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Abstract. This paper examines trend uncertainties in layer-average free atmosphere
temperatures arising from the use of different trend estimation methods. It also considers
statistical issues that arise in assessing the significance of individual trends and of trend
differences between data sets. Possible causes of these trends are not addressed. We use
data from satellite and radiosonde measurements and from two reanalysis projects. To
facilitate intercomparison, we compute from reanalyses and radiosonde data temperatures
equivalent to those from the satellite-based Microwave Sounding Unit (MSU). We
compare linear trends based on minimization of absolute deviations (LA) and
minimization of squared deviations (LS). Differences are generally less than 0.058C/decade
over 1959–1996. Over 1979–1993, they exceed 0.108C/decade for lower tropospheric time
series and 0.158C/decade for the lower stratosphere. Trend fitting by the LA method can
degrade the lower-tropospheric trend agreement of 0.038C/decade (over 1979–1996)
previously reported for the MSU and radiosonde data. In assessing trend significance we
employ two methods to account for temporal autocorrelation effects. With our preferred
method, virtually none of the individual 1979–1993 trends in deep-layer temperatures are
significantly different from zero. To examine trend differences between data sets we
compute 95% confidence intervals for individual trends and show that these overlap for
almost all data sets considered. Confidence intervals for lower-tropospheric trends
encompass both zero and the model-projected trends due to anthropogenic effects. We
also test the significance of a trend in d(t), the time series of differences between a pair
of data sets. Use of d(t) removes variability common to both time series and facilitates
identification of small trend differences. This more discerning test reveals that roughly
30% of the data set comparisons have significant differences in lower-tropospheric trends,
primarily related to differences in measurement system. Our study gives empirical
estimates of statistical uncertainties in recent atmospheric temperature trends. These
estimates and the simple significance testing framework used here facilitate the
interpretation of previous temperature trend comparisons involving satellite, radiosonde,
and reanalysis data sets.

1. Introduction

Since 1979 the satellite-based Microwave Sounding Units
(MSU) have measured the upwelling microwave radiation
from oxygen molecules. These observations have been used to
monitor the vertically weighted temperature of deep atmo-
spheric layers [Spencer and Christy, 1992a, b; Christy et al.,
1998]. In recent years, considerable scientific attention has
focused on one specific MSU product, the 2LT retrieval of
lower-tropospheric temperatures.

Several studies have noted the close agreement (to within
0.038C/decade) [Christy et al., 1997, 1998] between global-mean
MSU 2LT trends and lower-tropospheric temperature-change

estimates derived from compilations of radiosonde data by
Angell [1988] and Parker et al. [1997]. This agreement is fre-
quently cited in discussions of the reliability of the MSU 2LT

temperature record [Christy et al., 1997, 1998]. As noted by
Santer et al. [1999], however, such comparisons do not account
for large spatial and temporal coverage differences between
the satellite and radiosonde data sets. Accounting for these
differences can degrade the previously reported MSU/
radiosonde trend correspondence, which suggests that it may
be partly fortuitous.

Santer et al. [1999] (henceforth S99) attempted to quantify
some of the uncertainties that hamper interpretation of the
previously reported MSU/radiosonde trend agreement. They
identified four types of uncertainty. These were related to (1)
residual inhomogeneities in both the radiosonde and the MSU
data, (2) the procedures used in generating gridded radiosonde
data sets from raw station data, (3) coverage differences be-
tween the MSU and radiosonde data sets, and (4) the method
used in computing “equivalent” MSU temperatures from ra-
diosonde data.

S99 focused on items 2, 3, and 4. They showed that two
versions (HadRT1.1 and HadRT1.2) of the Hadley Centre
radiosonde data set compiled by Parker et al. [1997] had mark-
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edly different lower-tropospheric temperature trends over
1979–1996 (10.0408C/decade and 20.0378C/decade, respec-
tively). These were primarily due to large differences in spatial
coverage, which in turn were related to different assumptions
regarding the spatial representativeness of the raw radiosonde
data. They also found that trends based on the globally com-
plete MSU data and on the MSU data subsampled with
HadRT1.1 coverage could diverge by up to 0.068C/decade.
This finding highlighted the importance of accounting for cov-
erage differences in MSU/radiosonde comparisons. The choice
of method for computing an equivalent MSU temperature was
found to have a negligible effect on global-scale trends. Recent
work by Gaffen et al. [2000] has explored trend uncertainties
related to item 1 and shows that decisions made regarding
adjustments for radiosonde inhomogeneities can have a signif-
icant impact on local trends and probably on resultant global-
scale trends.

In the present study, we consider a fifth source of uncer-
tainty, one introduced by the choice of statistical method used
to estimate trends. To date, virtually all studies have described
secular changes in layer-average atmospheric temperatures by
fitting least squares linear trends to the data. An exception is
the recent investigation by Gaffen et al. [2000], who demon-
strate that trend estimates obtained with least squares linear
regression differ by up to 0.038C/decade from estimates based
on the median of pairwise slopes. There is no reason a priori
why a least squares linear fit should be preferable to alternative
linear-fitting methods. Here we use both a least squares fit and
a fit that minimizes the mean absolute (rather than the mean
square) deviation between the data points and the trend line
[Press et al., 1992]. We will show that over the relatively short
MSU record, the two methods of obtaining linear fits can yield
large trend differences.

Knowledge of the size of trend uncertainties arising from
these sources provides some context for interpreting previous
comparisons of trends in MSU and radiosonde data. Useful
complementary information can be obtained by testing the
formal statistical significance of the individual trends and the
trend differences between data sets. The second main issue
that we explore in this paper is how trend significance should
be assessed. Our intention here is not to provide an exhaustive
review of possible approaches for evaluating trend significance
in the time domain [see, e.g., Bartlett, 1935; Mitchell et al., 1966;
Karl et al., 1991] and frequency domain [Bloomfield and
Nychka, 1992]. Rather, our aim is to consider the sensitivity of
significance testing results to assumptions made regarding ad-
justments for temporal autocorrelation of the data.

The structure of the paper is as follows. In section 2 we
briefly introduce the various data sets of layer-mean atmo-
spheric temperature that we employ and describe how we
compute equivalent MSU temperatures from radiosonde data
and reanalyses. Section 3 considers the sensitivity of the trend
value to the choice of method used to perform a linear fit to the
data. The approaches that we use to determine the significance
of individual trends and trend differences between data sets
are outlined and applied in sections 4 and 5, respectively. A
summary and conclusions are given in section 6.

