7	25.5 (19)	2	37.4	21.2 (7)	21.0	26.6 (7)
3	16.4	31.9	z4.9	24.9	3	39-2	39-1	19.9	33.2
4	26.0 (9)	33.0	24.3 (9) [*]	28.2 (18)	4	39.6	20.4	17.8	25.5
5	15-9	15.1 (3)	21.1	17.2 (3)	5	27.4	28.9	17.5	24.9
6	15.7 (1)	15.8	37.0	22.3 (1)	6	27.2	19,4	19.4	21.8
7	16.1 (14)	15.3 (7)	36.8	22.2 (21)	7	41.1	52.3	33.4	43.0
8	23.9 (1)	15.3 (8)	84.9	39.4 (9)	8	40.0	84.1	155.4	92.5
9	19.6 (8)	20.5	26.7	22.1 (8)	9	76.7	31.7	90.6	63.7
10	27.0	40.8	16.6	29-1	10	134.5	90.3 (1)	131. 1	116.5 (1)
11	19.2	16.8	15.8 (21)	17.2 (21)	11 .	104.8 (21)	45.0 (35)	66.6 (2)	70.0 (58)
12	15.2	15.4 (16)*	15.5 (21)*	15.4 (37)	12	43.5 (7)	21.8 (7)*	16.4	26.8 (14)
13	16.5 (4)	16.2	15.6	16,1 (4)	13	70.1	25.9	37.7 (7)	43.1
14	18.9	33.9	58.0	36.7	14	96.0 (7)	51.)	34.7	59.9 (7)

*Estimated concentration has a large uncertainty.

Table 9b.

	MARCH	APRIL	MAY	<u>SP</u> RING		JUNE	JULY	AUGUST	SUNNER
ampling eriod	Mar. l - Mar. 29, 1976	Mar. 29 - May 3. 1976	May 3 - May 3ì, 1976	Mar. 1 - May 31, 1976	Sampling Period	Nay 31 - June 28, 1976	June 28 - Aug. 2, 1976	Aug. 2 - Aug. 30, 1976	May 31 - Aug. 30, 1974
Station	1	Concentration (D	ays mīssing)		Station		Concentration (C	lays missing)	
2	16.3	19.4	25.8	20.4	2	18.8	16.7 (7)	18.6 (3)	17.9 (10)
3	27.6	29.5 (7)	18.3	25.5 (7)	3	36.6 (2)	17.0 (3)	16.4	22.8 (5)
4	20.4	25.1	15.6 (7)	21.0 (7)	4	67.2	* 15.3	36.6	37.8
5	21.8	17.9 (14)	15.0 (1)	18.2 (15)	5	17.2 (2)	16.9	16.8 (7)	17.0 (2)
6	67.3	21.0 (14)*	14.9	33.4 (14)	6	15.9	15.2	20.5	17.0
7	53.2	35.5 (14)	23.7	37.3 (14)	7	23.3 (21)	43.1 (4)	16.2	28.7 (25)
8	76.8	51.5 (7)	26.6	51.6 (7)	8	61.7	115.2 (16)	15.8 (9)	68.2 (25)
9	51.3	31.6 (14)	52.2 (15)	44.0 (29)	9	45.8	92.9	33-3	60.1
10	142.3 (7)	64.6 (7)	67.8	89.5 (14)	10	55.9	92.2	190.7	111.3
0	68.8 (7)	36.3	34.7	45.8 (7)	11	30.0	41.5	35.8	36.2
12	19.6 (7)*	21.0	22.7	21.1 (7)	12	45.8	16.0 (7)*	17.5	25.9 (7)
13	38.0 (7)	23.5	22.0 (16)	27.5 (23)	13	23.7	38.3	20.2	28.2
14	61.6	80.2	33.4	60,1	14	94.0	47.8	45.8 (1)	61.4 (1)
	SEPTEMBER	OCTOBER	NOVENBER	FALL		DECEMBER	JANUARY	FEBRUARY	WINTER
ampling	Aug. 30 -	0ct. 4 -	Nou I -	Aug. 30	Sampling Period	Nov. 29, 1976-	Jan. 3 - Jan. 31, 1977	Jan. 31 - Feb. 28. 1977 ^{**}	Nov. 29, 19) Feb. 28, 19)

AVERAGE NONTHLY AND SEASONAL KR-85 CONCENTRATIONS (pCi/SCM)

	SEPTEMBER	OCTOBER	NOVENBER	FALL		DECEMBER	JANUARY	FEBRUARY	WINTER
Sampling Period	Aug. 30 - Oct. 4, 1976	0⊂t. 4 - Nov. 1, 1976 ^{**}	Nov. I - Nov. 29, 1976 ^{≜®}	Aug. 30 Nov. 29, 1976	Sampling Period	Nov. 29, 1976- Jan. 3, 1977	Jan. 3 – Jan. 31, 1977	Jan. 31 - Feb. 28, 1977 ^{**}	Mov. 29, 1976- Feb. 28, 1977
Station	(Concentration (Day	s missing)		Station	c	Concentrated (Day	ys mîssing)	
2	22.0 (10)	23-9 (7)	16.3 (8)	20.8 (25)	2	31.3 (12)	97.1 (3)	20.4 (12)	48.2 (27)
3	21.9	30.1 (6)	27.0 (7)	26.0 (13)	3	28.1 (3)	17.1 (3)	18.4 (11)	21.7 (17)
4	22.1 (8)	36.7 (5)	21.6 (17)	26-4 (30)	4	58.6	16.7 (3)	26.1 (9)	35.7 (12)
5	17.1 (3)	32.1 (8)	35.1 (10)	27.3 (21)	5	18.2 (3)	17.4 (3)	21.4 (11)	18.9 (17)
6	17.0 (8)*	29.2 (9)	16.2 (10)	20.5 (27)	6	37.3 (B) [°]	26.4	19.8 (9)	28.6 (17)
7	27.7 (4)	16.4 (15)	20.6 (12)	22.0 (31)	7	35.7 (2)	56.6	40.5 (8)	43.6 (10)
8	42.5 (10)	21.3 (5)	44.8 (13)	36.7 (28)	8	44.7	64.3	47.9 (1))	51.7 (1)
9	32.7	24.5 (11)	22.1 (19)	26.9 (30)	9	21.5 (7)	38-1	65.7 (9)	40.2 (16)
10	58.8 (3)	29.9 (4)	23.0 (9)	38.9 (16)	10	64.5	25.4 (1)	50.9 (8)	48.3 (9)
n	24.9	18.1 (5)	17.0 (10)	20.4 (15)	11	30.8 (7)	21.1 (3)	52.8 (11)	34.6 (21)
12	20.4 (1)	59.9 (8)	15.9 (16)	31.2 (25)	12	18.3	21.7	16.7 (14)	18.9 (14)
13	30.1 (19)	16.1 (17)	16.7 (18)	21.7 (54)	13	21.3 (15)	39-5 (3)	24.9 (11)	28.0 (29)
14	130.3 (1)	62.7 (4)	18.8 (6)	75.2 (11)	14	35.4	402.9	30.5 (4)	147.0 (4)

*Estimated concentration has a large uncertainty. **These data include a period of twice daily samples, no attempt was made to estimate concentration for missing days.

AVERAGE MONTHLY AND SEASONAL KR-85 CONCENTRATIONS (pCI/SCM) Table 9c.

L		MARCH	APRIL	МАҮ	SPRING		JUNE	JULY	AUGUST	SUMMER
_	Sampling Period	Feb. 28 - Apr. 4, 1977	Apr. 4 - May 2, 1977**	May 2 - May 30, 1977	Feb. 28 - May 30, 1977	Sampling Period	May 30 - July 4, 1977	July 4 - Aug. 7 - Aug. 1, 1977 ⁴⁴ Aug. 29, 1977	Aug. 7 - Aug. 29, 1977	May 30 - Aug. 29, 1977
	Station	U	Concentration (Days missing)	ys missing)		Stat ion	Ţ	Concentration (Days missing)	∕s missing)	
	7	22.9 (3)	18.4 (17)	46.5	28.7 (20)	2	17.0	15.7 (19)	17.8	16.8 (19)
	m	58.1 (1)	17.5 (13)	19.5	32.6 (14)	r ^	19.5	15.6 (17)	16.0	(21) 1.71
	4	29.9 (1)	16.4 (14)	(1) 9.61	22.2 (19)	4	17.3	16.0 (17)	(2) (2)	16.4 (24)
	5	25.9	17.4 (18)	(1) 5-11	20.5 (25)	<u>ب</u> م	(6) 1.61	15.5 (16)	16.0 (7)	16.9 (32)
	ę	30.2 ()1) [*]	16.9 (14)	16.3	21.4 (25)	ę	18.4	sampling	ן Sampling Terminated July 6	ן ועוץ 6
	7	33.5	46.7 (14)	17.1 (3)	32.8 (17)	7	25.9 (2)	16.0 (15)	15.5	19.3 (17)
	8	34.0 (4)	118.7 (16)	33.6 (7)	62.1 (27)	æ	58.3	16.4 (17)	15.5 (7)	30.9 (24)
	σ	47.1 (1)	42.7 (15)	28.3 (1)	39.8 (17)	er.	9'64	27.5 (17)	16.0	(21) 7.16
	10	37.8	92.6 (15)	(1) £-62	(91) (16)	10	110.0 (7)	106.3 (14)	29.3 (14)	83.9 (35)
	Ξ	25.7	27.4 (15)	36.3 (9)	29.6 (24)	=	33.9 (7)	65.7 (14)	19.0 (7)	40.1 (28)
	12	24.2 (14)*	23.0 (14)	26.0 (7)*	24.4 (35)	12	17.3 (4)	16-3 (16)	20.5 (7)	17.9 (27)
	13	20.3 (14)	31.7 (12)	19.0	23.7 (26)	13	22.2 (1)	27.3 (16)	17.1	22.4 (17)
- 1	† 	161.4 (2)	73.6 (3)	126.0	121.1 (5)	4	70.3 (7)	16.6 (4)	33.8 (6)	40.8 (17)
					ANNUAL		ANNUAL			
			Sampling Period		March 3, 1975 - March 1, 1976		March 1, 1976 - February 28, 1977	6 - 1977		
			Station	Concentra	Concentration (Days missing)		Concentration (Days missing)	(guissim g		
			2	29.7	· (34) 9\$***	*	26.8 ((62) 172###		
			<u>د</u>	25.8	-0-		24.0	301 (35)		
			-7	24.0	(45) 12\$		30.2 (\$51 (64)		
			-					_		

^{wet}These data include a period of twice daily samples, no attempt was made to estimate concentration for missing days. ^{Wett}Percent of total days missing. ${}^{\mathtt{ME}}\mathtt{Stimated}$ concentration has a large uncertainty.

\$† (9I)

85.9

(106) 29%

26.4

(43) 12% (13) 4%

(53) 15%

٠

\$\$1 (55) (58) 16% (80) 223 361 (12) (75) 21% (39) 11\$ (43) 12% (E3) IS%

20.4

(3) 1\$

20.2 18.9

ŝ Q

(15) 42 \$81 (99) (26) 7% 2%

> 27.0 47.3 36.2 61.7 34.4 21.1 25. 1 54,0

~

æ ev. 2 = 2 <u></u> 7

32.9 52.1

24.9

72.0

(22) 6% (86) 24\$

(8)

34.3 24.3

42.8

generally were collected only on weekdays. The only station which operated on weekends, for all four twice-daily periods, was Station 14 (Bush Field), staffed by National Weather Service, NOAA personnel. No attempt was made to estimate the twice-daily concentrations during non-sampling weekends or for those days where data were missing. An arithmetic average of the observed data was assumed to be representative of the monthly mean. Although the average concentration during a month of twice-daily sampling may have a relatively large uncertainty at some stations, the seasonal and annual averages incorporating these data are believed to be good estimates of the actual concentrations.

The annual average concentrations for the periods March 3, 1975 - March 1, 1976 and March 1, 1976 - February 28, 1977 are shown at the end of Table 9c together with the number and percent of days of missing data. The 1975 annual average is based on weekly data and has an overall 9% average of missing days. The 1976 annual average concentration which contains twice-daily data has an overall average of 16% missing days. This 16% includes the weekends during the twice-daily sampling where no sampling was programmed. If these weekends were not included, the overall average would be reduced from 16% to 11% missing.

The background 85 Kr concentration of 14 pCi/SCM was subtracted from the observed seasonal and annual concentrations listed in Table 9 and the resultant excess 85 Kr is plotted at each station in Figure 4. The figure shows the seasonal and annual excess concentration patterns resulting from 85 Kr emissions from the Savannah River Plant.

Differences in the excess ⁸⁵Kr concentrations between seasons can be attributed to differences in the emission amounts as well as meteorological factors. Shown in Table 10 are the seasonal emission rates calculated from Table 2 together with the corresponding overall average concentrations for the 13 sampling locations. For the same season in different years the overall average concentration is higher when the emission rate is higher. This is especially noted between the Summer 1976 and 1977 seasons and between Fall 1975 and 1976 seasons.

9. AVAILABILITY OF DATA TAPES

The various magnetic tapes are listed in Table 11 by name and identifying number along with the address to which requests should be sent.

10. APPLICATION OF DATA

Krypton-85 concentration data are being used by SRL and ARL to verify and improve their model simulations of pollutant transport and dispersion. A study at ARL (Telegadas et al., 1978) compares calculations of long-term average concentrations, using a standard stability wind rose technique and a simplified version of the ARL transport and dispersion model (Heffter et al., 1975), to the measured concentrations. ARL is also developing more

Figure 4a. Seasonal and annual observed <u>excess</u> Kr-85 concentrations (pCi/SCM). Star denotes source location and a 100 km radius circle about the source is shown.

Figure 4b. (See legend Figure 4a).

Figure 4c. (See legend Figure 4a).

	<u>Spring</u> Ci/mo pCi/SCM		<u>Summer</u> Ci/mo pCi/SCM		<u>Fa</u> Ci/mo	<u>all</u> pCi/SCM	<u>Winter</u> Ci/mo pCi/SCM	
1975	51,000*	20	35,000*	9	23,000	8	75,000	36
1976	54,000	24	64,000	27	57,000	16	66,000	. 30
1977	72,000	27	30,000	15				 `

Table 10. Comparison of the Average Seasonal Source Term and the Average Excess Kr-85 Concentration

*Average monthly emission of 51,200 Ci was assumed for March 1975 - July 1975.

Name

Availability

- 1. Hourly Krypton-85 Emission Rates. Dept. of Energy (March 3, 1975 through September 1977) Division of Nuclear Fuel CONFIDENTIAL RESTRICTED DATA Cycle and Production Washington, DC 20585 2. Surface Weather Observations. National Climatic Center NCC Library TD-9687 NOAA · (See Appendix A for format) Digital Products Section Federal Building Asheville, NC 28801 3. Rawinsonde Observations. (Same as 2)
- NCC Library TD-9743 (See Appendix B for format)
- 4. *Savannah River Experiment (SRE), (Same as 2) 1975-1977. NCC Library TD-9790
 - a. Meteorological Tower Observations (1 tape) (See Appendix C for format)
 - b. Savannah River Experiment Meteorological Data Base (3 tapes; 1975, 1976, 1977) (See Appendix D for format)
 - Monthly Wind-Rose Data and Hourly Acoustic Mixed Depth (1 tape) (See Appendix E and F for format)
 - d. Weekly and Twice-Daily Average Krypton-85 Concentration Data (1 tape) (See Appendix I for format)

*When ordering any of the tapes listed under SRE, requests must include specific title(s) of individual tape(s) desired.

sophisticated mesoscale models (Draxler, 1980) which are being tested against the SRP data.

The Savannah River Laboratory is using the ⁸⁵Kr data base to compare simple time-dependent trajectory models with the stability wind rose models. In addition the data will be used to validate existing three-dimensional computer models under development at SRL. These models incorporate Galerkin and second-moment techniques to include the effect of subgrid scale resolution.

It is expected that these data will prove useful to other air pollution modellers as well.

11. ACKNOWLEDGMENTS

This work was supported by the Office of Health and Environmental Research, Department of Energy.

We acknowledge the support and services provided by the McClellan Central Laboratory, McClellan AFB, CA, and the U.S. Air Force in performing a significant portion of the laboratory analyses.