2. Temperature Data
2.1. Satellite Data

We use versions “b,” “c,” and “d” of the actual MSU layer-
mean temperature data, as supplied by John Christy (Univer-

sity of Alabama in Huntsville). These are referred to hence-
forth as MSUb, MSUc, and MSUd, respectively. Version “a”
of the data set [Spencer and Christy, 1992a, b] utilized a simple
procedure to merge data from the (currently nine) individual
satellites that comprise the MSU record. Version b of the 2LT

retrieval attempted to account for a systematic bias in the
sampling of the diurnal cycle related to an eastward drift of the
NOAA 11 satellite. Corrections for eastward drift of NOAA 7
were implemented in version c, together with adjustments for
intra-annual variations in instrument-body temperature. The
most recent MSU 2LT retrieval, version “d02,” incorporates
additional adjustments for east-west drift of satellites and uses
improved calibration coefficients for the MSU instrument on
NOAA 12 [Christy et al., 1999]. It also includes corrections for
an orbital decay effect identified by Wentz and Schabel [1998]
and for interannual variations in instrument-body temperature
[Christy et al., 1999].

The MSUb and MSUc data spanned the periods 1979–1995
and 1979–1997, respectively, while MSUd was available for
1979–1998. All three versions of the MSU data were in the
form of monthly means on a 2.58 3 2.58 latitude/longitude grid.
For each version, data were available for the 2LT retrieval and
channels 2 and 4, which provide information on (vertically
weighted) mean temperatures in the lower troposphere,
midtroposphere and lower stratosphere, respectively. The
nominal maxima of the weighting functions for these three
channels are at 740, 595, and 74 hPa.

2.2. Reanalysis Data

Reanalysis projects use a numerical forecast model of the
atmosphere with a fixed observational data assimilation system
[Trenberth, 1995]. The model output is not a direct observation
of the climatic state, since it is influenced by the data assimi-
lation strategies and numerical models that are employed.
However, it does yield internally consistent climate data un-
contaminated by the changes in model physics that typically
affect operational analyses [Trenberth and Olson, 1991].

We use data from two separate reanalyses. The first is that
performed by the European Centre for Medium-Range
Weather Forecasts (ECMWF) and is referred to henceforth as
ERA (ECMWF Re-Analysis) [see Gibson et al., 1997]. The
second is that conducted jointly by the National Center for
Environmental Prediction (NCEP) and the National Center
for Atmospheric Research (NCAR). We refer to this as NCEP
[see Kalnay et al., 1996]. The reanalyses are of different
lengths: NCEP covers the period January 1958 through De-
cember 1997, while ERA data are available from January 1979
through February 1994. Monthly-mean reanalysis data were
interpolated to a common 2.58 3 2.58 latitude/longitude grid to
facilitate intercomparisons. Temperature data from NCEP and
ERA were available on 17 discrete pressure levels.

The two reanalyses differ not only in terms of the physics
and resolution of the numerical forecast models that they use
but also in terms of the data assimilation strategies employed,
particularly with regard to the assimilation of satellite data. It
is therefore difficult to isolate the exact cause or causes of the
differences in the climate changes that ERA and NCEP sim-
ulate (see S99).

2.3. Radiosonde Data

We consider temperature information from three different
radiosonde data sets. The first two (HadRT1.1 and HadRT1.2)
were compiled by Parker et al. [1997] and were based on
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monthly CLIMAT reports. In HadRT1.1 (HadRT1.2), station
data were gridded to 58 3 108 (108 3 208) latitude/longitude
boxes. The different gridding procedures result in a substantial
coverage increase in HadRT1.2 relative to HadRT1.1 (see
S99). Other differences between HadRT1.1 and HadRT1.2 are
discussed by Parker et al. [1997].

While HadRT1.1 is available in the form of monthly-mean
anomalies from January 1958 through December 1996,
HadRT1.2 consists of seasonal-mean anomalies from March to
May (MAM) 1958 through September to November (SON)
1996. In each case, anomalies were defined relative to a 1971–
1990 base period. HadRT1.1 (HadRT1.2) has nine (eight)
vertical levels.

The third radiosonde data set used here consists of virtual or
“thickness” temperatures computed from the height differ-
ences between specific pressure levels [Angell, 1988]. We refer
to this subsequently as “ANGELL.” Thickness temperatures in
ANGELL were estimated using individual (daily or twice
daily) soundings from a network of 63 stations. Possible effects
on global-average temperature estimates arising from this
sparse coverage and from instrumental inhomogeneities have
been discussed by Trenberth and Olson [1991], Gaffen [1994],
and S99. Elliott et al. [1994] additionally consider the effect of
both real and apparent humidity changes (the latter due to
radiosonde humidity sensor changes) on ANGELL virtual
temperatures. The ANGELL data are available in the form of
global-mean seasonal-mean anomalies (relative to a 1958–
1977 base period) from December to February (DJF) 1958
through DJF 1998.

2.4. Computation of Equivalent MSU Temperatures

To facilitate comparison with the actual MSU deep-layer
temperatures for the 2LT retrieval and channels 2 and 4, we
computed equivalent MSU temperatures from NCEP, ERA,
HadRT1.1, and HadRT1.2. This was not possible for the
ANGELL data, since these exist in the form of layer-average
temperatures only. Nevertheless, the ANGELL data were in-
cluded in our study because they figure prominently in previ-
ous comparisons of MSU- and radiosonde-derived tempera-
ture trends [e.g., Christy et al., 1997, 1998].

We computed equivalent MSU temperatures in two ways,
using both a radiative transfer code and a static weighting
function [see Spencer and Christy, 1992a]. The former approach
accounts for land/sea differences in surface emissivity and for
variations in atmospheric moisture as a function of space and
time, while the latter approach does not.

Information on both methods, henceforth referred to as
“radiative transfer” (RT) and “weighting function” (WF), is
provided in S99. The RT method requires actual temperatures
and was not used for the HadRT1.1 and HadRT1.2 radiosonde
data, since these are available as temperature anomalies only.
Equivalent MSU temperatures from ERA and NCEP were
computed with both RT and WF methods. The trend differ-
ences arising from the use of different methods of computing
an equivalent MSU temperature were found to be generally
,0.028C/decade on global scales (see S99).

We also used the WF method to calculate equivalent MSU
temperatures from “masked” versions of NCEP and ERA, as
described in S99. The resulting “NCMASK” and “ERMASK”
data sets mimic exactly the coverage changes in HadRT1.1.
This provides useful information on the trend uncertainties
resulting from coverage differences between data sets. Sub-

sampling of the actual MSUc data with HadRT1.1 coverage
(“MSUMASKc”) was also performed.