We wish to thank the following organizations for permitting the ⁸⁵Kr samplers to be placed at their facilities: South Carolina Department of Health and Environmental Control, Columbia, SC; National Weather Service Office of Bush Field, Augusta, GA; Georgia Forestry Commission at Millen, Statesboro, and Thompson, GA; Warren County Police Department, Warrenton, GA; South Carolina Highway Department maintenance facilities at Greenwood, St. George, St. Matthews, Bamberg, Wagener, and Ridgeland, SC; Georgia Department of Transportation maintenance facilities at Swainsboro and engineering office at Statesboro; and E.I. duPont de Nemours and Company at Camden, SC. Many individuals at the above facilities provided excellent assistance throughout the duration of the study. Their efforts have added significantly to the success of this study.

12. REFERENCES

- Draxler, R.R. (1980): An Improved Gaussian Model for Long-Term Air Concentration Estimates (accepted by Atmospheric Environment).
- Ferber, G.J., K. Telegadas, J.L. Heffter and M.E. Smith (1977): Air Concentrations of Krypton-85 in the Midwest United States During January through May 1974, Atmospheric Environment, <u>11</u>, p. 379-385.
- Heffter, J.L., A.D. Taylor, and G.J. Ferber (1975): A Regional-Continental Scale Transport, Diffusion, and Deposition Model. NOAA Tech. Memo. ERL-ARL-50, 28 pp.
- Holzworth, T.C. (1972): Mixing Heights, Wind Speeds and Potential for Urban Air Pollution Throughout the Contiguous United States. Environmental Protection Agency, Office of Air Programs, Publication No. AP-101.

- National Climatic Center (1978a): U.S.A.F. Global Weather Central Surface Data, NOAA EDIS NCC, Asheville, NC 28801, NCC Library TD-9687.
- National Climatic Center (1978b): NAMER.WINDTEMP, Upper Air Meteorological Data, NOAA ADP Services Division, Asheville, NC 28801.
- Pendergast, M.M., A.L. Boni, G.J. Ferber and K. Telegadas (1979): Measured Weekly Krypton-85 Concentrations within 150 km of the Savannah River Plant (March 1975 - August 1976). SRL Report D.P. 1486, E.I. duPont de Nemours & Co., Aiken, SC 29801, 56 pp.
- Telegadas, K., G.J. Ferber, J.L. Heffter and R.R. Draxler (1978): Calculated and Observed Seasonal and Annual Krypton-85 Concentrations at 30-150 km from a Point Source, Atmospheric Environment, 12, p. 1769-1775.

Turner, D.B. (1964): A Diffusion Model for an Urban Area, <u>J. Appl. Meteorol.</u> <u>3(1): p. 83-91.</u>

APPENDIX A

SURFACE WEATHER OBSERVATIONS MAGNETIC TAPE FORMAT

TAPE CHARACTERISTICS

TYPE - 9 track, 1600 bpi, <u>BINARY</u> (8 bits/byte) LABEL - BLP RECFM - FB LRECL - 100 BLKSIZE - 10000

TAPE ORGANIZATION

One file per month per tape

DATA ORGANIZATION

All records are the same. Each record contains one observation at one time for one station.

DATA FORMAT

Parameter, units or WMO code, and length in bytes are as follows for each record:

block station number, code 4 year, GMT, 2 month, GMT, 2 day, GMT, 2 hour, GMT, 2 minute, GMT, 2 report type, code, 2 observation type, code, 2 latitude, degrees/minutes, 2 longitude, degrees/minutes, 2 station elevation, meters, 2 special ship, code, 2 quadrant, code, 2 wind indicator, code, 2 call letters, EBCDIC, 4 station control, code, 2 wind direction, degrees, 2 wind speed, tenths m/s, 2 wind gusts, tenths m/s, 2 sea level pressure, tenths millibars, 2 barometric tendency, code, 2 dry bulb temperature, tenths degrees Kelvin, 2 dew point depression, tenths degrees Kelvin, 2

```
altimeter setting, hundredths inches, 2
6 hr precipitation amount, code, 2
sky cover, code, 2
past weather, code, 2
visibility, meters, 4
visibility characteristic, code, 2
present weather, code, 2
present weather, code, 2
present weather, code, 2
present weather, code, 2
station pressure, tenths millibars, 2
cloud cover, code, 2
type of low cloud, code, 2
height of low cloud, code, 2
type of middle cloud, code, 2
type of high cloud, code, 2
amount of cloud, code, 2
cloud classification, code, 2
cloud type, code, 2
height of cloud base, code, 2
cloud height device, code, 2
cloud layer characteristic, EBCDIC, 2
ceiling, code, 2
```

SPECIAL CODES

Missing data are given by -1 in the field.

APPENDIX B

RAWINSONDE OBSERVATIONS MAGNETIC TAPE FORMAT

TAPE CHARACTERISTICS

TYPE - 9 track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - VB LRECL - 35 BLKSIZE - 3100

TAPE ORGANIZATION

4 observation times per day (0,6,12,18 GMT) 2 files per month (day 01 to 15/ day 16 to last) 12 files per tape (6 months)

DATA ORGANIZATION PER OBSERVATION TIME

Time identification record for winds (ID REC) Station identification record (STA REC) Wind data, one record per level (WIND RECS)

Time identification record for temperature (ID REC) Station identification record (STA REC) Temperature data, one record per level (TEMP RECS)

DATA FORMAT

ID REC:	MONTH	YEAR	DAY	HOUR	(Z)	NUMBE REPOR		MBER OF ECORDS	MET	FIELD
	A3	14	12	12	2	14		15	Al W T	= WINDS = TEMPS
STA REC:	BLOCK LATITUDE STATION (DEG)					ATION HGT. STATION (M, MSL) TERRAIN (M, MS		HGT.	NO. OF REPORTING LEVELS	
	15	F5	.2	F7.	F7.2		15	15 15		12
WIND RECS		WIND HGT. (M, MSL)			WIND DIRECTION (DEC.)		W.	IND SPEED (M/S)		
	:	15			F3.0		F4.1			
TEMP RECS		TEMPERATURE (HGT. (M, MSL))			PRESSURE (Mb)		TEMPERATURE (DEG K)			
		I4			F5.1		F4.1			

SPECIAL CODES

Missing data are given by 9's in the field.
APPENDIX C

METEOROLOGICAL TOWER OBSERVATIONS MAGNETIC TAPE FORMAT

TAPE CHARACTERISTICS

TYPE - 9 track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - FB LRECL - 150 BLKSIZE - 7500

TAPE ORGANIZATION

One observation time each hour. Times are given as Local Standard Time. 1 file per tape (1975 through 1977)

DATA ORGANIZATION PER OBSERVATION TIME

Time identification record - year, month, day, hour, and number of observation records to follow (515). One observation record for each tower.

DATA FORMAT

thirty variables each observation in 3015 EBCDIC format

variable-type (units)

- 1 Block station number
- 2 Upper Measurement Level (meters x 10)
- 3 Wind Direction (degrees x 10)
- 4 Wind Speed (meters/sec x 10)
- 5 Range (degrees x 10)
- 6 Ambient Temperature (^OKelvin x 10)
- 7 Not used
- 8 Not used
- 9 Intermediate Measurements Level (meters x 10)
- 10 Wind Direction (degrees x 10)
- 11 Wind Speed (meters/sec x 10)
- 12 Range (degrees x 10)
- 13 Ambient Temperature (^oKelvin x 10)
- 14 Not used
- 15 Not used
- 16 Lower Measurements Level (meters x 10)
- 17 Wind Direction (degrees x 10)
- 18 Wind Speed (meters/sec x 10)
- 19 Range (degrees x 10)
- 20 Ambient Temperature (^oKelvin x 10)

21 - Dew Point (^oKelvin x 10) 22 - Not used 23 - Temp Diff (Upper-Lower) (^oC/100 meters x 10 ÷ 100) 24 - Temp Diff (Upper-Intermediate) (^oC/100 meters x 10 ÷ 100) 25 - Temp Diff (Intermediate-Lower) (^oC/100 meters x 10 ÷ 100) 26 - Precipitation (mm x 10) 27 - Solar Radiation (cal/cm²/min x 100) 28 - Not used 29 - Not used 30 - Not used

SPECIAL CODES

Not all variables appear with each tower. Missing data are given by -1 in the field.

APPENDIX D

SRE-MDB MAGNETIC TAPE FORMAT

TAPE CHARACTERISTICS

TYPE - 9 track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - FB LRECL - 24 BLKSIZE - 12000

TAPE ORGANIZATION

One observation time each hour (GMT) One file per month; 12 files per tape

DATA ORGANIZATION PER OBSERVATION TIME

Group 1 - Time identification record.

- Group 2 One record for each surface observation this hour.
- Group 3 Several records; header and one for each level of sounding for upper air stations. Tower data is within this group and can be identified by the block station number (72001 to 72009).

DATA FORMAT

Format given in parenthesis

- Group 1 year (I2) month (I2) day (I2) hour (I2) number of surface stations (I2) total number of upper air stations (I2) not used (I2) not used (I2) total number of records this hour (I3)
- Group 2 block station number (I6) station longitude *100 (I5) station latitude *100 (I4) station elevation in meters (I4) wind direction in degrees (I3, 2X, /) wind speed m/s *10 (I3) station pressure millibars *10 (I5) ambient temperature degrees Kelvin *10 (I4)

dew point depression degrees *10 (I4) previous six hour precipitation mm (I3) Pasquill stability class (I2)

- Group 3 record 1 block station number (I5) station longitude *100 (I5) station latitude *100 (I4) station height in meters (I4) station height above average terrain (I4) number of subsequent levels and records for this station (I2)
 - record 2 observation height in meters (I4)
 wind direction degrees (I3)
 wind speed m/s *10 (I3)
 pressure millibars *10 (I5)
 temperature degrees Kelvin *10 (I4)
 - record 3 repeat record 2 until finished then . repeat record 1 for a new station

SPECIAL CODES

Missing data are given by a -1 in the field.

APPENDIX E

MONTHLY STABILITY WIND ROSE STATISTICS AND HOURLY METEOROLOGICAL DATA REPRESENTING THE AVERAGE SRP WIND AT A HEIGHT OF 62 M ABOVE GROUND LEVEL

TAPE CHARACTERISTICS

TYPE - 9-track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - FB LRECL - 486 BLKSIZE - 4860

TAPE ORGANIZATION

Monthly wind rose statistics on file 1. 15-min average meteorological data at one-hour intervals on file 2. Hourly acoustic mixed depth on file 3 (described in Appendix F). All times GMT.

DATA ORGANIZATION

File 1

- Group 1 Number of wind rose summaries
- Group 2 Identification record
- Group 3 Multiple records containing the stability wind rose statistics and average wind speed for time periods given in Table 2. (Wind speeds were calculated from the average reciprocal wind speed.)

DATA FORMAT

File 1

Group 1 - NWROSE number of wind rose summaries	12
Group 2 - NTOT total number of hours of data JSTART start time of statistics YYDDD JEND end time of statistics YYDDD (YY is last two digits of year DDD is Julian day of year)	18 18 18
Group 3 - Record 1 (F(KDIR), number of hours that wind direction	1613

(F(KDIR),	number of hours that wind direction	1613
KDIR=1,16)	is coming from each of 16 sectors	
	KDIR=1 for N sector, KDIR=2 for NNE	
	sector, KDIR=3 for NE sector, etc.	

Group 3 (con't)

u	average wind speed for all directions within each wind speed and stability class	F5.1
ISPD	wind speed class	12
ISTAB	atmospheric stability class	12

Wind speed and stability class limiting values are:

ISPD	Wind Speed Limits m/sec	ISTAB	SIGA Limits deg
1	0 <u<2< td=""><td>1</td><td>23<siga \$80<="" td=""></siga></td></u<2<>	1	23 <siga \$80<="" td=""></siga>
2	2 <u≼4< td=""><td>2</td><td>18<siga<23< td=""></siga<23<></td></u≼4<>	2	18 <siga<23< td=""></siga<23<>
3	4 <u≤6</u	3	13 <siga≼18< td=""></siga≼18<>
4	6 <u≼8< td=""><td>4</td><td>8<siga≼13< td=""></siga≼13<></td></u≼8<>	4	8 <siga≼13< td=""></siga≼13<>
5	8 <u<12</u	5	4 <siga≼8< td=""></siga≼8<>
6	12 <u≤50< td=""><td>6</td><td>2<siga≼4</siga</td></u≤50<>	6	2 <siga≼4</siga
Record 2-42	2 same as Record 1	7	O <siga€2< td=""></siga€2<>

DATA ORGANIZATION

File 2

Group 1 - number of years of hourly wind data

Group 2 - several records giving average meteorological data for each hour of each day of year; missing data indicated with -99.0. All times GMT.

DATA FORMAT

File 2

G	roup 1 -	NYRS number of years of data	13
	roup 2 ecord 1	IYEAR last two digits of year	12
		JDAY Julian day of year	14
		(IHR(I),DIR(I),SPD(I),SIGA(I),SIGE(I),I=1,24) Average meteorological data for each hour of day where:) 12014

- HR hour of day GMT
- DIR wind direction deg x 10
- SPD wind speed (m/sec) x 10
- SIGA standard deviation of wind azimuth deg x 10
- SIGE standard deviation of elevation angle deg x 10 Missing data indicated with -99.0 Record 1 is repeated for 366 days of year

APPENDIX F

HOURLY ACOUSTIC MIXED DEPTH AND ACOUSTIC CATEGORY

TAPE CHARACTERISTICS

TYPE - 9-track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - FB LRECL - 486 BLKSIZE - 4860

TAPE ORGANIZATION

File 1 and File 2 described in Appendix E.

File 3 contains acoustic data for each hour of the SRE. Time are in GMT.

DATA ORGANIZATION PER DAY

Group 1 - NTOT total number of days data available 16

Group 2 Record 1

IYEAR last two digits of year	12 12
MONTH month	
IDAY day	12
(H(I),I=1,24) mixing depth in meters for each hour of day beginning with 0000 GMT and only with 2300 GMT miss- ing data indicated with 9999	2414
(C(I),I=1,24) acoustic category for each hour of day as given in Table 6.	2412

Record 2

End of file. Same as Record 1.

WEEKLY KR-85 CONCENTRATIONS

Sampling Period:

- 1. March 3, 1975 October 4, 1976
- 2. November 22, 1976 February 11, 1977
- 3. February 28, 1977 April 1, 1977
- 4. May 2, 1977 July 1, 1977
- 5. August 1, 1977 September 19, 1977

Explanation of Appendix:

- Col. 1. Sampling location (see Table 1 and Figure 1).
- Col. 2. Julian date (day of the year each sample collection began, see Tables 7 and 8).
- Col. 3. Time (GMT) each sample collection began.
- Col. 4. Julian date the sample collection was terminated.
- Col. 5. Time (GMT) sample collection terminated.
- Col. 6. Sample collection duration to nearest whole day.
- Col. 7. Observed average ⁸⁵Kr concentration during sample collection (pCi/SCM).

44

NEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	AMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PCI/SCN)
MAR 2 3 5 6 7 7 8 9 10 11 12 13 14	3 62 62 62 62 62 62 62 62 62 62 62 62 62	14 15 14 14 14 12 14 18 14 14 13	69 69 69 69 69 69 69 69 69 69 69 69 69 6	14 21 13 13 19 14 12 14 13 14	777733777777777777777777777777777777777	27.0 26.8 18.2 25.6 16.3 27.5 15.4 18.7 122.2 19.4 17.2 58.3 78.0
MAR 2 3 5 6 7 8 9 10 11 11 12 13 13 14	69 69 69 69 69 69 69 69 69 70 69 70	14 14 13 19 14 12 15 15 17 14	766 766 766 766 766 766 766 766 766 766	145 133 129 142 125 134 14 13	7777777346337	31.4 18.0 25.5 23.5 27.4 21.7 16.8 39.5 25.1 19.9 21.7 12.5 111.4
HAR 2 3 4 5 6 7 9 10 11 11 11 12 13 14 HAR	17 76 76 76 76 76 76 76 76 76 7	145 133 192 192 135 153 153 135	3333333393303 888888878888 8888887888888888888888	13 14 19 21 12 12 12 15 14 13	777777734727	15.7 29.6 19.9 47.8 15.6 17.8 124.7 15.4 113.9 18.7 17.2 33.7
2 3 4 5 6 7 8 9 10 11 12 13 14 14 MAR	88888888888888888888888888888888888888	14 14 19 21 12 12 12 12 14 19 14	90 90 90 90 90 90 90 90 90 90 90 90 90	15 17 14 13 13 13 13 13 13 13 13	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	78.2 15.8 15.0 16.0 15.0 15.4 20.0 15.4 20.0 15.4 15.2 123.5
ан 2 3 4 5 6 7 8 9 10 11 12 13 14	51 90 90 90 90 90 90 90 90 90 90 90 90	15 17 14 13 16 13 14 15 13 13 14	97 97 97 97 97 97 97 97 97 97 97	13 12 13 14 18 12 15 15 14 13 15	777777777777777777777777777777777777777	17.3 15.3 15.7 15.2 15.2 15.2 15.3 17.1 39.5 16.6 15.4 17.1 17.9

.

HEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	ANPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PCI/SCM)
2 3 6 7 8 9 10 13 12 13 14	7 97 97 97 97 97 97 97 97 97 97 97 97 97	14 12 13 14 14 14 12 16 12 13 22 13 15	104 104 104 104 104 104 104 104 104 104	12 14 15 14 16 14 12 12 13 14 13	77777777677	43.3 73.9 49.7 24.3 20.4 20.7 24.5 21.6 24.7 22.9 45.0 20.6 201.3
APR 1 2 3 5 6 7 8 9 10 11 12 13 14 APR 2	104 104 104 104 104 104 104 105 104 104 104 104	13 14 15 16 12 16 13 12 13 14 15	111 111 111 111 111 105 111 111 111 111	142 133 131 122 134 132 143 143 121 132	777771677777	16.6 18.3 15.4 15.5 16.3 17.0 86.8 87.6 87.6 87.6 40.3 60.3 15.5
APR 2 3 4 5 6 7 8 9 10 11 12 13 14 APR 2	111 111 111 111 111 111 111 111 111 11	14 12 14 12 15 12 14 13 14 13 16	118 118 118 118 118 118 118 118 118 118	12 13 13 15 14 12 13 13 13 13 13 13 13	777777777777777777777777777777777777777	77.9 15.3 14.9 15.5 21.2 18.5 21.2 18.9 50.5 32.0 167.7
23456789011 1234	118 118 118 118 118 118 118 118 118 118	14 17 13 13 14 12 14 13 13 13	125 125 125 125 125 125 125 125 125 125	13 14 17 13 12 12 12 14 14 14 20	77774777774377	22.3 16.8 16.6 15.3 23.9 129.0 66.5 30.6 18.6 92.8 17.5 43.4
2 3 4 5 6 7 8 8 9 11 12 13 14	5 125 127 125 125 125 125 125 125 125 125 125 125	14 12 14 12 12 12 12 13 13 14 20	132 132 132 132 132 132 132 132 132 132	152734551551632	7757773477777	17.0 22.2 26.7 19.2 15.3 15.6 20.2 17.5 20.4 23.1 16.8 22.8 39.1

.

WEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GHT)	END OF S Julian Date	AMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85
MAY	12 DATE	(GRT)		(GHT)	(DAYS)	(PCI/SCM)
2 2 3 5 6 7 8 9 10 11 12 13 14 HAY	132 135 132 132 132 132 132 132 132 132 132 132	15 19 123 14 155 15 13 13 13 13 13 13	135 139 139 139 139 139 139 139 139 139 139	18 19 15 13 15 14 22 33 15 18	347777777787	18.1 37.1 17.0 15.5 15.0 30.6 136.0 44.0 25.2 19.9 21.5 16.9 127.0
2 3 4 5 6 7 8 8 9 10 11 12 13 14 HAY	139 139 139 139 139 139 143 139 143 139 139 139 139 139 26	19 19 13 15 14 12 12 13 16 18	147 146 147 146 146 146 146 146 146 146 146	12 11 142 15 12 202 12 12 13 14 12	87887743777777	15.6 23.6 17.2 16.3 18.0 53.3 463.7 119.1 32.5 16.1 28.9 137.5
2 3 4 5 6 7 8 9 9 10 11 12 13 14 JUN	20 147 146 147 146 146 146 146 146 146 146 146	14 11 12 12 12 13 13 14 12	153 153 153 153 153 153 153 153 153 153	14 22 13 20 14 13 14 13 12 17 13 12	67667772577767	14.6 19.5 16.8 17.4 17.6 19.0 18.9 16.1 45.8 29.0 14.8 16.6 19.0
2 3 5 6 7 8 9 10 11 12 13 14	153 153 153 153 153 153 153 153 153 153	14 22 13 25 14 13 12 17 13 12	160 160 160 161 160 160 160 160 160 160	14 12 13 17 13 14 12 13 14 13 14	7 7 7 7 7 7 7 7 7 7 7 7 1	14.7 14.9 14.7 17.2 68.5 61.3 52.1 16.3 14.8 92.2 14.9 15.2
34 5 7 99 10 11 12 13 14	y 160 161 160 161 160 160 160 160 160 160	12 17 17 14 14 14 12 13 13	167 167 167 167 167 167 167 167 167 167	14 16 13 14 15 12 13 15 13	7676777777	14.6 14.5 16.6 16.9 16.1 14.6 14.4 14.6 14.9 16.6

WEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF S JULIAN DATE	AMPLE E TIME ((GNT)	ND OF S JULIAN DATE	AMPLE TIME (GNT)	SAMPLE DURATION (DAYS)	KR-85
JUN 16	DATE	(GMT)	DATE	(GMT)	(DAYS)	(PC1/SCM)
2 3 4 5 7 9 10 11 12 13 14 JUN 23	168 167 167 167 167 167 167 167 167 167	15 14 16 15 15 15 15 13 14	174 174 174 174 174 174 174 174 174 174	14 13 14 12 15 12 15 14 13 14	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	279.0 21.0 20.1 25.4 22.1 47.1 30.9 14.6 27.3 31.3
2 3 4 5 6 7 8 9 10 12 13 14 JUN 30	174 174 174 174 174 177 177 174 174 174	15 13 14 13 12 14 15 14 15	181 181 181 181 181 181 181 181 181 181	14 13 14 13 20 15 12 12 12 12 12 12	777777777777777777	48.1 71.1 80.5 42.6 14.4 14.6 15.1 16.5 15.1 15.1 183.4
2 3 4 5 6 7 8 9 10 11 12 14 JUL 7	181 181 181 181 181 181 181 181 181 181	13 13 14 13 20 15 12 12 12 12 12 12 12 12	188 188 188 188 188 188 188 188 188 188	13 14 17 13 15 15 13 12 12 13 13 13	777767777	24.5 28.1 34.0 15.6 15.2 41.4 224.2 48.3 46.2
2 30L 7 3 4 5 5 6 8 9 10 11 12 14 JUL 14	188 188 188 188 188 188 188 188 188 188	14 17 13 13 14 12 12 13 14 14	195 195 195 195 195 195 195 195 195	13 17 13 14 13 12 15 15 15 14 13 16	777257877777	14.9 14.7 15.4 14.5 14.6 17.3 14.6 17.3 14.9 14.7 15.6
23 45 6 7 8 9 10 11 12 13 14	195 195 195 195 195 195 199 195 195 195	14 17 13 18 18 13 14 15 12 12 12 12 12 12 12 16	202 202 202 202 202 202 202 202 202 202	14 15 145 15 15 15 13 12 13 12 13 14 14	7777733777777	14.5 14.6 14.6 14.6 14.7 14.7 14.7 14.7 14.5 14.5

.

WEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85
JUL	DATE	(GMT)	DATE	(GHT)	(DAYS)	(PCI/SCM)
2 3 4 5 6 8 9 11 12 13 14 JUL	202 202 202 202 202 202 202 202 202 202	145451 1215 1333 1134	209 209 209 209 209 209 209 209 209 209	14 12 13 14 13 14 13 14 13	777777777777777777777777777777777777777	14.6 14.4 14.3 14.6 14.5 14.5 14.6 14.6 14.6
2 3 4 5 6 8 9 11 12 13 14 AUG	209 209 209 211 209 209 209 209 209 209 209 209 209 209	14 12 14 14 14 13 14 13 13 13 13	216 216 216 216 216 216 216 216 216 216	15 16 17 13 14 15 16 14 16 14 13	772577777777	14.4 14.2 14.6 14.3 13.7 14.5 14.5 14.4 14.4 14.4
2 3 4 5 6 8 9 10 11 12 13 13 14 AUG	216 216 216 218 216 216 216 216 216 216 216 216 216 216	15 16 17 13 14 15 14 16 19 13	223 223 228 220 223 223 223 223 223 223 223 223 223	13 14 15 13 13 14 12 13 13 13 13 13 14	77227777777417	14.4 14.3 14.1 14.4 14.4 14.4 14.5 14.6 14.5 14.6 14.6 14.1
2 3 4 5 6 8 9 10 11 12 14 AUG	223 223 224 223 223 223 223 223 223 223	13 14 15 13 14 19 12 14 14	230 230 230 230 230 230 230 230 230 230	14 12 14 13 20 14 14 12 13 14	776777777777777777777777777777777777777	14.4 14.2 14.4 14.0 14.4 14.6 14.4 14.4 14.4 14.4
2 3 4 5 6 8 9 10 11 12 12 13 14	230 230 230 230 230 230 230 230 230 230	14 12 14 12 14 12 14 12 14 12 13 14 12 13 14	237 237 237 238 239 237 237 237 237 237 237 237 237	13 13 14 13 21 21 12 12 12 12 17 13 13	7777897771677	14.4 15.6 19.2 14.6 15.7 14.4 14.4 14.3 14.4 14.5 14.9

•

.

MEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

MAKUN 1973 - DECEMBER 1973							
SAMPLING LOCATION		START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S	SAMPLE TINE (GNT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCM)
A	UG 25						
2 3 5 6 8 9 11 12 13 14 5 5 6 8 9 11 12 13 14 5 5 6 8 9 11 12 13 14 5 5 5 6 8 9 10 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 12 5 5 6 8 9 10 11 11 11 11 5 5 6 8 9 10 11 11 11 5 5 5 8 9 11 11 11 11 11 5 5 5 8 8 9 11 11 11 11 5 5 5 8 9 11 11 11 5 5 5 5 8 8 9 11 11 11 5 5 5 5 5 8 8 9 9 111 11 11 5 5 5 5 8 8 9 11 11 5 5 5 5 5 5 5 8 8 9 9 11 1 11 1	EP 1	237 237 237 238 239 237 237 237 237 237 237 237 237	13 13 13 12 12 12 12 12 17 17 17	244 2445 2245 2245 2245 2245 2245 2245	14 14 15 15 12 12 14 16 13	77875878777	14.9 20.0 17.0 14.3 13.3 23.6 66.0 30.9 14.7 18.7 21.9
2 3 4 5 6 8 9 10 11 12 13 14	EP 8	248 244 245 245 245 245 245 245 244 244 244	14 14 15 12 12 12 14 16 14 13	251 251 251 251 251 251 251 251 251 251	14 153 143 143 143 143 143 144	375666676777	14.7 16.7 15.0 16.2 14.8 31.1 22.1 34.1 17.5 14.8 15.0 16.1
2 3 4 5 6 8 10 11 12 13 14	ÆP 15	251 251 251 251 251 251 251 251 251 251	14 12 14 13 14 13 12 14 14	258 258 258 258 258 258 258 258 258 258	14 21 14 16 16 12 14 13 21	7777877737	17.7 16.4 30.5 17.6 17.7 30.3 31.5 19.1 16.2 17.3 27.2
3 4 5 6 7 8 9 10 11 12 13	EP 22	258 258 258 258 258 258 258 258 258 258	21 14 16 16 14 12 12 12 13 14 21	265 265 265 265 265 265 265 265 265 265	19 14 13 14 13 14 12 12 12 13 13 14	7777677777	17.5 43.6 14.7 14.6 18.6 18.6 25.8 23.1 18.3 18.3 16.6
3 5 6 7 8 9 10 11 12 13 14	~r 66	265 265 265 265 265 265 265 265 265 265	19 134 124 124 1334 1334	272 272 272 272 272 272 272 272 272 272	12 13 13 14 18 12 12 14 15 13 12	777777777777777777777777777777777777777	14.9 14.8 15.3 14.9 15.4 16.5 15.2 15.2 15.8 15.8

WEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF Julian Date	SAMPLE TIME (GNT)	SAMPLE DURATION (DAYS)	KR-85
SEP	Z9 DATE	(GMT)	DATE	(GNT)	(DAYS)	(PCI/SCM)
2 3 4 5 6 6 7 8 9 10 11 12 13 14 0CT	2773 2772 2775 2775 2772 2772 2772 2772	15 12 14 13 12 14 12 13 5 13 2	279 279 279 274 279 279 279 279 279 279 279 279 279	13 15 12 13 14 12 13 14 12 13 13 11	677425777777777	15.0 45.6 64.8 15.3 14.3 15.0 15.0 15.0 15.0 15.9 15.9 14.9 14.9
2 3 4 5 6 7 9 10 11 12 13 14 0CT	279 279 279 279 279 279 279 279 279 279	13 159 133 14 122 15 13 11	286 286 287 286 286 286 286 286 286 286 286 286	13 21 13 13 20 14 12 12 13 13 14 13	7788777777777777	16.7 14.9 16.3 14.8 17.3 36.5 15.4 15.4 20.3
2 3 4 5 6 8 9 10 11 12 13 14 0CT	286 287 287 287 286 247 286 286 286 286 286 286 286 286 286 286	13 21 13 17 27 12 17 12 13 14 13	293 293 293 293 293 293 293 293 293 293	13 12 14 13 14 12 12 14 14 13 13	776676777577	15,1 14,8 14,8 15,4 15,3 38,8 119,2 22,9 17,4 20,9 84,3
2 3 4 5 6 7 8 9 10 13 14 0CT	293 293 293 293 293 293 293 293 293 293	13 12 14 14 14 14 14 13 13	300 300 300 300 300 300 300 300 300 300	14 12 14 14 13 13 12 13	7 7 7 7 7 7 7 7 7 7 7 7	14.5 62.0 15.8 19.6 14.7 16.3 14.8 14.7 16.3 14.8 17.2
2 3 4 5 6 7 8 9 10 13 13 13	200 300 300 300 300 300 300 300 300 300	15 13 15 14 15 14 15 14 14 17 16	307 307 307 307 307 307 307 307 307 304 314 307	15 16 15 14 15 13 17 14 14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18.7 22.3 25.8 14.9 14.8 14.8 14.7 14.8 14.7 14.8 14.9 14.9 14.9 32.7

MEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975 START DE SAMPLE END DE SAMPLE

SAMPLII LOCATI		START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCM)
23567 890 10	NOA	3 307 307 307 307 307 307 307 30	15 14 15 13 13 15	314 314 314 314 314 314 314 314 314	15 14 14 15 21 13 13	777777777777777777777777777777777777777	21.4 16.7 14.7 14.7 14.7 14.7 14.9 14.9 14.9 57.0
23456789990 10314	NOV	10 314 314 314 314 314 314 314 314	15 14 19 14 15 21 13 13 14 13	321 321 321 321 321 321 321 321 321 321	15 13 14 13 25 15 15 15 15 15 15 14 14	77577734777	16.4 16.3 15.4 15.6 27.6 16.1 19.8 14.7 77.6 15.0 15.1 45.2
234567890 11314		77 321 321 321 321 321 321 321 321	15 13 14 15 15 15 15 14 14	328 328 328 328 328 328 328 328 328 328	16 17 15 14 20 20 15 14 13 14 14	7 7 7 7 7 7 7 7 7 7 7	16.1 48.3 32.2 36.7 30.2 39.2 17.9 19.9 15.9 17.5
234567 890 1131	DEC	328 328 328 328 328 328 328 328 328 328	16 17 15 14 20 20 15 14 15 14 15	335 335 335 335 335 335 335 335 335 335	15 13 18 14 16 14 15 14 15	7 7 7 7 7 7 7 7 7 7 7	132.7 18.1 34.8 17.4 266.0 23.1 16.7 16.3 112.2
23456789 102131		335 335 335 335 335 335 335 335 335 335	15 13 14 16 15 14 15 14 15 14	342 342 3422 3422 3422 3422 3422 3422 3	13 15 14 18 16 15 14 15 14	7 7 7 7 7 7 7 7 7 7	50.6 106.2 107.6 58.8 15.2 18.7 64.9 148.4 148.1 248.5 106.1