Finally, we note that ANGELL’s 850–300 hPa and 100–50
hPa virtual temperatures represent (weighted) averages over
different layers than the actual and equivalent 2LT and channel
4 temperatures obtained from MSU, reanalyses, and the
HadRT data. While the midpoint of ANGELL’s stratospheric
layer (75 hPa) is very close to the peak of the MSU channel 4
weighting function (;74 hPa), MSU channel 4 samples a
deeper atmospheric layer. In the tropics, where the tropopause
is typically at ;100 hPa, the ANGELL layer is often com-
pletely in the stratosphere, whereas MSU channel 4 includes a
substantial upper-tropospheric contribution.

The midpoint of the ANGELL tropospheric layer is at 575
hPa, which is closer to the peak of the MSU channel 2 weight-
ing function (;595 hPa) than to the peak of the 2LT weighting
function (;740 hPa). Historically, however, the ANGELL
850–300 hPa virtual temperatures have been compared with
the MSU 2LT retrieval rather than with MSU channel 2 tem-
peratures, [Christy, 1995; Christy et al., 1997, 1998], probably to
avoid the stratospheric influence on MSU 2 retrievals at mid-
dle and high latitudes. Noting this inconsistency, we neverthe-
less present comparisons between MSU 2LT retrievals and
ANGELL’s 850–300 hPa data in order to shed light on the
results of previous comparisons.

3. Linear Trend Sensitivity to Fitting Method
To investigate the sensitivity of linear trends to the choice of

fitting method, we use global-mean seasonal-mean tempera-
ture anomalies from the data sets described in section 2. All
anomalies are defined with respect to 1979–1993 climatologi-
cal seasonal means. We consider sensitivities to fitting method
for short-term trends over 1979–1993 (the period of overlap
between the data sets used here) and for longer-term trends
over 1959–1996 (the period of overlap between the NCEP,
HadRT1.1, HadRT1.2, and ANGELL data sets). This yields
time samples of nt 5 60 and nt 5 152, respectively.

Previous comparisons of linear trends in different tempera-
ture data sets have almost invariably used a least-squares es-
timator of the trend [e.g., Parker et al., 1997; Christy et al., 1998;
S99]. Alternative linear trend estimators exist, which are less
sensitive to outliers [see, e.g., Lanzante, 1996]. One such esti-
mator involves minimization of the absolute deviations be-
tween the data and the linear fit [Press et al., 1992]. We refer to
these two approaches subsequently as “LS” (least squares) and
“LA” (least absolute deviation).

3.1. Channel 4

Over the period of the MSU record, lower stratospheric
temperature anomalies typically show pronounced cooling (see
Figure 1). In the radiosonde data this cooling is sustained over
an even longer period of time (the reasons why long-term cooling
is not evident in the 40-year NCEP reanalysis are discussed in
S99). It is likely that some portion of this multidecadal cooling of
the lower stratosphere is related to the combined anthropo-
genic effects of stratospheric ozone depletion and an increase
in atmospheric CO2 and other greenhouse gases [Ramaswamy
et al., 1996; Berntsen et al., 1997; Chanin et al., 1999].

The short-term (1–2 year) stratospheric warming signatures
of volcanic aerosols (e.g., from the eruptions of Mt. Agung in
March 1963, Mt. El Chichón in April 1982, and Mt. Pinatubo
in June 1991) constitute noise which hampers estimation of any
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long-term anthropogenic signal. The weight that this noise is
given is relatively greater in LS than in LA. We might therefore
expect to find systematic differences between the overall chan-
nel 4 trends estimated with LA and LS. These differences are
related to (1) the temporal distribution of volcanically induced
noise within the time series (i.e., whether volcanic effects are
symmetrically or asymmetrically distributed about the mid-
point of the time series and how close they are to the mid-
point), (2) the nonuniform response of the atmosphere to
different volcanic eruptions, and (3) the asymmetrical nature
of the temperature response to volcanic forcing (i.e., the rapid
initial response and more gradual decay).

The noise induced by El Chichón and Pinatubo is not sym-
metrically distributed about the midpoint of the 1979–1993
channel 4 time series. Pinatubo’s warming signature is closer to
the endpoint of the time series and should therefore lead to LS
trend estimates that are less negative than LA trend estimates
(see Figure 2). Our results are in accord with this expectation
in 16 out of 19 cases (13 LS/LA trend comparisons in Table 1a
plus 6 in Table 1b).

We next investigated the sensitivity of LS and LA trend esti-
mates to removal of the temperature signatures of El Chichón
and Pinatubo from the channel 4 time series. After visual inspec-
tion of the MSUd channel 4 anomaly time series, we excluded the
six seasons MAM 1982 through June to August (JJA) 1983 (El
Chichón) and JJA 1991 through SON 1992 (Pinatubo) from each
data set. We then recomputed LS and LA trend estimates for the
reduced time sample (i.e., for nt 5 48 rather than nt 5 60).

Excluding volcanic effects from the 1979–1993 lower strato-
spheric temperature time series yields systematically larger

cooling trends in virtually all cases, both for LS and LA trend
estimates (see Table 1a). It also reduces differences between
the LS and LA trend estimates (except for the NCEP (RT)
results). This finding is relevant for comparisons of short-
timescale lower stratospheric trends in models and data. Fail-
ure to account for volcanic forcing effects could easily yield
large mismatches between observed and model-predicted
trends over the period of the satellite record, even if anthro-
pogenic forcing uncertainties and model errors were relatively
small.

A comparison of Tables 1a and 1b indicates that the differ-
ences in channel 4 trends resulting from the linear fit method
are larger for 1979–1993 than for the longer 1959–1996 period.
This is primarily because 1979–1993 contains the two largest
volcanically induced “warming outliers,” and these outliers
strongly influence the LS/LA trend differences.

For the 1979–1993 period, our results may be compared
with results obtained by S99 (their Table 6). The latter study
showed that channel 4 trend uncertainties arising from the
version of the MSU or HadRT data used and the method used
to compute an equivalent MSU temperature never exceeded
0.0378C/decade. The trend differences resulting from the
choice of linear fitting method are much larger than this, ex-
ceeding 0.108C/decade in 7 out of 13 cases (for the “Volcano
Included” results in Table 1a).