WEEKLY KR-85 CONCENTRATIONS MARCH 1975 - DECEMBER 1975

				- DECEND	EK 1773		
SAMPLIN LOCATIO	G N	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	SAMPLE TIME	SAMPLE DURATION (DAYS)	KR-85
1	DEC a	DATE	(GMT)	DATE	(GMT)	(DAYS)	(PC1/SCM)
23 45 67 89 10 123 14	DEC 15	342 342 342 342 342 342 342 342 342 342	16 13 15 14 16 15 16 15 15 15 14	3499 3499 3499 3499 3499 3499 3499 3499	15 16 14 14 15 14 15 14 15 13	777777777777777777777777777777777777777	40.2 20.2 18.7 17.2 15.7 94.7 38.1 90.9 259.0 118.7 100.1 149.0
2 3 4 5 6 7 8 9 10 13 14 14	DEC 22	349 349 349 349 349 349 349 349 349 349	15 136 155 154 155 145 135 13	356 357 356 356 356 356 356 356 356 356	16 13 14 14 14 15 14 15	7877877777	15.7 15.5 15.3 15.3 18.5 25.0 51.9 111.7 96.0 20.8
234567 890 102 13	DEC 29	356 357 356 356 356 356 356 356 356 356 356	16 13 14 14 14 16 16 13 15	363 363 363 363 363 363 363 363 363 363	14 14 15 15 15 17 13 18 14	76776777	43.0 15.2 16.6 33.2 33.3 31.8 15.7 15.7 18.7
234567890 1123 11314	r_	363 363 363 363 363 363 363 363 363 363	17 14 15 16 15 17 17 14 17 15	555555555555555555555555555555555555555	17 14 14 14 15 13 13 15 14 14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	33.0 21.4 16.7 15.6 89.0 16.6 16.7 16.5 16.6 15.4 15.0 140.3

MEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TINE (GMT)	END OF SAM Julian Ti Date (G	IPLE S IME DU IMT) (AMPLE RATION DAYS)	KR-85
JAN	DATE	(GMT)	DATE (G	HT) (DAYS)	(PCI/SCM)
JAN 2 3 4 5 6 7 8 9 9 10 12 13 14 JAN	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17 14 14 14 15 13 13 13 13 14 14	12 12 12 12 12 12 12 12 12 12 12 12 12 1	18 16 14 14 14 14 14 14 14 14 14 14	777777757777	16.8 97.9 32.1 18.3 30.0 35.3 56.6 16.0 39.4 147.7 15.4 32.4 41.3
2 3 4 5 6 7 8 9 10 13 14 JAN	12 12 12 12 12 12 12 12 12 12 12 12 12 1	13 16 14 14 18 14 14 14 14	19 19 20 20 20 19 19	15 15 16 14 21 14 13 13 12 15	77778888877	25.2 27.3 22.0 76.9 18.8 19.7 16.6 16.1 37.1
3 4 5 6 7 8 9 10 12 13 14 JAN	19 19 20 20 20 20 19 19	15 16 14 13 13 126 15 15	26 26 26 26 26 26 26 26 26 26 26	15 14 21 14 15 14 15 16 16	77766666777	32.7 16.0 17.8 98.3 186.6 18.9 262.4 44.3 46.4 20.8
2 3 4 5 6 7 8 9 10 12 13 14 FEB	20 26 26 26 26 26 26 26 26 26 26 26 26 26	16 15 14 14 24 15 14 15 16 14	33 33 33 33 33 33 33 33 33 33 33 33 33	15 20 215 214 14 15 14 13 14 15	777777777777777777777777777777777777777	15.8 16.4 15.0 15.3 31.4 165.4 73.7 38.4 15.8 18.0 15.9
гев 2 3 4 5 6 7 8 9 10 11 11 12 13 14	2 33 33 33 33 33 33 33 33 33 33 33 33 33	15 20 15 14 15 14 15 14 15	40 40 40 40 40 40 40 40 40 40 40 40	15 17 19 14 14 19 15 15 15	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15.1 15.1 15.0 15.1 17.5 43.9 156.8 53.1 54.5 82.7 15.0 28.3 15.1

--

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START (JULIAN DATE	OF SAMPLE TIME (GMT)	END OF S JULIAN DATE	SAMPLE TINE (GMT)	SAMPLE DURATION (DAYS)	KR-85
FE	DATE	(GNT)	DATE	(GHT)	(DAYS)	(PEI/SCM)
23 45 67 89 10 11 12 13 14 FE	40 40 40 40 40 40 40 40 40 40 40 40 40	15 17 14 14 14 14 13 14 14 14 15	4444444444 444444444444444444444444444	155 164 144 13 145 145 15 13	7777888878877	26.8 28.3 15.4 17.1 22.1 35.2 181.9 46.6 52.1 50.6 17.5 36.8 50.1
2 3 4 5 6 7 8 9 10 11 12 13 14 FE	47 47 47 48 48 48 48 48 47 48 47 48 47 47	15 16 14 14 14 15 13 15 15	5444 554444 55444444 5544444	16 135 146 155 14 15 15 15 15	7777666676677	23.7 15.3 14.8 14.7 15.1 25.8 36.9 41.6 247.7 93.1 14.7 55.8 42.9
23 45 6 7 8 9 10 11 12 14 14	544 554 5544 5544 5544 5544 554	18 133 165 157 16 157 14 15 14 15 14	61 61 61 61 61 61 61 61 61	16 16 14 14 15 15 15 15 15	777777777777777777777777777777777777777	18.4 20.7 26.1 23.2 21.8 27.4 225.4 220.2 170.2 63.6 17.9 30.5
2 3 4 5 6 7 8 9 12 13 14 14	61 61 61 61 61 61 61 61 61	16 16 14 14 16 15 14 15 14 15	658 668 668 668 668 668 668 668 668 668	17 17 15 14 16 16 15 18 14	7 7 7 7 7 7 7 7 7 7 7 7	14.7 25.0 17.9 22.2 106.6 14.4 29.9 59.1 15.0 43.6 18.4
2 3 4 5 7 8 9 10 11 13 14	C 0 68 68 68 68 68 68 68 68 68 68 68 68 68	17 17 15 14 15 14 15 13 15 14	75 755 755 755 755 755 755 755 755 755	16 15 14 15 16 15 15 15 15	7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18.9 33.2 20.6 23.9 111.2 124.0 135.8 46.2 72.4 60.8 23.9 40.2

•

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GNT)	END OF Julian Date	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85
MAR	DATE	(GNT)	DATE	(GMT)	(DAYS)	(PCI/SCH)
23 33 4 5 6 7 8 9 10 11 12 14 HAR	7577757575757575757575757575757575757575	16 205 114 155 155 155 155	87782828288888888888888888888888888888	18 20 15 14 18 15 14 13 14 14 15	7257777777777	15.1 35.7 26.4 19.0 24.9 36.3 58.2 126.1 64.7 217.8 107.4 27.7 106.4
2 3 4 5 6 7 8 9 10 11 12 13 14 HAR	82 82 82 82 82 82 82 82 82 82 82 82 82 8	17 155 114 121 154 144 195	899999999999999999999999	15 131 16 16 15 14 15 14 14 13	777777777777	16.4 22.9 23.7 16.3 15.1 15.5 35.3 118.8 27.0 20.6 24.3 81.2
2 3 4 5 5 6 7 8 11 12 13 14 4 PR	27 89 89 89 89 89 89 89 89 89 89 89 89 89	15 21 14 21 16 16 16 14 18 14 13	96 96 96 96 96 96 96 96 96 96	20 15 20 16 16 14 14 14 13	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	14.9 15.3 14.8 14.9 19.9 59.8 46.9 23.6 20.6
2 3 4 9 10 11 12 13 14 APR	96 96 96 96 96 96 96 96 96	20 15 20 14 15 14 15 13	103 103 103 103 103 103 103 103	14 16 18 14 13 14 19 14	777777777777777777777777777777777777777	15.9 38.4 27.6 44.8 42.2 29.1 18.5 17.5 61.7
2 3 4 9 10 11 12 13 14	103 103 103 103 103 103 103 103 103 103	15 16 18 14 14 19 14	110 110 110 110 110 110 110 110 110	20 15 18 14 13 14 14 15 16	777777777777777777777777777777777777777	16.9 17.3 16.3 32.8 28.7 193.7 85.2 17.0 44.3 18.2

×

.

HEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME	END OF JULIAN DATE	SAMPLE TIME (GNT)	SAMPLE DURATION (DAYS)	KR-85
APR	DATE	TIME (GMT)	DATE	(GNT)	(DAYS)	(PC1/SCM)
2 3 4 5 6 7 8 9 10 11 12 13 14 APR	110 110 110 110 110 110 110 110 110 110	20 15 18 14 21 14 14 15 16	117 117 117 117 117 117 117 117 117 117	18 21 21 14 15 14 13 14 14 18 14	77777777777777777777777777777777777777	16.9 22.6 28.4 39.6 27.7 24.1 27.7 35.4 28.6 21.2 18.5 55.6
2 4 5 6 7 8 10 11 12 13 14 HAY	117 117 117 117 117 117 117 117 117 117	17 21 20 13 14 13 16 13 17 13	124 124 124 124 124 124 124 124 124 124	15 17 14 20 15 21 12 14 13 14 15	777777777777777777777777777777777777777	32.4 43.5 16.1 34.3 121.3 16.6 15.1 31.2 15.3 245.0
2 3 5 6 7 8 10 11 12 14 HAY	124 124 124 124 124 124 124 124 124 124	16 17 16 20 15 13 13	131 131 132 132 132 131 131 131 131	17 12 14 13 20 14 12 13 13	77788878777	15.7 27.4 14.8 15.0 15.6 18.1 139.5 66.3 39.3 22.0
2 3 4 5 6 7 8 10 11 12 14 HAY	131 131 131 132 132 132 131 132 131 131	17 15 14 13 20 14 13 13 13	138 138 138 138 138 138 138 138 138 138	13 15 15 17 20 17 21 14 14 18	77776667677	15.4 15.9 16.5 15.3 53.9 62.3 83.5 33.5 21.6 15.6
2345 5567 89 101 112 133 14	138 138 138 138 139 138 138 138 138 138 138 138 138 138 138	13 15 13 13 20 17 18 12 14 15 17	1455 1459 1455 1455 1455 1455 1455 1455	20 12 14 13 13 13 13 14 13 14 15 14	10 7 7 1 6 7 7 7 6 7 7 7 5 7	44.6 15.0 15.0 14.8 15.7 16.5 23.2 19.4 17.7 14.9

-

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCN)
MAY 2 3 5 6 7 8 9 10 11 12 13 14 14	24 145 145 145 145 145 145 145 145 145 14	20 12 13 13 13 14 15 15	154 152 152 152 152 152 152 152 152 153 152	14 16 20 17 14 14 12 13 16 14 13	67 67 77 77 77 77 8 7	14.4 14.9 14.8 14.9 15.3 43.7 24.9 15.2 15.0 15.0 81.2
2345 6789 10111 123 134	154 152 152 152 152 152 152 152 152 152 152	14 13 13 27 14 14 14 13 16 17 13	159 159 159 160 162 159 159 154 159 156 166 159	13 14 17 15 20 14 13 13 13 14 13 13 13	577680777257307	15.2 19.1 159.1 15.1 15.1 15.2 24.6 19.7 21.2 27.6 24.8
JUN 2 3 4 5 6 8 9 10 11 12 12 14	7 159 159 159 159 160 159 159 159 159 159	13 14 17 15 25 14 12 14 12	166 166 166 166 166 166 166 166 166	13 14 14 13 12 16 14 17 12	777767777777777777	29.5 95.0 78.2 24,3 129.8 17.9 63.5 44.3 88.3
JUN 2 3 4 5 6 8 9 10 11 12 13 14 JUN	14 166 166 166 166 166 166 166 1	14 14 14 13 16 12 14 13 13	176 173 173 173 173 173 173 173 173 173 173	15 15 13 12 13 12 13 13 14 15 20	10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15.5 17.2 16.8 15.0 14.8 15.0 66.8 130.8 26.7 36.4 21.1 187.7
2 3 4 5 6 8 9 10 11 12 13 14	21 176 175 173 174 173 173 175 173 173 173 173 174 173	15 15 14 19 13 123 14 20	180 180 180 176 180 180 180 180 180 180 180	15 16 14 13 17 14 13 12 13 14 14	4576734777767	15.1 14.4 14.5 14.4 56.6 18.9 18.1 69.6 59.3 23.9 75.0

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

-

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE	END OF S JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85
	DATE	TIME (GMT)	DATE	(GHŤ)	(DAYS)	(PCI/SCM)
JUK 2 3 4 5 6 7 9 10 11 13 14 JUL	28 180 180 180 180 180 184 180 180 180 180 180 180 5	15 16 14 14 16 13 12 14 14	188 187 188 188 188 188 188 188 187 188 187 188 187	14 15 14 18 18 15 13 15 13	87888487887	15.5 20.1 14.6 15.9 14.3 18.2 70.5 55.4 18.1 17.6 20.4
2 3 4 5 6 7 9 10 11 12 13 14 JUL	188 187 188 188 188 188 188 188 187 188 187 188 187 188	14 16 13 19 18 14 13 13 13 13	194 194 194 194 194 194 194 194 194	14 123 143 133 122 133 123 143	67666676767	15.1 14.9 14.6 14.6 36.4 71.1 132.3 71.0 15.0 29.2 57.8
2 3 4 5 6 7 8 9 10 11 11 12 13 14 JUL	12 194 194 194 194 194 194 194 194 194 194	14 12 13 13 15 15 12 12 12 14 13	203 201 201 201 201 202 202 201 201 201 201	14 16 153 132 132 14 15 14	9777775777 8 77	20.2 18.3 15.5 22.0 15.5 120.5 338.4 26.1 24.1 24.1 24.1 24.1 15.2 17.0 120.9
2 3 5 6 7 8 9 10 11 12 13 14	203 201 201 201 201 201 201 201 201 202 201 201	14 17 13 13 12 12 12 14 12 14 12	212 208 208 209 208 209 208 208 208 208 208 208 208 208 208 208	15 155 154 15 12 12 13 15 12 15	9 7 7 7 8 7 7 7 7 7 6 7 6 1	16.3 16.7 16.8 16.5 20.2 44.1 55.2 176.6 83.8 19.6 17.3
JUL 3 6 7 9 10 11 12 13 14	26 211 208 208 209 208 209 208 208 208 208 208 208 208 208 208 208	145 145 124 123 123 155 15	215 215 215 215 215 215 215 215 215 215	16 20 14 14 13 14 13 12 13 20 14	47767677777777777777777777777777777777	14.6 14.9 15.0 14.9 20.9 80.1 241.9 72.8 19.9 15.6 73.2 15.2

.