3.2. Lower Tropospheric Retrieval and Channel 2

In the lower stratosphere, episodic volcanically induced
warming is natural in origin and constitutes background noise
which affects estimates of any putative anthropogenic signal

Figure 1. Time series of global-mean seasonal-mean temperature anomalies (8C) in the lower stratosphere.
(top) Results for ANGELL’s radiosonde-based 50–100 hPa thickness temperatures, the equivalent MSU
channel 4 temperatures obtained from the NCEP reanalysis, and the difference between NCEP and AN-
GELL. (bottom) The equivalent channel 4 time series estimated from the HadRT1.1 and HadRT1.2 radio-
sonde data, together with their difference time series.
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trend. LA trend estimates are less sensitive to such noise than
the more commonly used LS trend estimates. The former may
therefore provide more reliable estimates of any underlying
deterministic trend. In the lower and middle troposphere, how-
ever, it is much more difficult to partition time series into
“signal” and “noise” components. Multidecadal trends in the
2LT retrieval and channel 2 are strongly influenced by variabil-
ity on 2 to 5-year El Niño–Southern Oscillation (ENSO) time-
scales and by the choice of endpoints relative to the phase of
this quasi-periodicity (see Figure 3). There is also considerable

evidence of longer-term ENSO variability (summarized by Ni-
cholls et al. [1996]). Given the possibility that some component
of this longer-term ENSO variability is associated with anthro-
pogenic forcing [Trenberth and Hoar, 1996; Timmermann et al.,
1999], we cannot easily partition signal from noise and do not
know whether LA or LS trends provide a more reliable esti-
mate of any underlying deterministic trend.

The 2LT results bear certain similarities to those obtained for
channel 4. First, there are systematic differences between the
LS and LA trend estimates. In 16 out of 19 cases, the LS trends

Figure 2. Time series of seasonal-mean lower stratospheric (channel 4) temperature anomalies (8C) over
1979–1993 in MSUd. Also shown are linear fits to the data using two approaches: least-squares (LS) and
least-absolute deviations (LA).

Table 1a. Linear Trends Over 1979–1993 Estimated Using Least Squares and Least Absolute Deviation Approaches

2LT Retrieval Channel 2
Channel 4 Volcanoes

Included
Channel 4 Volcanoes

Excluded

LS LA LS-LA LS LA LS-LA LS LA LS-LA LS LA LS-LA

NCEP (RT) 20.028 20.127 10.099 20.044 20.080 10.036 20.244 20.315 10.071 20.391 20.315 20.076
NCEP (WF) 20.034 20.124 10.090 20.058 20.062 10.004 20.246 20.306 10.060 20.389 20.364 20.025
NCMASK (WF) 20.001 20.023 10.023 20.062 10.022 20.084 20.276 10.076 20.353 20.374 20.334 20.039
ERA (RT) 10.106 10.072 10.033 10.039 10.010 10.029 20.256 20.318 10.062 20.408 20.410 10.002
ERA (WF) 10.101 10.050 10.051 10.022 20.026 10.048 20.263 20.327 10.064 20.417 20.400 20.018
ERMASK (WF) 10.093 10.097 20.004 10.019 10.004 10.015 20.300 20.394 10.094 20.464 20.396 20.069
MSUb 20.070 20.172 10.102 10.007 20.012 10.019 20.239 20.394 10.155 20.427 20.463 10.036
MSUc 20.049 20.113 10.064 10.015 20.014 10.028 20.240 20.396 10.156 20.428 20.463 10.035
MSUd 20.054 20.139 10.085 20.074 20.067 20.007 20.190 20.440 10.250 20.371 20.417 10.046
MSUMASKc 10.011 20.037 10.048 10.052 10.109 20.056 20.371 20.494 10.123 20.539 20.592 10.053
HadRT1.1 10.065 10.042 10.024 20.005 10.115 20.120 20.340 20.185 20.154 20.393 20.320 20.074
HadRT1.2 20.049 20.075 10.026 20.098 20.149 10.051 20.347 20.384 10.036 20.447 20.422 20.025
ANGELL 20.053 20.053 0.000 — — — 20.976 21.143 10.167 21.216 21.280 10.064

Linear trends (8C/decade) in global-mean seasonal-mean temperature for three deep atmospheric layers, as estimated from reanalyses (NCEP,
ERA), the satellite-based Microwave Sounding Unit (MSUb, MSUc, and MSUd), and radiosondes (HadRT1.1, HadRT1.2, and ANGELL). All
trends were computed over 1979–1993. The atmospheric layers considered are the lower troposphere, midtroposphere, and lower stratosphere,
as defined in terms of the characteristics of the MSU weighting functions for the 2LT retrieval and channels 2 and 4, respectively. To facilitate
comparison of trends in disparate data sets, “equivalent” MSU temperatures were computed from the NCEP and ERA data sets using two
approaches: a global-mean weighting function (WF) and a radiative transfer code (RT; see section 3). Only the WF approach was used for
computing equivalent MSU temperatures from the HadRT data sets. Trends estimated from the NCMASK, ERMASK, and MSUMASKc data
sets were obtained after subsampling the globally complete reanalyses and MSUc with the actual coverage changes in HadRT1.1. Linear trends
were fitted using both a conventional least squares approach (LS) and a method that minimizes the absolute deviations (LA). The trend
differences arising from use of different fitting methods (LS minus LA) are also shown. The final three columns give trends computed after
removing most of the effects of the El Chichón and Pinatubo eruptions from time series of lower-stratospheric temperatures.
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are larger than LA trends (Tables 1a and 1b). This is in part
due to the lesser weight that LA trend estimates give to the
large positive temperature anomalies associated with El Niño
events, which are more prominent near the end of the record
(Figure 3). Second, trend differences between the LA and LS
methods (over 1979–1993) are larger than those arising from
coverage differences, version of the MSU data, and the
method used to compute an equivalent MSU temperature (see
Table 1a above and Table 6 in S99). The two linear fitting
methods give lower tropospheric trend differences $0.058C/
decade in 6 out of 13 cases and $0.108C/decade in 1 case
(Table 1a). The third similarity with the channel 4 results is
that the trend uncertainties due to the linear fitting method are
much smaller over the longer 1959–1996 period than over
1979–1993 (compare Tables 1a and 1b).

One interesting result relates to levels of trend agreement
between MSU and radiosondes (Table 2). Previously published
MSUc/ANGELL and MSUc/HadRT1.2 trend comparisons for
lower tropospheric temperatures have relied on LS estimates
of overall trends [e.g., Christy et al., 1997, 1998]. Over 1979–
1993 the LS lower tropospheric trends in MSUc and ANGELL
agree to within 0.0048C/decade, while MSUc/HadRT1.2 trends
are identical. (However, note that MSUc/HadRT1.1 trends
differ by 0.1148C/decade, for reasons primarily related to dif-
ferences in coverage.) The use of LA trend estimates system-
atically degrades these correspondences. The LA trend differ-

ence between MSUc and HadRT1.2 is 0.0388C/decade, while
differences between MSUc and ANGELL (0.0608C/decade)
and MSUc and HadRT1.1 (0.1558C/decade) are even larger. A
similar degradation in trend correspondence is obtained for all
MSUd/radiosonde comparisons over 1979–1993 (Table 2) as
well as for four out of six MSU/radiosonde trend comparisons
over 1979–1996, a period frequently considered in previous
work [Parker et al., 1997; Christy et al., 1998].

For channel 2, trend uncertainties resulting from the fitting
method can be as large as 0.1208C/decade. The LS/LA trend
differences are less systematic than those found for channel 4
and the 2LT retrieval but again tend to be much smaller over
the longer 1959–1996 period than over 1979–1993.

4. Statistical Significance of Individual Trends
In this section we consider how the significance of individual

trends should be assessed when the data are strongly autocor-
related. We do this primarily within the framework of a model
consisting of a linear trend plus noise, where the noise is
assumed to have a lag-1 autocorrelation structure. Many alter-
native statistical models can be fitted to atmospheric temper-
ature time series [see, e.g., Karl et al., 1991; Bloomfield and
Nychka, 1992; Woodward and Gray, 1993, 1995]. The model
that we use here is simple and has considerable empirical

Figure 3. Time series of seasonal-mean lower tropospheric (2LT) temperature anomalies (8C) over
1979–1993 in MSUd. Note that the LS and LA linear fits yield a trend difference of 0.0858C/decade.

Table 1b. Linear Trends Over 1959–1996 Estimated Using Least Squares and Least Absolute Deviation Approaches

2LT Retrieval Channel 2 Channel 4

LS LA LS-LA LS LA LS-LA LS LA LS-LA

NCEP (RT) 10.142 10.135 10.007 10.160 10.135 10.025 20.018 20.029 10.011
NCEP (WF) 10.160 10.147 10.013 10.178 10.154 10.024 20.002 20.014 10.011
NCMASK (WF) 10.115 10.120 20.005 10.101 10.105 20.004 20.068 20.072 10.004
HadRT1.1 10.098 10.095 10.003 10.017 10.020 20.003 20.350 20.364 10.014
HadRT1.2 10.110 10.091 10.018 10.025 10.010 10.015 20.315 20.309 20.006
ANGELL 10.096 10.095 10.001 — — — 20.501 20.547 10.046

As for Table 1a, but for linear trends (8C/decade) over 1959–1996. The ERA and MSU data sets are not included here since they commence
in 1979. The “volcanoes excluded” case considered in Table 1a is not shown here.
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justification based on results from extensive stochastic simula-
tions (D. Nychka et al., manuscript in preparation, 2000).

We stress that our focus is on demonstrating the sensitivity
of trend significance results to assumptions made in accounting
for temporal autocorrelation. We do not address the possible
causes of underlying trends in the atmospheric temperature
series examined here and do not consider whether such trends
are predominantly stochastic or deterministic in nature. De-
ducing cause and effect is hampered by (1) the short length (20
years or less) of the available deep-layer temperature time
series, (2) forcing uncertainties and model errors, which lead
to uncertainties in the climate-change signals associated with
anthropogenic and natural external forcing, (3) inadequate
knowledge of the statistical properties of such signals (i.e., a
lack of ensembles of experiments with different forcing mech-
anisms), (4) large high-frequency noise contributions from nat-
ural modes of variability, such as El Niño, and (5) our poor
understanding of possible linkages between anthropogenic
forcing and changes in the frequency, intensity, and duration of
El Niño [Trenberth and Hoar, 1996; Timmermann et al., 1999]
and other natural modes of variability [Corti et al., 1999; Has-
selmann et al., 1999]. For information on studies that specifi-
cally address possible causes of recent temperature changes in
the free atmosphere, refer to Karoly et al. [1994], Santer et al.
[1996a], Tett et al. [1996], Hansen et al. [1997, 1998], and
Bengtsson et al. [1999].

4.1. Method

Consider a time series of global-mean seasonal-mean tem-
perature anomalies, x(t), for some specified atmospheric layer
and data set. Here the time index t runs from DJF 1979
through SON 1993, so that the number of time samples in each
series, nt, is 60. The least squares linear regression estimate of
the trend in x(t), b , minimizes the squared differences be-
tween x(t) and the regression line x̂(t)

x̂~t! 5 a 1 bt; t 5 1, z z z , nt. (1)

The regression residuals, e(t), are defined as

e~t! 5 x~t! 2 x̂~t!; t 5 1, z z z , nt. (2)

For statistically independent values of e(t), the standard error
of b is defined as

sb 5
se

@O
t51

nt ~t 2 t#!2# 1/ 2
, (3)

where se
2, the variance of the residuals about the regression

line, is given by

se
2 5

1
nt 2 2 O

t51

nt

e~t!2 (4)

[see, e.g., Wilks, 1995]. Note that in some studies, it is implicitly
(and often incorrectly) assumed that values of e(t) are statis-
tically independent [e.g., Balling et al., 1998].

Whether a trend in x(t) is significantly different from zero is
tested by computing the ratio between the estimated trend and
its standard error

tb 5 b/sb. (5)

Under the assumption that tb is distributed as Student’s t , the
calculated t ratio is then compared with a critical t value, tcrit,
for a stipulated significance level a and nt 2 2 degrees of
freedom. If e(t) is autocorrelated, this approach (henceforth
referred to as “NAIVE”) gives results that are too liberal; that
is, it yields too frequent rejection of the null hypothesis b 5 0
when compared with empirical expectations based on stochas-
tic simulations (D. Nychka et al., manuscript in preparation,
2000).