٠

NEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF JULIAN DATE	SANPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PCI/SCM)
AUG 2 3 4 6 7 9 10 11 12 13 13 14 4 40 5	2 218 215 215 215 215 215 215 215 215 215 215	19 16 20 14 13 13 13 13 15 20 14	2222 2222 2222 2229 2222 2222 2222 222	24 11 18 19 13 13 13 13 13 13 13 13 13 13 13 13 15 12	4 7 14 7 7 .7 7 4 4 7	15.7 17.2 69.1 15.2 17.2 20.5 19.4 16.7 19.8 16.8 16.8 35.2
AUG 2 3 5 5 7 8 9 10 11 12 13 14 14 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4	222 222 222 222 222 225 225 225 225 225	24 11 14 15 19 21 13 13 13 13 12 4	230 229 225 229 229 230 229 229 229 229 229 229 229 229 229 22	14 14 12 13 12 13 12 13 13 13 13 14 12	87734757777725	18.6 15.2 18.2 15.6 14.8 15.6 14.7 279.3 74.6 29.5 21.1 44.0
2 3 4 5 6 7 8 9 10 11 12 13 14 AUG	230 229 229 229 229 229 229 229 229 229 22	14 14 13 12 13 12 13 13 13 13 13 13	236 236 236 236 236 237 236 236 236 236 236 236 236	15 11 14 13 19 12 12 12 12 12 14 13	6777777777767	15.2 17.4 31.7 35.6 15.0 15.6 41.9 17.9 17.9 15.7 15.7 15.5
23456789 1011123 11	236 236 236 236 236 237 236 236 236 236 236 236 236 236 236 236	16 11 14 12 12 12 12 12 12 12 14 14	244 2443 2443 2443 2443 2443 2443 2443	23 14 12 13 19 12 12 12 12 12 14 18	878777677776	20.2 15.7 27.4 15.9 16.9 16.2 79.4 422.2 34.2 17.4 18.5 108.1
3 5 6 7 8 9 10 11 12 14 14 14 14 14	243 243 243 243 243 243 243 243 243 243	14 14 19 12 12 13 14 15 13 13	250 251 251 251 250 251 251 244 245 244 245 246 250	18 19 13 14 20 13 15 13 15 13 13 13 13	77888778811113	19.8 18.3 21.1 18.7 19.7 27.5 48.3 24.9 34.2 78.8 15.9 243.5 34.7 30.6

•

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECENBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF Julian Date	SANPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85
SEP		(GMT)	DATE	(GMT)	(DAYS)	(PCI/SCN)
2 3 5 6 7 9 10 11 12 14 14 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	252 250 251 251 251 251 250 251 251 251	14 12 19 14 14 20 14 13 14 13	260 257 257 257 257 257 257 257 257 258 251 251	15 13 13 19 14 13 16 13 13	876776776716	20.6 35.8 22.9 18.9 16.9 17.4 17.4 17.2 32.5 35.4
2 3 4 5 6 7 8 8 9 10 11 12 13 14 5 5 6 7 8 8 9 10 11 12 13 14 5 5	260 257 257 257 258 257 257 257 257 257 257 257 257 257 257	15 133 120 145 142 136 143	264 264 264 264 264 264 264 264 264 264	15 123 144 133 142 123 142 123 144 123 144	47776743777677	15.5 15.9 27.6 15.6 48.5 28.3 137.7 42.6 144.2 20.8 15.3 16.8 15.5
2 3 4 5 6 7 8 9 9 9 10 11 11 12 13 14 14 14 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	264 264 264 264 264 264 264 264 265 264 264 264 264 264 264 264 264 264 264	15 1234 144 144 144 144 144 144 144 144 144 1	271 271 271 271 271 265 271 265 271 265 271 271 267 271	13343644252333504	777777167167733	27.8 22.9 26.3 17.9 16.4 23.9 40.4 42.3 48.9 54.0 21.6 81.7 21.6 81.7 21.6 81.7 21.6 7 37.7
2 2 3 4 4 5 7 8 9 9 10 11 11 12 13 14 14	271 275 271 275 271 275 271 275 271 275 271 275 271 275 271 275 271 275 271 275 271 275 271 275	13 22 13 12 13 14 22 13 14 22 13 23 25 14 2 12 23 25 14 2 12 25 14 2	275 278 278 275 278 275 278 275 275 275 275 275 275 278 275 278 275 278 275	21 12 21 21 121 21 121 21 21 21 21 21 21	437 45 454454545245	15.3 16.2 15.2 15.3 14.9 27.0 32.9 18.1 30.7 18.4 16.5 20.4 16.5 25.2

TWICE DAILY SAMPLES TAKEN BETWEEN OCTOBER 4 AND NOVEMBER 19, 1977 (SEE APPENDIX H)

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S Julian Date		SAMPLE DURATION (DAYS)	KR-85
NOV	DATE	(GHT)	DATE	TINE (GMT)	(DAYS)	(PC1/SCM)
2 3 5 6 7 8 10 11 14 14	22 327 327 327 327 327 327 327 327 327 3	13 13 13 10 10 13 14	334 334 334 334 334 334 334 334	18 14 14 20 14 13 13 14	7 7 7 7 7 7 7 7	16.2 15.6 15.7 15.7 22.0 26.4 19.1 15.7 14.9
2 3 4 5 6 7 8 9 10 11 12 12 13 14 DEC	334 334 335 335 334 334 334 334 334 334	18 14 20 137 20 14 14 15 14 17 14	341 341 341 341 341 341 341 341 341 341	1433334432233353 11443233353	77767777772577	75.4 34.7 89.2 21.0 103.7 16.9 17.0 19.2 16.8 15.4 24.3 17.1 20.6
2 3 4 5 6 7 8 9 10 11 12 13 14 DEC	341 341 341 341 341 341 341 341 341 341	14 13 13 14 14 14 12 22 14 37 14	33333333333333333333333333333333333333	16 14 13 16 14 12 22 13 4 14 11 14 13	377677877777	28.0 30.9 148.1 20.0 23.5 108.0 137.1 29.2 33.5 28.6 19.3 28.6 104.8
2 3 4 5 6 7 8 10 10 11 12 14 DEC	348 351 349 350 350 349 348 348 348 348 348	24 21 139 137 208 164 14 17	355 355 355 355 355 355 3555 3555 3555	13 14 153 14 14 15 14 15 14 15 16 17	7434655643777	16.9 36.8 29.0 16.2 27.7 17.4 20.4 19.9 336.0 45.0 16.2 16.1
3 5 6 7 8 9 10 11 12 14	20 355 355 355 355 355 355 355 355 355 35	14 13 14 14 14 14 14 13 16 17	362 362 362 363 363 363 362 362 362 362	14 13 13 14 14 13 14 13 20 15	7 77 7 8 14 8 7 7 7 7 7	19.4 19.0 18.4 19.1 16.2 20.5 59.8 33.8 18.4 19.6

WEEKLY KR-85 CONCENTRATIONS JANUARY 1976- DECEMBER 1976

SAMPLING	START OF	SANPLE TIME	END OF Julian	SAMPLE TIME	SAMPLE DURATION	KR-85
	DATE	(GHT)	DATE	(GHT)	(DAYS)	(PCI/SCM)
DEC	27					
ş	363	21	3	14	6	15.2
2	362	14	- 3	- 14	7	15.5
- 4	362	13	3	14	7	15.6
5	362	13	3	13	7	15.6
7	363	14	3	14	6	17.3
9	363	13	3	14	ě	20.6
10	362	14	3	17	7	54.5
12	362	20	3	13	7	15.6
13	363	20	3	14	6	15.6
14	362	15	3	16	• 7	15.8

-

WEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GNT)	END OF JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCM)
JAN 2 3 4 5 5 6 7 8 9 10 11 12 13 14	3 3333363333333333333333333333333333333	14 14 13 13 14 15 17 14 15 17 14 15 16	10 10 10 10 10 10 10 10 10 10 10	13 16 15 15 13 15 13 13 13 13 13 14 13 14	7 7 7 7 7 7 7 7 7 7 7 7 7 7	225.6 20.8 19.4 15.5 26.2 23.8 30.6 17.4 19.7 19.7 19.7 19.7 16.3 331.9
JAN 2 3 4 5 5 6 7 8 9 10 11 12 13 14 JAN	10 10 10 14 10 10 10 10 10 10 10	14633545 11545 1443 1441 1441 216	18 17 14 17 17 17 17 17 17 17 17 17	134 1153 153 143 143 143 150 143 150 14	8774377777777257	16.7 15.7 15.8 16.7 28.2 28.8 19.0 16.5 16.5 16.3 15.5 16.7
23345667789990111 12314	18 17 17 17 17 17 21 17 27 17 17 17 17	17 14 13 14 17 59 44 93 45 54	24044222222222222222222222222222222222	13 14 15 16 13 14 14 13 14 14 13 16 4 14	63477433474377777	16.0 15.8 16.7 15.8 26.8 51.8 202.8 149.9 15.4 15.4 15.4 15.4 15.4 39.3
JAN 2 3 4 5 6 7 8 9 10 11 12 13 14 14 14	24 24 24 24 24 24 25 24 24 24 28	14 13 16 14 14 13 14 15 14 15 14 22	289 229 311 311 329 319 319 319 319 319 319 319 319 319 31	20 8 8 14 15 13 13 8 22 8	45557777657543	207.2 15.5 15.7 15.9 46.6 71.8 104.3 50.2 45.1 34.1 146.9 1761.5 33.4
JAN 6 7 8 9 10 12	31 31 31 31 31 31 31 31 31	15 14 15 10 14	38 38 38 38 38	13 13 14 13 12 14	7 7 7 7 7	16.4 56.5 54.4 46.4 24.6 17.5

WEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

.

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	SAMPLE TINE (GNT)	SAMPLE DURATION (DAYS)	KR-85 (PCI/SCN)
FEB 6 7 8 9 10	7 38 38 38 38 38 38	17 14 14 13 12	42 42 42 42 42	22 20 21 20 21	4 4 4 4	19.9 25.6 72.5 157.0 94.1
	AILY SAMF 31 AND F				EE APPEND	IX H)
FEB 2 3 4 5 6 7 8 9 9 10 11 14 14 14 14 14 14	28 59 59 59 59 59 59 59 59 59 59 59 59 59	10 16 13 10 10 21 10 21 10 10 17	63 66 66 66 66 66 66 66 66 66 66	20 14 13 13 13 13 13 13 13 13 13 13 13 13 13	477747767723	32.2 171.8 75.7 41.1 25.6 28.7 43.7 28.8 49.4 38.7 16.1 15.3
2 3 6 7 8 9 10 11	7 66 66 66 66 66 66 66 66 66 66	17 14 18 18 14 15 14 14 14	73 73 73 73 73 73 73 73 73 73	13 14 13 17 13 14 13 13 14 13	777767677777	32.9 20.4 17.2 17.4 15.5 20.5 17.9 19.3 18.5 22.4 440.4
2 3 4 5 6 7 8 9 10 11 12 13 14	73 73 73 73 73 73 74 73 73 73 73 73 73	14 14 137 14 14 14 14 194 13 159 14 13	80 80 80 80 80 80 80 80 80 80 80 80 80 8	13 133 163 134 134 133 143 133 144	7777776777777	19.4 19.9 16.5 45.0 30.8 15.2 27.4 17.8 15.6 16.1 16.0 62.3
MAR 2 3 4 5 7 7 8 9 9 9 10 11 12 13 14	21 80 80 80 80 80 81 80 80 80 80 80 80 80 80 80 80	14 13 164 14 13 13 14 13 14 15 14	87 87 87 87 87 87 87 87 87 87 87 87 87	14 13 16 14 13 14 13 14 13 13 13 13 14	77771671677777	18.6 16.9 17.8 17.1 21.5 71.4 57.5 20.3 143.6 61.3 31.0 17.6 121.2

HEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	ANPLE TIME (GNT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCN)
MAR 2 3 4 5 6 7 8 9 10 11 12 13 14	28 87 90 87 87 87 87 87 87 87 87 87 87	14 13 164 144 143 143 143	90 91 91 91 91 91 91 91 91 91 91	16 20 20 20 20 20 20 20 20 20 20 20 20 20	31444444444	14.9 16.5 63.8 16.8 44.0 21.2 18.7 24.5 22.0 17.4 81.1 16.1 112.0
TWICE APRIL	DAILY SA 1 AND MA	MPLES TA Y 1, 19	AKEN BE 77 (SEE	TWEEN APPEN	DIX H)	
PAY 2 3 4 5 6 7 9 9 9 10 11 12 13 14 14	2 122 122 122 122 125 125 125 125 124 124 122 122 122 122 122	16 12 92 12 17 99 120 18 12 89 23	129 129 129 129 129 129 129 129 129 129	132 122 122 122 122 122 122 122 122 122	77777433657752	15.3 15.2 15.2 14.7 15.1 16.0 16.8 27.3 38.4 16.9 122.3 28.4
MAY 2 3 4 5 6 7 8 9 10 11 12 13 14	9 129 129 129 129 129 129 129 129 129 12	13 122 123 143 143 143 13 13	136 136 136 136 136 136 136 136 136 136	12 12 12 12 12 12 12 12 12 12 12 13 13 14	777777777777777777777777777777777777777	21.2 21.5 15.9 16.8 18.2 19.3 34.4 20.7 23.5 18.5 91.1
МАҮ 3 4 5 6 7 8 9 10 12 13 14	16 136 136 136 136 136 136 136 136 136 1	132 122 133 153 122 134	143 143 143 143 143 143 143 143 143 143	13 12 12 12 13 13 12 12 12 12 12 12 13	7 7 7 7 7 7 7 7 7 7 7 7 6	38.1 23.9 17.2 23.2 19.9 82.6 51.1 224.3 26.6 24.8 142.9

HEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	AMPLE TIME (GMT)	SAMPLE DURATION	KR-85
PAY 2 3 4 6 7 8 9 10 11 11 11 13 14	23 143 143 143 143 143 143 143 143 143 14	13 12 12 13 13 14 13 14 14 19 18	150 150 146 150 150 150 150 150 144 151 151	12 12 12 14 13 13 13 12 18 12 12 12	(DAYS) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(PCI/SCN) 111,4 17.3 47.2 15.3 15.3 16.3 30.3 15.6 18.2 15.8 181.9
23 4 5 6 7 8 9 9 10 12 13	30 150 150 152 150 150 150 150 150 153 150 150 150	13 13 12 12 14 13 13 12 12 12 13	157 157 157 157 157 157 157 157 157 157	12 17 13 12 13 12 13 12 12 12 12 12	777577734776	19.1 24.5 23.1 31.3 17.0 15.9 25.8 20.7 55.8 229.7 20.3 43.1
JUN 2 3 4 6 7 8 9 9 10 11 12 13 14	6 157 157 157 157 157 157 157 157 157 157	13 12 12 13 14 13 12 13 12 13 12 12	164 164 164 164 164 164 164 164 164 164	12 12 11 13 14 15 11 12 13 12	7777772577777	15.6 19.8 16.0 18.1 26.2 57.3 21.4 19.6 106.1 24.0 17.3 17.1 22.8
JUN 23 4 5 6 7 8 9 9 10 10 11 12 13 11 12 13 14	13 164 164 164 164 164 164 164 165 164 164 164 164 164 164 164 164	13 12 12 13 15 12 11 19 14 13 17	171 171 171 171 171 171 165 171 168 171 171 171 171 171 171	1222 1222 1228 14222 1234 14212 1234 1434 145	777777164377725	19.9 21.4 16.6 17.4 49.5 75.9 29.0 231.4 24.8 17.7 19.0 554.0 63.4
JUN 2 3 4 5 6 7 8 9 11 12 13 14	20 171 173 171 173 171 171 171 171	132 128 122 18 18 14 13 14 14 15	178 178 178 178 178 178 178 178 178 178	12 12 12 12 12 12 12 12 13 13 13 13 14	7257777777377	14.9 15.1 15.6 15.5 15.5 15.6 18.4 15.2 15.2 15.2 15.2 15.1 16.3

.

WEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

~

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	AMPLE TINE (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PCI/SCN)
JUN 2 3 4 5 6 7 8 9 10 11 12 13 14	27 178 178 178 178 178 178 180 178 178 178 178 178 178 178 178	13 12 21 18 13 13 12 13 14 13	182 182 182 182 182 182 182 182 182 182	20 17 19 19 19 19 19 19 20 21	****	14.7 14.9 15.0 15.0 17.8 160.7 216.2 17.1 15.4 15.0 15.9 15.0
TWICE JULY 1	DAILY SA AND JUL	MPLES Y 31,	TAKEN BE 1977 (SE	TWEEN E APPI	ENDIX H)	
AUG 23 45 7 8 9 11 11 12 12 12 13 14	1 213 213 213 213 213 213 213 214 213 214 213 213 213	12999999999139689	220 220 220 220 220 220 220 214 220 216 220 220 220 2214	12 12 12 12 12 12 12 12 12 12 12 12 12 1	7777771 6 3471	26-1 19-0 18-1 16-0 17-3 15-3 18-2 51-0 25-3 18-2 25-3 18-2 25-3 18-2 25-3 18-2 25-3 15-0
AUG 2 3 4 5 7 8 9 10 12 13 14 14 14	8 220 220 220 220 220 220 220 22	13 12 12 13 13 13 13 11 20 12 12	227 227 227 227 227 227 227 227 227 227	12 12 12 12 12 13 13 12 13 14	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	14.9 15.3 15.0 14.8 14.8 14.9 14.9 14.9 15.4 15.4 15.4
AUG 2 3 5 7 8 9 10 11 13 14 14	15 227 227 227 227 227 227 227 227 227 22	13 122 13 12 13 12 13 12 14 28	234 234 234 234 234 234 234 234 234 229 234	18 12 13 12 12 12 12 12 12 12 12	7 7 7 7 7 7 7 7 7 7 7 7 7 7 5	15,4 15,2 14,7 15,3 15,1 14,9 15,4 15,4 15,4 15,2

-

WEEKLY KR-85 CONCENTRATIONS JANUARY 1977-SEPTEMBER 1977

SAMPLING LOCATION	START OF JULIAN DATE	SAMPLE TIME (GMT)	END OF S JULIAN DATE	SAMPLE TIME (GMT)	SAMPLE DURATION (DAYS)	KR-85 (PC1/SCN)
AUG 2 3 4 7 9 11 12 13 14 14 14 14 4 4 4 0 4	22 234 234 234 234 234 234 234 234 234 2	18 122 133 155 153 153 153	241 241 241 241 241 241 241 238 241	12 12 12 12 12 12 21 13 17 12	77777723	14.8 14.9 15.0 15.0 15.1 15.1 14.9 14.6
2 3 4 5 7 8 9 10 11 12 14 5 5 7 8 9 10 11 12 12 14 5 5 7 8 9 10 10 11 12 12 14 5 5 7 8 9 10 11 12 14 5 5 7 8 9 10 11 12 14 5 5 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	241 241 241 241 241 241 241 241 241 241	13 12 12 13 13 13 13 21 21	2448 244499 244499 244498 24448 24448 24448 2454 2254	12 12 12 12 12 12 12 12 12 12 12 12	87788878792	16.9 15.3 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
2 3 4 5 8 9 10 11 12 13 14 5 5 8 9 10 11 12 13 14 5 5 8 9 9 10 11 12 12 13 14 5 5 8 9 10 11 14 5 5 8 9 10 14 5 14 5 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 5 5 8 9 14 11 11 11 11 11 11 11 11 11 11 11 11	249 248 250 249 249 249 249 250 250 250 249	13 12 19 12 11 13 13 13 14	255 255 255 255 255 255 255 255 255 255	12 12 12 12 12 12 12 12 12 12 12 13 16	67756667856	15.0 14.9 17.3 14.2 15.0 15.0 15.0 14.8 14.9
2 4 5 7 9 10 11 12 14	255 255 255 255 255 255 255 255 255 258 255	13 12 13 15 12 13 16	262 262 262 262 262 262 262 262 262 263 262	12 19 12 13 12 13 12 13	7777757	15.3 15.1 14.8 14.8 24.2 14.9 14.9 14.3

APPENDIX H

TWICE-DAILY KR-85 CONCENTRATIONS

Sampling Period:

- 1. Fall: October 4, 1976 November 19, 1976
- 2. Winter: January 31, 1977 February 27, 1977
- 3. Spring: April 1, 1977 May 1, 1977
- 4. Summer: July 1, 1977 July 31, 1977

Explanation of Appendix:

Line 1:	Calendar date (Julian date; start of sampling) A indicates AM, P indicates PM sample.
Col. 1:	Sampling location (see Table 1 and Figure 1)
Col. 2:	Time (GMT) each sample collection began.
Col. 3:	Sample duration (hours)
Col. 4:	Observed average ⁸⁵ Kr concentration during sample collection (pCi/SCM)

APPENDIX H		TWICE D	AILY KR-85 CO CTOBER-NOVEMBE	NCENTRATION R 1976			
SAMPLING LOCATION	START TIME (GNT)	SAMPLE DURATION (HOURS)	KR-85 (PC1/SCM)	SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)
02 03 08 09 10 11 12 14	4 278 1300 1200 1300 1300 1200 1300 1300 1300	(A) 08.0 09.0 23.0 08.0 08.0 08.0 08.0 08.0 08.0	16.4 16.3 17.8 17.5 17.5 15.7 25.2	0CT 07 08 09 11 12 13 14	6 28 2200 2200 2200 2200 2200 2200 2200 2	0(P) 14.0 14.0 14.0 14.0 14.0 14.0 15.0	18.4 16.1 16.1 16.2 44.6 17.8 17.4
0CT 04 07 12 14	4 278 2200 2200 2200 2200 2200 2200	(P) 14.0 14.0 14.0 14.0 14.0	15.8 16.3 15.0 17.6 18.4	02 02	7 28 1300 1200 1315 1300 1305 1300 1305 1300 1325 1300	1(A) 08.0 24.0 07.8 08.0 23.0 72.0 09.0 09.0 09.5 08.0	17.4 19.1 19.7 17.0 15.4 16.9 15.5
0CT 02 04 05 06 08 09 10 11	1200 1300 1305 1305 1300 1300 1200 1330	08.0 09.0 08.0 07.9 07.8 08.0 10.0 07.5	18.9 15.7 21.9 16.1 16.1 15.3 16.3 15.9	0CT 04 05 06 10 12 14	7 28 2200 2200 2200 2200 2200 2200 2200 2	11(P) 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	16.0 15.8 16.7 16.5 16.6 770.2 17.1
0C† 02 06 10 11 12 14	5 279 2200 2200 2200 2200 2200 2200 2200 2	(P) 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	188,8 17,0 17,4 15,5 15,1 376,0 675,9	0CT 03 04 05 06 07 08 10 11 12 13 13 14	8 28 1300 1300 1300 1300 1307 1200 1325 1325 1325 1305	08.0 94.0 08.0 08.0 701.0 71.0 08.0 90.0 70.0 00.0 00.0 00.0 00.0 00.0 00	14.7 26.1 16.5 74.4 18.9 15.9 19.1 108.9 15.3
0CT 02 03 04 05 06 07 09 10 11 12 12 12 13 14	6 280 1300 1230 1300 1300 1300 1300 1305 1200 1325 1300 1325 1300	(A) 08 - 0 07 - 5 08 - 0 08 - 0 08 - 0 08 - 0 07 - 9 07 - 5 08 - 0 07 - 5 08 - 2 08 - 2	33.6 175.0 19.6 15.8 15.8 16.8 15.9 81.4 54.7	02 03 05 06 11 12 13 14	\$ 28 2200 2200 2200 2200 2200 2200 2200 2	82(P) 62.0 86.0 62.5 62.5 62.5 62.5 63.1 61.0	15.6 19.1 23.2 15.0 16.0 15.8 15.7
TWICE DAILY KR-85 CONCENTRATION OCTOBER-NOVEMBER 1976

SAMPL LOCAT	I NG I ON	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCN)	SAMPLING LOCATION	TIME DU	AMPLE RATION HOURS>	KR-85 (PCI/SCM)
02 07 08 09 10 12	OCT	11 285 1300 1300 1300 1310 1300 1300 1300 130	(A) 08.0 23.0 08.0 08.0 08.0 09.0 08.0 08.0	15.7 15.8 18.3 15.8 15.8 15.8 16.2 16.1 18.9	0CT 02 03 04 06 07 09 12 13 14	13 287(P 2100 2200 2200 2200 2200 2200 2200 220	2) 15.0 14.0 14.0 14.0 14.0 14.0 14.8 14.8 14.8	15.3 15.5 15.5 15.4 15.9 15.9 15.9 15.7 15.7
02 07 09 11 12 13	OCT	11 285 2100 2200 2200 2100 2155 2200 2155 2200 2115 2200	(P) 15.0 14.0 14.0 14.0 14.5 14.5 14.5 14.3	15.7 15.8 15.7 15.7 15.7 16.0 15.5 15.5 15.7	0CT 02 03 04 07 08 09 10 11 11 12 14	14 288(# 1300 1300 1310 1205 1300 1200 1325 1300 1325 1300 1155	08.0 08.0 08.0 08.0 07.8 07.8 07.8 07.5 09.0 07.5 07.5 07.5 08.0 07.5 08.0 07.5 08.0 07.5 08.0 07.5	17.7 16.0 15.8 15.2 15.2 15.8 15.5 15.3
02 03 04 05 069 10 12	OCT	12 286 1300 1300 1300 1300 1300 1300 1300 130	(A) 08.0 08.1 07.8 08.0 08.0 08.0 08.0 09.0 08.0	16.7 15.8 17.9 16.9 16.2 15.5 19.5	0CT 02 03 04 05 06 07 09 10 11 12 13 13 14	14 288(F 2200 2300 2200 2200 2200 2200 2200 220	2) 15.0 13.0 14.0 14.0 15.0 14.5 14.5 14.5 14.0 14	16.09 18.09 15.66 15.66 15.66 15.3 15.3 15.3 15.3 15.3 15.3 15.3
02 04 05 11 13 14	0CT	12 280 2200 2200 2200 2200 2200 2200 2200	5(P) 14.0 14.0 14.0 14.4 14.5 13.6	15.4 15.7 15.7 16.0 15.8 15.8 15.7 15.8	DCT 02 03 04 05 06 07 08 09 10 12 12 13	15 289() 1300 1200 1300 1300 1300 1345 1345 1300 1200 1300 1315	A) 08.0 07.0 08.0 08.0 08.0 08.0 07.3 07.9 07.9 09.0 07.2	15.3 15.8 17.2 15.0 17.0 49.4 44.6 9 44.6 9 17.6
02 04 05 06 08 09 10	0CT	13 283 1300 1300 1300 1300 1300 1300 1300 13	7(A) 08.0 08.0 08.0 07.7 08.0 09.0 07.5	15.2 14.9 16.3 15.7 15.4 15.9	OCT 05 08 09 10 11 12 14	15 289() 2200 2200 2200 2200 2200 2155 2200 2200		134.2 33.6 191.4 92.5 27.3 15.8 17.0

TWICE DAILY KR-85 CONCENTRATION DCTOBER-NOVEMBER 1976

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCH)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
0CT 02 05 08 09 11 12 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.8 21.0 29.3 17.5 22.9 38.7 15.8	0CT 02 05 06 09 10 11 12 13 13 14	20 294 (P) 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 13.0 2155 14.5 2200 14.0 2200 14.0	16 4
0CT 04 07 08 09 11 14	18 Z9Z(P) 2200 14.0 2200 14.0 2200 14.1 2200 14.1 2200 14.1 2200 14.5 2100 15.0	16.0 430.3 15.5 15.7 29.2 16.2 15.9	DCT 02 03 04 05 06 10 11 12 12 14	21 295(A) 1300 08.0 1320 07.7 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1200 07.5 1300 08.0 1300 08.0	22.5 16.1 15.4 18.7 15.7 15.7 16.1
0CT 02 04 05 06 07 08 11 13	19 293(A) 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1325 07.6 1330 06.5	15.9 35.4 15.3 16.9 16.0 16.1 15.6 16.2	0CT 04 08 11 13 14	21 295(P) 2200 14.0 2200 14.0 2200 14.0 2155 16.6 2115 09.0 2050 15.2	
0CT 03 04 05 06 10 11 13 14	19 293(P) 1800 21.2 2200 14.0 2200 14.0 2200 14.0 2200 14.0 2200 15.0 2100 15.0 2100 09.0	151.7 97.3 18.3 15.9 15.5 15.5 15.4	0CT 02 03 06 07 08 11 14	22 296(A) 1300 08.0 1545 05.4 1300 08.0 1300 08.0 1300 08.0 1430 71.3 1300 09.0	16.5 17.1 57.0 16.5 16.0 17.7 15.0
0CT 02 03 04 05 06 07 08 09 10 11 12 13	20 294 (A) 1530 05.5 1510 20.8 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1300 08.0 1320 08.0 1320 09.0 1325 07.5 1400 07.0 1318 06.7	22.5 21.5 69.3 69.3 15.7 17.7 17.25 13.9	OCT 02 04 05 06 07 08 10 14	22 296(P) 2200 62.0 2200 62.0 2200 62.0 2100 10.0 2200 62.0 2200 62.0 2200 62.0 2200 62.0 2200 62.0 2200 62.0 2300 61.0 2300 61.0	20.0 21.9 19.1 20.1 17.6 28.0 36.4 138.6

THICE DAILY KR-85 CONCENTRATION OCTOBER-NOVEMBER 1976

SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PC1/SCM)
0CT 02 04 05 07 08 09 10 11 12 14	25 299 1300 1300 1300 1300 1420 1420 1300 1350 1350 1300	(A) 08.0 10.0 08.0 06.7 06.7 07.0 07.0	19-1 15-9 15-7 16-3 16-8 24-1 29-9	0CT 02 05 06 07 08 09 10 11 12 12	27 301 2100 2100 2100 2100 2100 2100 2100 2	(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.7 15.7 15.7 15.8 15.9 15.8 15.9 15.8 15.9 15.6
0CT 03 04 05 06 08 09 10 12	25 299 2200 2200 2200 2200 2200 2200 2200	(P) 14.0 10.0 14.5 14.5 14.0 13.0 14.0	14.9 15.0 15.0 15.1 15.2 15.2 17.3	0CT 02 05 05 05 09 10 11 12 13 14	28 302 0900 0900 0900 0900 0900 0900 0900 0	(A) 11.0 10.0 1	16.4 16.5 15.8 15.8 16.5 16.5 16.5 16.3 16.3 16.3 16.3 16.3 16.3 15.9
0CT 02 04 06 08 10 11 12 14	26 300 1300 1300 1300 1300 1337 1200 1335 1300 1300	(A) 08.0 08.0 07.4 07.3 07.3 08.0	15.86 175.86 175.88 155.88 23.68 155.7	DCT 02 04 05 07 09 10 14	28 302 2200 2100 2100 2100 2100 2100 2100 2	(P) 09.0 10.0 10.0 10.0 10.0 10.0 10.0	14.8 16.9 15.6 15.7 15.7 15.7 14.0
0CT 03 04 06 08 09 10 12	26 300 2200 2200 2200 2200 2200 2200 2200	(P) 14.0 14.0 14.0 14.0 14.0 14.0 13.0 14.0	80 - 7 87 - 8 15 - 8 15 - 8 15 - 8 15 - 5 15 - 7	0C1 02 04 05 06 07 09 10 14	29 303 0900 0900 0900 0900 0900 0900 0900	(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	194.7 16.2 15.9 15.6 15.6 15.8 347.0
0CT 03 05 06 07 08 10 11 12 14	27 301 1225 1300 1300 1300 1300 1200 1245 1300 1255	(A) 30.6 06.0 06.0 06.0 06.0 06.0 06.5 06.0 06.1	16.2 17.8 16.2 16.8 16.9 15.6 15.6 16.2 17.1	0CT 02 03 04 05 06 10 12 14	29 303 2100 2100 2100 2100 2100 2100 2100 2	(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	157.6 18.4 15.7 35.0 15.8 15.6 242.5

-

 \sim

THICE DAILY KR-85 CONCENTRATION OCTOBER-NOVEMBER 1976

SAMPLING LOCATION	TIME DURA	PLE KR-85 TION URS) (PCI/SCM)	SAMPLING	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PC1/SCM)
NOV 02 04 05 06 07 08 09 10	1 306 (A) 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10.	0 21.5 0 563.3 0 17.0 0 15.7 0 15.5	NÖV 03 04 05 06 10 14	3 308 2200 2200 2200 2200 2200 2200 2200 2	(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.8 15.7 15.9 15.8 16.1
NOV 02 05 06 07 08 09 10 12 13	1 306 (P) 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NDV 02 04 04 06 07 09 10 12 13 14	4 309 1000 1000 1000 1000 1000 1000 1000 1	<pre>(A) 10.0 10.0 10.0 10.0 06.0 10.0 10.0 02.5 10.0 09.0</pre>	16.1 16.2 16.1 16.5 103.0 16.6 16.5 16.5 16.0
NGV 02 03 04 13 14	2 307(A) 1000 29. 1000 10. 1000 10. 1000 10. 1515 04.	0 20.3 0 49.2 0 15.6	NOV 02 03 04 05 06 07 08 09 10 13 13 14	4 309 2200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200	(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	16.1 16.0 16.3 15.8 20.8 17.5 23.1 15.9 15.9 16.2
NOV 03 14	2 307(P) 2200 10. 2200 10.	0 19.6 0 16.0	NGV 02 03 04 05 06 08 09 10 12 13 13	5 310 1000 1000 1000 1000 1000 1000 1000	(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 06.7 10.0	16.0 15.8 16.7 15.97 17.9 16.2 15.7 16.6
NOV 02 03 04 05 06 07 09 10 12 14	3 308(A) 1630 03. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10.	0 15.5 0 15.9 0 16.2 0 16.0 0 16.0 0 16.0 0 16.0 0 16.7	NOV 02 03 04 05 06 07 07 09 10 11 11 13	5 310 2200 2200 2200 2200 2200 2200 2200 2	(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	15.9 16.9 16.9 16.4 16.4 16.4 16.5 16.5 16.5 2 16.5 2 16.1

.