If values of e(t) are not statistically independent, as is often
the case with temperature data (see Table 3), the NAIVE
approach must be modified. There are various ways of ac-
counting for temporal autocorrelation in e(t) [see, e.g., Wigley
and Jones, 1981; Bloomfield and Nychka, 1992; Wilks, 1995;
Ebisuzaki, 1997; Bretherton et al., 1999]. The simplest way [Bart-
lett, 1935; Mitchell et al., 1966] uses an effective sample size ne

based on r1, the lag-1 autocorrelation coefficient of e(t):

ne < nt

1 2 r1

1 1 r1
. (6)

Table 2. MSU/Radiosonde Lower Tropospheric Trends and Trend Differences Over
1979–1993 and 1979–1996

Comparison

1979–1993 1979–1996

LS LA LS LA

MSUc 20.049 20.113 20.033 20.044
MSUd 20.054 20.139 20.014 20.045
HadRT1.1 10.065 10.042 10.040 10.020
HadRT1.2 20.049 20.075 20.037 20.076
ANGELL 20.053 20.053 20.057 20.084
MSUc minus HadRT1.1 20.114 20.155 20.073 20.064
MSUc minus HadRT1.2 0.000 20.038 10.004 10.032
MSUc minus ANGELL 10.004 20.060 10.024 10.040
MSUd minus HadRT1.1 20.119 20.181 20.054 20.065
MSUd minus HadRT1.2 20.005 20.064 10.023 10.031
MSUd minus ANGELL 20.001 20.086 10.043 10.039

Lower tropospheric trend agreement between MSU and various radiosonde data sets. All trends (in
8C/decade) were computed using global-mean seasonal-mean anomaly data and are given for two periods
(1979–1993 and 1979–1996) and two methods of obtaining linear fits (LS and LA). The first five rows give
the actual trends in MSUc, MSUd, HadRT1.1, HadRT1.2, and ANGELL. The last six rows indicate
MSU/radiosonde trend differences.
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By substituting the estimated effective sample size ne for nt

in (4), one obtains “adjusted” estimates of the standard devi-
ation of regression residuals (s9e) and hence of the standard
error (s9b) and t ratio (t9b). We refer to this modification of the
NAIVE approach as adjusted standard error (AdjSE). A third
variant, AdjSE 1 Adjusted Degrees of Freedom (AdjSE 1
AdjDF), involves use of the effective sample size ne not only in
computation of the adjusted standard error but also in the
indexing of the critical t value.

One interesting issue is whether r1 should be estimated
directly from x(t) or from the regression residuals e(t). In the
presence of a large overall trend in x(t), the former approach
yields higher estimates of r1, since the trend inflates the lag-1
autocorrelation. We examined the sensitivity of our signifi-
cance test results (and of our adjusted confidence intervals; see
section 5.1) to the choice of how r1 is estimated and found this
sensitivity to be small for the layer-average temperature time
series used here. This reflects the fact that over the short
period of the satellite record, the LS linear trends explain only
a small portion of the overall variance of the time series. The
large volcanic warming signatures (in the lower stratosphere)
and the large amplitude variability associated with El Niño (in
the troposphere) dominate the lag-1 autocorrelation, which is
why we find that r1 is not very different if estimated from x(t)
or e(t). Here we have chosen to estimate r1 from e(t) and note
that this choice leads to slightly smaller “adjusted” standard
errors and a slightly more liberal test for the significance of the
trend in x(t).

4.2. Results

The effect of large positive values of r1 is to inflate sb in (3)
and increase the width of the confidence interval about the
estimated trend b . For the global-mean seasonal-mean anom-
aly data examined here, r1 ranges from 0.597 (ANGELL, 2LT)
to 0.856 (MSUb and MSUc, channel 4) so that ne ranges from
15 to 5 (1/4 to 1/12 of the actual sample size; see Table 3). Thus
AdjSE is a more conservative test than NAIVE: Both have the
same value of tcrit, but the former has a smaller calculated t
ratio (if r1 is nonzero). Temporal autocorrelation in e(t) also
has the consequence that AdjSE 1 AdjDF is a more conser-
vative test than AdjSE: Both tests have the same calculated t

value (t9b), but the former has fewer degrees of freedom and
hence a larger critical t value.

These systematic differences in computed significance levels
are illustrated in Figure 4, which gives p values for tests of the
null hypothesis of zero trend. Results are for global-mean
seasonal-mean anomaly time series over 1979–1993 and are
given for LS trends only. We first consider results for the lower
stratosphere, where decisions on trend significance depend on
the test assumptions. Using the NAIVE approach, all channel
4 trends that include volcanic effects (except MSUd) are sig-
nificantly different from zero at the 10% level or better. The
same trends fail to achieve significance at the 10% level with
the AdjSE and AdjSE 1 AdjDF methods (the sole exception is
the ANGELL result; see section 5.2). There are systematic dif-
ferences between channel 4 results that include or exclude volca-
nic effects. Excluding volcanic influences generally enhances cool-
ing of the lower stratosphere (see section 3.1) and markedly
reduces the standard errors, so that channel 4 trends are system-
atically more significant than in the “volcanoes included” case.

In contrast, decisions on the significance of 2LT and channel
2 trends are relatively insensitive to the significance testing
method (Figure 4). This reflects the fact that tropospheric tem-
perature trends over this short 15-year period are very small
relative to the year-to-year variability, so that p values for all three
significance testing methods are generally well above 0.10. Only
three of the lower and midtropospheric trends over 1979–1993
(out of a possible 75) are significantly different from zero at the
10% level or better: the large negative channel 2 trends for MSUd
and HadRT1.2 (20.074 and 20.0988C/decade, respectively) and
the positive ERA (RT) trend (10.1068C/decade) for the 2LT

retrieval. In these three cases, trends are judged to be significantly
different from zero with the NAIVE approach but not with Ad-
jSE or AdjSE 1 AdjDF (see Figure 4).

The nonsignificance of the 2LT trends is in most cases unaf-
fected by the inclusion of more recent data. For example, while
the inclusion of an additional 5 years of data increases the
MSUd 2LT trend from 20.0548C/decade over 1979–1993 to
10.0618C/decade over 1979–1998 (Table 4), the correspond-
ing change in p value (estimated with the AdjSE 1 AdjDF
approach) from 0.698 to 0.569 is relatively small. Neither trend
is significant.

Table 3. Lag-1 Autocorrelation Coefficients and Effective Sample Sizes

Data Set

2LT Retrieval Channel 2 Channel 4

SEAS
(r1)

ANN
(r1)

SEAS
(ne)

ANN
(ne)

SEAS
(r1)

ANN
(r1)

SEAS
(ne)

ANN
(ne)

SEAS
(r1)

ANN
(r1)

SEAS
(ne)

ANN
(ne)

NCEP (RT) 0.763 0.141 8 11 0.756 0.197 8 10 0.823 0.342 6 7
NCEP (WF) 0.766 0.155 8 11 0.759 0.216 8 10 0.821 0.339 6 7
NCMASK (WF) 0.668 0.193 12 10 0.700 0.334 11 7 0.728 0.213 9 10
ERA (RT) 0.756 0.245 8 9 0.787 0.273 7 9 0.825 0.377 6 7
ERA (WF) 0.764 0.237 8 9 0.793 0.271 7 9 0.823 0.369 6 7
ERMASK (WF) 0.683 0.221 11 10 0.730 0.357 9 7 0.667 0.095 12 12
MSUb 0.780 0.255 7 9 0.733 0.088 9 13 0.856 0.448 5 6
MSUc 0.796 0.284 7 8 0.755 0.126 8 12 0.856 0.446 5 6
MSUd 0.735 0.128 9 12 0.675 20.050 12 17 0.852 0.399 5 6
MSUMASKc 0.712 0.332 10 8 0.681 0.284 11 8 0.775 0.325 8 8
HadRT1.1 0.688 0.211 11 10 0.696 0.354 11 7 0.645 0.080 13 13
HadRT1.2 0.652 0.096 13 12 0.677 0.147 12 11 0.781 0.120 7 12
ANGELL 0.597 0.108 15 12 — — — — 0.733 0.442 9 6

Lag-1 autocorrelation coefficients (r1) and effective sample sizes (ne) for the global-mean seasonal-mean (SEAS) and annual-mean (ANN)
anomaly data described in Table 1a. The actual sample size (nt) is 60 for seasonal-mean data and 15 for annual-mean data. Effective sample sizes
are reported to the nearest integer, but full precision was retained for calculating adjusted standard errors.
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Which of the three significance testing approaches outlined
above yields results closest to theoretical expectations? This
question is addressed by D. Nychka et al. (manuscript in prep-
aration, 2000) using a stochastic simulation approach similar to
that employed by Zwiers and von Storch [1995]. The latter study
focused on accounting for temporal autocorrelation effects in
the context of testing the significance of differences in overall
means with one- and two-sample t tests. The work by D.
Nychka et al. (manuscript in preparation, 2000) deals specifi-
cally with the issue of assessing trend significance in the pres-
ence of autocorrelated data. It indicates that AdjSE 1 AdjDF,
while still liberal relative to empirically derived expectations, is
nevertheless much closer to expected significance levels than
either NAIVE (which performs worst) or AdjSE. We therefore
concentrate on the discussion of AdjSE 1 AdjDF significance
results in subsequent sections.

5. Statistical Significance of Trend Differences
We use two approaches to assess the significance of trend

differences. Consider two time series, x(t) and y(t), with least
squares linear trends bx and by and estimated standard errors
sbx and sby. In the first approach, we examine whether there is
overlap between the regions defined by bx 6 sbx and by 6 sby

(or between the “adjusted” confidence intervals, bx 6 s9bx and
by 6 s9by). The second method that we employ uses the dif-
ference time series d(t) 5 x(t) 2 y(t) and then determines
whether bd, the trend in d(t), is significantly different from
zero. Operating on the difference time series reduces noise
levels by subtracting variability common to x(t) and y(t). This
facilitates identification of real trend differences that may exist
between the two time series.

Note that different null hypotheses are being examined in

Figure 4. Significance of trends in individual time series of global-mean seasonal-mean temperature anom-
alies over 1979–1993. Results shown are p values for tests of the null hypothesis of zero trend, obtained using
the NAIVE, AdjSE, and AdjSE 1 AdjDF approaches (see section 4.1). The nominal 1, 5, and 10% signifi-
cance levels are indicated with thin horizontal lines. Note that for the channel 2 and 2LT results, p values
obtained with the AdjSE and AdjSE 1 AdjDF approaches are highly similar. In the case of channel 4 data that
exclude volcanic effects, very small p values were set to 0.0002 to facilitate plotting.
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these two approaches. In the first approach, we are testing
whether the individual trends in x(t) and y(t) are drawn from
the same population. In the second method, we are testing
whether differences in data treatment (measurement methods,
spatial coverage, the version of the dataset, or the methods
used to compute an equivalent MSU temperature) have a
significant effect on the trends.

5.1. Confidence Interval Method

Given the raw standard errors sbx and sby, the P% confi-
dence intervals for bx and by can be determined assuming that
the sampling distributions of bx and by are Gaussian. This is a
reasonable assumption if the temporal sample size is large
(.30), as in calculation of the unadjusted standard errors sbx

and sby (where nt 5 60 seasons). In this case, the unadjusted
95% confidence interval is simply bx 6 1.96 (sbx), with the
95% confidence interval for by defined similarly.

However, for the seasonal-mean anomaly data considered
here, values of ne used for calculating the adjusted standard
errors are invariably ,,30 (see Table 3). To determine the
95% confidence intervals for s9bx and s9by, it is more appropri-
ate to assume that bx and by are distributed as Student’s t .
Since the t distribution gives greater “weight” (i.e., assigns
greater probability) to the tails than the normal distribution
[see, e.g., Wilks, 1995], the small-sample confidence intervals
estimated with the t distribution are wider than the corre-
sponding confidence intervals estimated with the normal dis-
tribution. For ne 5 5, for example, (the smallest effective
sample size in Table 3), the estimated 95% confidence interval
is bx 6 2.57 (s9bx), which is nearly 30% larger than in the
normal distribution case.

In the following, we assume that bx and by are normally
distributed for calculating unadjusted 95% confidence inter-
vals. Adjusted 95% confidence intervals are calculated by in-
verting Student’s t distribution to obtain t inv for ne degrees of
freedom and p 5 0.975 (two-tailed test). The adjusted 95%
confidence interval is simply bx 6 t inv (s9bx).

5.1.1. Confidence intervals for 2LT retrieval and channel 2.
For the 2LT retrieval the unadjusted 95% confidence intervals
for LS trends over 1979–1993 range from 60.093 (MSUd) to
60.1368C/decade (MSUMASKc; see Figure 5). The adjusted
intervals are much larger, by a factor of 2–4, and range from
60.255 (HadRT1.2) to 60.4568C/decade (MSUc). All of the
unadjusted and adjusted 95% confidence intervals encompass
zero and include positive and negative values (Figure 5). There
is considerable overlap between the adjusted 95% confidence
intervals for all 13 data sets. Even without performing a formal
statistical test, it is evident that we cannot reject the null hy-
pothesis that the individual 2LT trends in the satellite, reanal-
ysis, and radiosonde data are drawn from the same population.

However, it is important to note that the large adjusted 95%
confidence intervals also include within them the expected
trends due to anthropogenic forcing [see Santer et al., 1996b].
While we cannot reject the hypothesis of no trend in the 2LT

time series, neither can we claim that the observed trends over
1979–1993 differ significantly from model projections.