.

APPENDIX H	(THICE	DAILY KR-85 CO CTOBER-NOVEMBE	NCENTRATION R 1976			
SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PC]/SCM)
₩0¥ 14	6 ³¹	1(A) 10.0	144-6	NGV 02 03 05 06 07 08 09 10 11 14	1000 1000 1000	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	16.0 15.7 16.4 15.5
NOV 02 03 06 07 09 11 14	8 31 1000 1000 1000 1000 1000 1425 1000	3(A) 10.0 10.0 10.0 10.0 05.6 10.0	15.8 16.0 19.1 15.9 15.9 19.4 22.4	NOV 02 03 04 05 06 07 08 09 10 11 11 13 14	10 31 2200 2200 2200 2200 2200 2200 2200 22	5(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.6 15.7 15.7 15.7 15.1 16.0 15.0 15.0 15.0 15.0 15.6
NGV 05 07 08 09 10 11 13 14	8 31 2200 2200 2200 2200 2200 2200 2200 22	3(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.9 15.2 56.9 15.0 15.0 16.0 16.1 15.9	NGV 02 04 06 13	11 31 3000 3000 1300 1300	6(A) 10.0 10.0 07.0 10.0	15.2 15.5 16.1 15.6
NOV 02 03 05 08 09 10 11 13 14	1000 1000 1000 1000	4(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.9 17.0 386.0 57.2 15.8 15.6 16.3	02 04 05 06 13 14		10.0 10.0 10.0 10.0 10.0 10.0 10.0	
NOV 03 04 05 07 09 10 11 13 14	9 31 2200 2200 2200 2200 2200 2200 2200 22	4(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	16.3 15.0 16.4 19.4 16.4 16.8 27.3 15.8	NOV 02 03 07 08 09 10 13 13 14	12 31 1000 1000 1000 1000 1000 1000 1000 1	7(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	16,4 15,4 16,1 34,9 16,9 16,9 15,6

 \sim

.

TWICE DAILY KR-85 CONCENTRATION OCTOBER-NOVEMBER 1976

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
NOV 02 03 04 05 07 10 11 14	12 317(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.9 16.1 25.2 16.0 16.4 181.5 16.0 15.8	NOV 03 04 05 06 09 10 11 12 12 14	15 320(P) 2200 15.0 2200 15.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.3 2200 10.3 2200 10.3 2200 15.3 2110 15.8 2200 12.5	244.2 16.29 72.5 15.7 16.0 28.7 15.5
NOV 14	13 318(A) 1000 10.0	16 ₋ 5	NOV 02 03 05 06 07 08 10 11 12 13 14	$\begin{array}{ccccccc} 16 & 321(A) \\ 1000 & 10.0 \\ 1300 & 09.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1420 & 05.7 \\ 1300 & 08.0 \\ 1000 & 10.0 \\ 1030 & 09.5 \end{array}$	15.4 22.3 15.8 15.8 16.5 16.1 16.7 16.4
NOV 14	13 318(P) 2200 12.0	16.0	NOV 02 03 04 06 07 08 09 10 11 12 13 14	16 321(P) 2200 10.0 2200 15.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 15.3 2100 16.0 2200 10.0 2200 10.0	16.2 175.8 175.8 172.19 15.8 15.8 15.8 15.8 15.8 15.7 16.1 15.3
14 NOV	14 319(A) 1000 10.0	15.8	NOV 02 03 04 05 07 08 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1557807 155.80 155.8849 155.8949100000000000000000000000000000000000
NOV 02 03 04 05 06 07 12 14	15 320(A) 1000 11.0 1300 07.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1430 05.5 1000 10.0	15.6 66.0 91.1 15.9 15.8 15.8 16.0	NOV 02 03 05 06 08 10 11 12 14	17 322(P) 2200 10.0 2030 10.0 2030 10.0 2030 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	18.7 18.9 15.69 17.4 16.4 16.6 15.9

÷

...

THICE DAILY KR-85 CONCENTRATION OCTOBER-NOVEMBER 1976

SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)
NGV 02 03 04 06 07 08 10 11 12 13 14	18 32 1000 1000 1000 1000 1000 1000 1430 1000 100	3(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	17.1 23.9 17.2 20.3 19.6 17.2 15.9 16.1 16.1 16.1	NOV 02 03 04 05 06 08 10 11 12 13 14	19 32 1000 1000 1000 1000 1000 1000 1000 10	4(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.6 15.5 16.8 15.0 254.9 16.6 15.9 17.3 15.8
NOV 02 03 04 05 06 07 08 09 10 11 12 14	18 32 2200 2200 2200 2200 2200 2200 2200 2	3(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.7 15.8 15.8 16.6 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0	02 03 04 05 09 11 12 13 14	19 32 2200 2200 2200 2200 2200 2200 2200 2	24(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	15.8 15.1 26.0 15.2 15.2 15.2 15.6

1

TWICE DAILY KR-85 CONCENTRATION JANUARY-FEBRUARY 1977

SAMPLING LOCATION	TINE DURA	IPLE KR-85 Ition URS> (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCN)
JAN 03 05 11 13 14	31 31(A) 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10. 1000 10.	0 15.5 0 15.6 0 16.3	FEB 02 04 05 11 13 14	2 33(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0 2200 10.0	28.8 15.6 16.9 21.9 17.4
JAN 03 04 05 11 13 14	31 31(P) 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10.	0 15.6 0 15.4 0 15.5 0 15.8	FEB 02 03 04 05 11 13 14	3 34 (A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	17.2 16.0 15.6 15.6 15.8 433.6
FEB 02 03 04 05 11 13	1 32(A) 1000 10. 1000 12. 1000 10. 1000 10. 1000 10. 0945 10.	0 15.8 0 18.9 0 15.7 0 15.6	FE8 02 03 04 05 13 14	3 34 (P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0 2200 10.0	18.3 16.1 15.5 15.6 98.4 87.2
FEB 02 04 05 11 14	1 32(P) 2200 10. 2400 10. 2200 10. 2200 10. 2200 10. 2200 10. 2200 10.	0 15.6 0 15.6 0 15.7 0 15.4	FEB 02 03 04 05 11 13 14	$\begin{array}{cccc} & 35(A) \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 0945 & 10.0 \\ 1000 & 10.0 \end{array}$	15.5 15.5 15.6 16.6 28.0 18.6
FE8 02 03 04 05 11 14	2 33(A) 1000 10. 1200 09. 1000 10. 1000 10. 1000 10. 1000 10.	9 15.6 0 15.7 0 15.6 0 15.8	FEB 02 04 05 11 13 14	4 35(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0 2200 10.0	16.4 15.20 15.33 15.33 15.9

5

APPENDIX H	THICE	DAILY KR-85 CO Anuary-februar	NCENTRATION Y 1977		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	
FEB 14	5 36(A) 1000 10.0	15.3	FEB 02 03 04 05 11 13 14	8 39(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	86.8 21.9 32.1 17.6 15.7 15.8 27.3
FE8 14	5 36(P) 2200 10.0	15.3	FEB 02 03 04 05 11 13 14	8 39(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	20.9 16.1 17.8 16.6 15.5 15.7 17.1
FEB 14	6 37(A) 1000 10.0	15.7	FE8 03 04 05 11 13 14	9 40(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 0945 10.0 1000 10.0	20.5 20.2 20.8 18.6 17.8 31.9
FEB 02 03 04 05 11 13 14	7 38 (A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	29.9 34.6 219.0 110.9 23.0 15.8 16.2	FEB 02 03 04 05 11 13 13	9 40(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0 2200 10.0	38.8 26.7 26.0 25.9 35.1
FEB 03 04 05 11 13 14	7 38(P) 2200 10.0 2203 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	46.1 149.5 17.4 16.1 15.8 59.6	FEB 02 03 04 05 11 13 14	10 41(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 0945 10.0 1000 10.0	25.7 26.9 27.6 27.6 29.8 28.3 32.4

THICE DAILY KR-85 CONCENTRATION JANUARY-FEBRUARY 1977

				AT.AT A.MA.F	~~
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE Time Duration (GMT) (Hours)	KR-85 (PCI/SCM)
FE8 02 04 05 11 13 14	10 41(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0 2200 10.0	15.5 19.2 17.5 20.5 18.4 18.0 17.1	FEB 14	13 44(A) 1000 10.0	15.7
F€B 03 04 05 11 13 14	11 42(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15.5 18.7 19.6 20.2 253.6 125.7 16.7	FEB [*] 14	13 44(P) 2200 10.0	15.3
FEB 02 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{ccccccc} 11 & 42 (P) \\ 2200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 & 10.0 \\ 200 &$	16.2 20.6 15.4 21.9 22.9 22.3 33.4 116.7 54.9 17.2 21.7 16.8 16.7	FEB 02 03 04 06 07 08 09 10 11 13	14 45 (A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15-6 15-8 15.4 16.7 19.29 15.5 15.5 15.1
FEB 14	12 43(A) 1000 10.0	18.2	F&B 02 03 04 05 06 08 10 11 12 13 14	$\begin{array}{ccccccc} 14 & 45(P) \\ 2200 & 10.0 \\ 200 & 10.0 $	15.7 15.54 15.3 15.3 16.66 15.60 15.2
FEB 14 -	12 43(P) 2200 10.0	16.3	FEB 04 06 07 09 10 12 13	15 46(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1400 06.7 0945 12.0	15.3 15.3 15.1 15.3 15.4 15.4

~

THICE DAILY KR-85 CONCENTRATION JANUARY-FEBRUARY 1977

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
FEB 03 04 05 06 07 07 10 11 12 14	15 46(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0		FEB 02 03 04 05 06 07 08 09 10 11 12 14	18 49(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15.6 15.3 15.3 23.3 25.5 25.5 165.1 258.3 15.5
FEB 02 03 04 05 06 07 09 10 11 13	$\begin{array}{ccccccc} 16 & 47(A) \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \end{array}$	15.3 15.5 15.5 15.5 15.3 15.3 15.3 15.4 15.4	FEB 02 06 07 08 09 10 14	18 49(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	18.4 15.2 17.3 16.3 49.9 123.9 15.1
FEB 02 03 04 05 06 07 09 11 12 13 14	16 47(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.8 15.5 15.6 15.6 15.6 15.6 15.2 15.2 15.7 15.7	ξ εΒ 14	19 50(A) 1000 10.0	16.0
02 03 04 05 06 07 08 09 10 12 13 14	$\begin{array}{c} 1 0 0 0 & 11.0 \\ 1000 & 1000 & 10.0 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\$	15.6 9 15.6 72.0 15.0 15.0 15.0 15.0 15.0 15.0 15.8 15.8 15.8	FEB 14	19 50(P) 2200 10.0	16.1
FEB 02 03 04 06 07 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,3 18,2 15,4 39,9 31,8 16,6 16,5 15,5	FE8 14	20 51(P) 2200 10.0	15.4

JÁNÚÁRY-FEBRUÁRY 1977					
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	
FEB 02 04 05 13 14	21 52(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	16.5 15.7 15.3 15.3 16.1	FEB 02 03 04 06 10 11 12	2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.3 15.6 15.1 15.2 15.4 15.4
FEB 04 05 13 14	21 52(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.3 15.3 15.5 15.3	FEB 02 03 04 07 08 10 11 13 14	$\begin{array}{cccccccc} 24 & 55(A) \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1400 & 06.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 0945 & 10.0 \\ 1000 & 10.0 \end{array}$	15.1 15.1 15.2 15.2 15.2 15.2 15.1 15.1
FEB 02 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.2 15.3 15.3 15.3 48.2 40.7 308.1 677.2 15.8 15.8	FE8 02 03 04 05 07 09 10 11 12 13 14	24 55(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.5 15.1 15.1 15.0 15.6 15.7 14.8 15.1 15.4
FEB 02 03 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	FEB 03 04 05 07 09 10 11 13 14	1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15.2 15.1 15.5 15.8 15.6 15.6 15.3
FEB 02 04 05 07 08 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.3 15.42 15.42 15.8 15.8 15.8 15.6 15.6 15.6	FE8 02 03 04 05 06 07 08 09 11 12 13	25 56 (P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2145 10.0	15.2 15.3 15.3 15.1 15.5 15.6 93.0 16.6 48.3

TWICE DAILY KR-85 CONCENTRATION

APPENDIX H

-

THICE DAILY KR-85 CONCENTRATION JANUARY-FEBRUARY 1977

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)	SAMPLING LOCATION	START SAMPLE Time Duration (GMT) (Hours)	KR-85 (PCI/SCM)
FE8 14	26 57(A) 1000 10.0	15.3	FEB 14	27 58(A) 1000 10.0	14.7
FEB 14	26 57(P) 1000 10.0	15.3	FE8 14	27 58(P) 2200 10.0	15.1

•

•

THICE DAILY KR-85 CONCENTRATION APRIL-MAY 1977

SAMPLIN Locatio	G S1 N T1 (C	IART INE D INT)	SAMPLE Duration (Hours)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START TIME (GMT)	SAMPLE DURATION (HOURS)	KR-85 (PCI/SCM)
A 03 04 05 06 10 11 13 14	20 22 22 22 22 21	91(F 00 00 00 00 00 00 00 45 00	2) 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	(PCI/SCM) 70.3 32.8 42.7 15.8 20.5 17.0 15.8 48.5	APR 03 07 08 09 10 11 12 13 14	4 94 2200 2200 2200 2200 2200 2200 2200 22	(P) 22.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.1 14.9 15.0 15.9 14.9 14.7 17.3 14.8 14.5
4 14	PR 2	2 92 <i>(4</i> 100	() 10.0	16.9	03 04 05 06 07 08 09 10 11 13 13 14	1000 1000 1000 1000 1000 1000 1000 100	(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.4 15.2 15.1 14.9 15.0 15.1 15.1 15.2 15.3 15.3 15.3
Ai 14	PR 2 22	92(P)) 10.0	15.1	APR 03 04 05 08 11 12 13 14	5 95 2200 2200 2200 2200 2200 2200 2200 22	(P) 10.0 10.0 10.0 10.0 34.0 10.0 10.0	
AI 14	PR 3 22	93(P	2) 10.0	14.8		6 96 1000 1000 1000 1000 1000 1000 1000 10		15.8 15.9 15.9 200.1 631.5 16.1 15.7 15.7
A) 03 05 08 09 10 11 12 13 14	10 10 10 10 10 13 09	00 00 00 00 00 00 00 45) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	16.9 15.6 15.1 19.1 16.8 15.5 15.1 15.1 14.9	400		(P)	15.5 15.6 143.9 15.6 15.6 15.6

THICE DAILY KR-85 CONCENTRATION APRIL-MAY 1977

SAMPLI LOCATI	NG On	START TIME (GMT)	DURATION	KR-85 (PC1/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
02 04 06 07 09 10 11 12 14	APR	7 1000 1000 1000 1000 1000 1000 1000 10	97(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.3 15.42 15.42 65.6 33.6 7 3.6 7 5.8 7 15.8 165.7 15.8 15.8 15.5	APR 14	9 99(P) 2200 10.0	15.4
03 04 05 10 12 13 14	APR	7 2200 2200 2200 2200 2200 2115 2200	97(P) 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.2 15.4 15.8 162.6 15.3 35.8 15.2	APR 14	10 100(A) 1000 10.0	15.4
02 03 04 05 067 09 12 14	APR	8 1000 1000 1000 1000 1000 1000 1000 10	98(A) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.2 15.2 14.9 15.9 34.2 68.7 52.2 15.2	APR 14	10 100(P) 2200 10.0	15.3
03 04 09 10 12	APR	8 2200 2200 2200 2200 2200 2200 2200	98(P) 10.0 10.0 10.0 10.0 10.0 10.0	14.6 15.4 68.1 15.3 15.4 15.5	APR 02 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccc} 11 & 101(A) \\ 1000 & 10.0 \\ 1000 & 1000 \\ 1000$	15.3 15.4 20.5 16.0 15.4 295.9 198.8 46.6 15.1 146.5 15.3
14	APR	1000	99(A) 10.0	15.6	APR 02 05 06 08 09 10 11 12 13 14	11 101(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.8 15.5 15.7 57.6 57.6 15.3 60.3 60.3 15.3

THICE DAILY KR-85 CONCENTRATION APRIL-MAY 1977

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCH)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)
APR 03 04 05 06 07 09 11 12 13	12 102(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	16.6 16.9 15.4 17.4 17.4 16.8 18.8 15.3 31.9	APR 02 04 05 06 07 08 10 11 12 13 13	14 104 (P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	17.5 14.9 21.1 15.0 15.4 355.6 20.9 18.2 17.5
APR 03 04 06 07 10 11 13 13 14	12 102(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	19.2 19.3 15.4 17.0 16.8 17.3 18.1 18.1	APR 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccccc} 105(A) \\ 1000 & 10.0 \\ 1000 & 1000 \\ 1000 & $	17.7 15.3 15.4 112.3 136.5 158.8 34.0 46.5 16.5 14.5 14.5
APR 02 03 04 05 06 07 08 11 13 14	$\begin{array}{cccccccc} 13 & 103(A) \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 10.0 \end{array}$	17.8 17.4 16.8 18.1 15.4 16.8 154.5 81.5 81.5	APR 03 04 06 08 09 10 11 12 13 14	15 105 (P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.4 16.2 15.1 42.6 25.1 17.1 15.5 15.7 36.2
APR 02 03 04 06 07 09 12 13 14	13 103(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	18.1 16.4 15.1 17.0 16.6 25.5 20.8 34.6	4PR 14	16 106(A) 1000 10.0	18.0
APR 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccc} 14 & 104 (A) \\ 1000 & 10.0 \\ 1300 & 07.0 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 1000 & 1000 \\ 100$	15.27 15.7 15.23 15.8 15.8 15.8 16.8 174 18.9	APR 14	16 106(P) 2200 10.0	15.5

APPENDIX H	TWICE	DAILY KR-85 CO April-May	NCENTRATION 1977		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	
APR 14	17 107(A) 1000 10.0	15.5	APR 02 03 04 07 08 09 12 13 14	19 109(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	17.2 15.6 15.5 16.5 17.7 25.4 17.6
APR 14	17 107(P) 2200 10.0	1055.9	APR 02 03 04 05 06 07 08 09 10 12 13 14	$\begin{array}{cccc} 20 & 110(\text{A}) \\ 1000 & 10.0 \\ 1000 & 1000 \\ 100$	15.8 15.7 15.5 15.3 15.6 16.0 16.3 1452.2 16.2 16.8 25.6
APR 02 03 04 05 06 07 08 09 11 12 13	18 108 (A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 12.0	79.4 16.9 17.1 15.9 17.5 19.5 18.6 16.6 18.5 8.2 15.5	APR 02 04 06 07 09 11 12 13	20 110(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2210 10.0 2115 10.0	16.5 15.3 16.3 16.3 15.6 15.6 17.8 87.6 25.0
APR 02 03 04 05 10 13	18 108(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2115 10.0	18.1 15.8 15.7 16.9 15.9 17.7	APR 02 03 04 05 06 07 08 09 10 11 12 13 14	21 111(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15.4 15.92 15.24 15.24 15.31 15.21 16.2 18.5 797.2
APR 02 03 05 07 08 09 10 11 12 13 14	$\begin{array}{ccccccc} 19 & 109(A) \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 1000 & 10.0 \\ 10.0 \\ 10.0 & 10.0 \\ 10.0 \end{array}$	16.1 15.4 15.4 15.5 16.1 107.2 145.4 30.0 279.6 15.9	APR 02 03 06 07 08 09 10 12 13 14	21 111(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.22 155.22 155.22 155.3 155.3 155.3 155.3 19.3

		APRIL-MAY	1977		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
APR 02 03 04 05 06 07 08 09 11 12 13 14	22 112(A) 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0 1000 10.0	15.2 15.32 16.3 15.2 15.2 15.2 15.2 15.2 15.2 15.3 15.3 15.3 15.3 15.3 15.3	4PR 14	24 114(P) 2100 10.0	15.7
APR 03 05 06 07 09 10 12 13 14	22 112(P) 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0 2200 10.0	15.4 14.0 15.2 15.2 15.4 15.2 16.0 17.3 18.2	APR 02 03 04 05 06 07 08 09 10 11 12 13 14	25 115(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	15.7 16.6 15.6 58.5 27.8 6 15.7 25.7 16.5 15.8 15.6
APR 14	23 113(A) 1000 10.0	15.9	APR 02 04 06 07 09 12 14	25 115(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.8 16.3 16.2 21.9 16.0 15.7 15.8
APR 14	23 113(P) 2200 10.0	15.2	APR 02 03 06 07 08 10 12 13 14	26 116(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0815 10.0 0900 10.0	15.9 15.0 16.0 15.9 15.9 15.9 15.8 15.8
APR 14	24 114(A) 0900 10.0	15.4	APR 03 06 09 10 11 13 14	26 116(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.8 16.0 17.0 15.5 17.5 17.2 16.0 16.2

TWICE DAILY KR-85 CONCENTRATION APRIL-MAY 1977

APPENDIX H

-

TWICE DAILY KR-85 CONCENTRATION APRIL-MAY 1977

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)
APR 02 03 04 05 06 07 08 09 10 11 12 13 14	27 117(A) 0900 10.0 0900 12.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	15.7 15.9 15.9 83.0 26.8 15.9 15.6 15.7 15.7 15.7 15.9	APR 03 04 06 07 09 10 13 14	29 119(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2015 10.0 2100 10.0	16.5 16.3 16.4 15.6 15.8 15.5 15.8
APR 02 03 06 09 10 11 12 14	27 117 (P) 2100 10.0 2345 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.6 15.7 41.0 18.0 16.2 15.6 15.5	APR 14	30 120(A) 0900 10.0	25.2
APR 02 04 05 06 07 08 09 10 12 13	$\begin{array}{ccccccc} 28 & 118(A) \\ 1200 & 07.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0815 & 10.0 \\ \end{array}$	15.4 15.6 18.3 15.5 427.4 1573.6 132.5 15.6 15.6 15.5	APR 14	30 120(P) 2100 10.0	30.7
APR 02 03 04 05 06 07 08 09 11 12 13 14	28 118(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2015 10.0 2100 10.0	18.3 17.5 15.6 28.6 29.4 71.2 15.4 15.4 17.6 15.4	14 MAY	1 121(A) 0900 10.0	50.0
APR 06 07 09 10 11 12 13 14	29 119(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	15.40 16.00 15.44 15.44 15.44 15.44	14 MAY	1 121(P) 2100 10.0	16.5

90

.

.

THICE DAILY KR-85 CONCENTRATION JULY 1977

SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
JUL 02 03 04 06 07 09 10 11 12 13	$\begin{array}{ccccc} 1 & 182(P) \\ 2100 & 10.0 \\ 210 & 10.0 \\ 2100 & $	16.3 15.1 16.5 16.3 33.9 15.0 15.0 14.8 14.8	JUL 02 03 07 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.1 15.9 14.9 16.1 15.0 15.0 15.2 16.0 15.2 16.0
JUL 14	2 183(A) 0900 10.0	15.1	14 02 03 05 08 11 12	5 186(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.0 15.2 15.2 15.3 15.1 15.1
JUL 14	3 184(A) 0900 10.0	15.0	03 05 07 08 09 10 11 12 13 14	$\begin{array}{ccccc} 6 & 187(A) \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0830 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0900 & 10.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	15.2 15.0 15.3 15.1 15.1 15.1 15.1 15.2 15.2
JUL 02 03 14	4 185(A) 0900 10.0 0900 10.0 0900 10.0	15.0 14.9 15.0	JUL 02 03 04 05 07 09 10 11 13 14	6 187(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2030 10.0 2100 10.0	15.3 15.3 15.3 15.1 15.1 15.1 15.1 15.2
JUL 02 14	4 185(P) 2100 10.0 2100 10.0	15.2 15.6	JUL 02 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.3 15.6 15.9 15.9 15.1 15.1 15.1 15.1 15.2

TWICE DAILY KR-85 CONCENTRATION JULY 1977

SAMPLING LOCATION	START SAMP TIME DURAT (GMT) (HOU	ION	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)
JUL 03 05 06 07 08 10 11 12 13 14	7 188 (P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.0 15.2 15.3 15.0 15.0 15.0 15.1	JUL 14	10 191(A) 0900 10.0	15.0
JUL 02 03 04 05 07 08 09 10 11 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.9 15.0 15.0 15.0 15.0 15.1 15.1	JUL 14	10 191(P) 2100 10_0	15.0
JUL 02 04 05 07 10 12 13 14	8 189(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	19.4 15.0 15.1 16.7 15.6 15.2	02 03 04 05 07 08 09 10 11 12 13 13	$\begin{array}{ccccccc} 11 & 192(A) \\ 0900 & 10.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	15.0 14.7 14.7 14.8 18.9 31.1 12.3 43.4 15.0 14. 15.0
JUL 14	9 190(A) 0900 10.0	14.9	JUL 02 03 05 06 07 08 09 11 12 13 14	11 192 (P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	14,92 15,0 14,5 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15
JUL 14	9 190(P) 2100 10.0	. 15.0	JUL 06 08 09 10 11 13 14	12 193(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0845 10.0 0900 10.0	14.9 18.1 15.1 26.2 161.9 74.6 111.4 15.0

APPENDIX H	THICE	DAILY KR-85 CO JULY 1977	NCENTRATION		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GNT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING Location	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
JUL 04 07 10 14	12 193(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.6 19.1 15.2 18.9 15.1	JUL 02 03 04 05 07 09 10 11 12 13 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5 15.6 15.4 15.9 15.9 239.1 28.2 18.79 42.5
JUL 03 04 07 09 10 11 12 12	13 194 (A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	15.1 14.8 15.1 15.2 14.8 15.0 15.0 15.0	JUL 02 03 04 07 08 10 11 12 14	15 196(P) 2200 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	16.0 16.2 25.5 15.9 18.4 16.5 17.5
JUL 04 07 10 11 12 13 14	$\begin{array}{ccccc} 13 & 194(P) \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2100 & 10.0 \\ 2045 & 10.0 \\ 2100 & 10.0 \\ \end{array}$	17.3 17.2 15.0 15.5 15.6 15.6 15.6 15.0	JUL 14	16 197(A) 0900 10.0	16.0
JUL 02 03 05 07 08 09 10 11 12 13 14	$\begin{array}{cccccccc} 14 & 195(A) \\ 0900 & 10.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	17.9 17.3 16.0 17.2 17.4 18.6 17.9 16.9 16.9 16.9 17.0	14 JUL		16.2
JUL 03 04 05 07 08 10 11 13 14	14 195 (P) 2100 10.0 1725 13.6 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.4 16.5 16.7 15.9 15.6 16.1 16.3	JUL. 14	17 198(A) 0900 10.0	16.0

APPENDIX	H THICE	DAILY KR-85 CO JULY 1977	NCENTRATION		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)
JUL 14	17 198(P) 2100 10.0	15.4	12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.9 15.1 15.3 16.1 20.0 18.2 15.6 15.6 15.0
JUL 02 03 04 05 07 08 09 10 11 12 13 14	18 199(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 1200 07.0 0900 10.0 1300 05.8 0900 10.0	15.2 15.2 15.2 15.2 15.2 15.3 15.3 15.1 15.1 15.1 15.1 15.1 15.1	JBL 03 05 07 08 09 10 11 12 12 .14	20 201(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	17.6 15.3 15.3 15.2 15.2 15.4 15.2 15.4 15.2
JUL 02 03 07 09 10 12 13 14	18 199(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.04 15.04 15.00 15.00 15.00 33.00 33.00	JUL 02 03 04 05 08 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.1 15.3 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
JUL 02 05 07 08 10 11 12 13 14	0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0830 12.0 0900 10.0	15.0 15.0 14.9 15.2 18.1 2275.6 1525.1 15.4 15.4 15.4 15.4	JUL 04 07 08 09 11 13 14	21 202(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2030 10.0	15.1 16.3 15.3 15.3 15.3 16.4
JUL 03 04 05 10 14	19 200(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	14.9 15.2 15.2 82.4 15.0	JUL 02 03 04 05 07 08 09 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 15 15 15 15 15 15 15 15 15

APPEND	IX	н
--------	----	---

THICE DAILY KR-85 CONCENTRATION JULY 1977

SAMPLING LOCATION	START SAMPLE TINE DURATION (GMT) (HOURS)	KR-85 (PC1/SCM)	SAMPLING Location	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
JUL 03 05 09 10 11 14	22 203(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	16.9 15.2 15.1 15.1 15.0 15.4	JUL 03 04 07 08 09 10 11 12 14	25 206(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	15.9 18.1 16.8 18.7 29.7 31.1 25.6
JUL 14	23 204(P) 2100 10.0	15. š	JUL 03 04 05 07 08 09 10 11 11 12 13	26 207(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0830 10.0	15.6 15.96 15.7 15.7 71.7 74.9 54.5
JUL 14	24 205(A) 0900 10.0	15.9	JUL 03 04 05 07 08 09 10 11 12 13 13	26 207(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2030 10.0 2030 10.0	15.3 15.0 15.4 17.0 19.8 20.1 20.1 30.2 19.5
JUL 14	24 205(P) 2100 10.0	15.9	JUL 02 04 05 07 08 10 11 12 13 14	27 208(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	18.6 18.7 17.6 15.7 18.3 16.3 16.0 16.2 16.8
JUL 03 05 05 07 08 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.9 15.7 16.0 15.9 381.6 104.6 104.6 16.7 169.4 15.8	JUL 02 04 05 07 08 09 10 11 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.0 16.1 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15

APPENDIX H	THICE	DAILY KR-85 CO JULY 1977	NCENTRATION		
SAMPLING LOCATION	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)	SAMPLING Location	START SAMPLE TIME DURATION (GMT) (HOURS)	KR-85 (PCI/SCM)
JUL 02 03 04 05 07 08 09 10 12 13 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.8 16.9 15.9 15.9 15.6 15.6 15.9 15.9 17.9 15.9	JUL 14	30 211(P) 2100 10.0	15.1
JUL 02 03 04 05 08 09 10 12 13 14	28 209(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2030 10.0 2100 10.0	15.8 16.0 16.1 15.7 16.0 15.9 18.2 16.0 16.1	JUL 14	31 212(A) 0900 10.0	16.1
JUL 03 04 05 07 09 10 11 12 13 14	29 210(A) 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0 0900 10.0	15.6 15.5 15.5 15.0 15.7 15.7 15.7 15.7 15.8	JUL 14	31 212(P) 2100 10.0	15.0
JUL 03 04 05 07 08 09 10 11 11	29 210(P) 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0 2100 10.0	16.1 16.4 14.9 16.3 19.0 207.5 15.4 15.3 15.4			
JUL 14	30 211(A) 0900 10.0	15.0			

-

APPENDIX I

WEEKLY AND TWICE-DAILY AVERAGE KRYPTON-85 CONCENTRATION DATA MAGNETIC TAPE FORMAT

TAPE CHARACTERISTICS

TYPE - 9 track, 1600 bpi, <u>EBCDIC</u> LABEL - None RECFM - FB LRECL - File 1: 60 File 2: 80 BLKSIZE - File 1: 6000 File 2: 800

TAPE ORGANIZATION

File	1:	Weekly concentration data
File	2:	Twice-daily concentration data

DATA FORMAT

File 1: One sampler per record as follows:

```
station number (3X,12)
year (1X,12)
starting day (1X,13)
starting hour (9X,12)
ending day (3X,13)
ending hour (5X,12)
sample duration days (3X,F5.1)
concentration (3X,F6.1)
```

File 2: One sample per record as follows:

```
station number (3X,12)
year (1X,12)
starting day (1X,13)
AM (A) or PM (P) designator (3X,A1)
starting time - hour, minutes (3X,14)
sample duration hours (16X,F5.1)
concentration (3X,F6.1)
```