Similar results are obtained for midtropospheric tempera-
ture trends (Figure 6). Again, even the (smaller) unadjusted
95% confidence intervals overlap for all 12 time series. Con-
fidence intervals are very similar to those obtained for the 2LT

retrieval and range from 60.082 (MSUd) to 60.1188C/decade
(NCMASK) for unadjusted intervals and from 60.224
(MSUd) to 60.4728C/decade (ERA (WF)) for adjusted inter-
vals.

These results show the need for caution in interpreting the
previously reported MSUc/ANGELL and MSUc/HadRT1.2
agreement of a few hundredths of a degree C/decade for lower
tropospheric trends [Christy et al., 1997, 1998]. While such
agreement may indicate common low-frequency behavior in
the MSUc, ANGELL, and HadRT1.2 data sets, it may also be
fortuitous. The large confidence intervals found here highlight
the significant uncertainties associated with all of these trend
estimates.

The converse of this is that a 2LT trend difference of

Table 4. Unadjusted and Adjusted 95% Confidence Intervals for MSUd Least Squares
Trends in Lower Tropospheric Temperature

Period

Unadjusted Adjusted

Seasonal Annual Seasonal Annual

LS Trend and 95% Confidence Interval
1979–1993 20.054 6 0.093 20.060 6 0.169 20.054 6 0.304 20.060 6 0.219
1979–1997 20.011 6 0.062 20.013 6 0.108 20.011 6 0.171 20.013 6 0.138
1979–1998 10.061 6 0.069 10.059 6 0.127 10.061 6 0.229 10.059 6 0.156

Lag-1 Autocorrelation, Actual or Effective Sample Size
1979–1993 0.735 (60) 0.128 (15) 0.735 (9) 0.128 (12)
1979–1997 0.697 (76) 0.136 (19) 0.697 (14) 0.136 (14)
1979–1998 0.761 (80) 0.116 (20) 0.761 (11) 0.116 (16)

Variance of Regression Residuals
1979–1993 0.025 0.021 0.204 0.028
1979–1997 0.023 0.017 0.145 0.024
1979–1998 0.033 0.028 0.288 0.036

Sensitivity of unadjusted and adjusted 95% confidence intervals to length of record. Results are for
MSUd least squares linear trends in lower-tropospheric temperature computed over three different
intervals (1979–1993, 1979–1997, and 1979–1998). LS trends and confidence intervals are given in
8C/decade and are based on both seasonal-mean and annual-mean anomaly data. Also shown for unad-
justed and adjusted results are the lag-1 autocorrelation (r1) of the regression residuals e(t), the actual
or effective sample sizes (nt and ne), and the variance of e(t) (se

2 and se
29).
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;0.128C/decade, such as the difference between LS trend es-
timates for MSUd and HadRT1.1 (Table 1a), is still well within
the adjusted 95% confidence intervals of the individual MSUd
and HadRT1.1 trends. While there may be physical reasons for
concluding that the two trend estimates are inconsistent, we
could not reach this conclusion by examination of their stan-
dard errors alone.

5.1.2. Confidence intervals for channel 4. Confidence in-
terval ranges for lower stratospheric temperature trends over
1979–1993 are considerably larger than those obtained for
deep-layer temperatures in the lower and midtroposphere
(compare Figure 7 and Figures 5 and 6). This is due in part to
the large lower stratospheric warming signatures of El Chichón
and Pinatubo (see Figure 1 and section 3.1). Values range from
60.190 (HadRT1.2) to 60.2978C/decade (ANGELL) and
from 60.523 (HadRT1.1) to 61.4958C/decade (MSUb) for
unadjusted and adjusted intervals, respectively. In one case
(ANGELL), the unadjusted 95% confidence interval does not
overlap with the unadjusted intervals from the other 12 time
series, although the adjusted intervals do overlap (see Figure 7
and section 3.1). For all data sets, both adjusted and unad-
justed confidence intervals decrease when volcanic effects are
excluded (see section 3.1).

5.1.3. Sensitivity to sampling interval. Are our confi-
dence interval estimates sensitive to the selected sampling in-
terval? To address this issue, we calculated adjusted 95% con-
fidence intervals from annual-mean 2LT anomaly data over
1979–1993 and then compared these with results based on
seasonal-mean anomalies (Figure 8). The choice of sampling
interval does not alter our primary conclusion that the adjusted
95% confidence intervals overlap in all 13 data sets considered
here and consistently encompass both zero and model projec-
tions. There is, however, a systematic difference between the
adjusted 95% confidence intervals based on seasonal-mean
and annual-mean data, with the latter smaller in 11 out of 13
cases. The maximum difference is ;30% for the NCEP (RT)
data. Note that the difference in sampling interval has only a
very small effect (a few hundredths of a degree Celsius or less)
on LS trend estimates.

5.1.4. Sensitivity to inclusion of recent data. The pre-
ceeding discussion focused on estimating confidence intervals
for LS trends over one specific 15-year period (1979–1993).
We next examine the sensitivity of confidence interval esti-
mates to the incorporation of more recent data. We do this
only for one data set (MSUd) and one atmospheric layer (the
2LT lower tropospheric retrieval), comparing confidence inter-

Figure 5. Unadjusted and adjusted 95% confidence intervals for least squares linear trends in lower tropo-
spheric temperature (2LT retrieval). All confidence intervals were computed with global-mean seasonal-mean
anomaly data spanning the period 1979–1993. The smaller, unadjusted confidence intervals do not account for
temporal autocorrelation and are estimated with the normal distribution. The adjusted 95% confidence
intervals (shown here as extensions to the unadjusted intervals) account for temporal autocorrelation in the
data and are estimated with the Student’s t distribution (see section 5.1). Trends computed with the LS and
LA approaches are also shown.
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vals computed over three different periods: 1979–1993, 1979–
1997, and 1979–1998 (Table 4).

In all four cases (i.e., for unadjusted and adjusted 95%
confidence intervals based on seasonal- and annual-mean
data), the width of the confidence intervals decreases from
1979–1993 to 1979–1997. This is due to an increase in actual
and effective sample size and a decrease in the unadjusted and
adjusted variance of the regression residuals. When data for
1998 are included, there is an increase in both the variance of
the regression residuals and the width of confidence intervals
(relative to results for 1979–1997; see Table 4). This is largely
due to the strong El Niño event in 1998.

Sensitivity of the estimated confidence intervals to the length
of record is comparatively small (;20–30%), at least for the
MSUd 2LT data. Our previous conclusion that the adjusted
95% confidence intervals for short timescale 2LT trends are
large and encompass both zero and model predictions is there-
fore robust.

5.2. Difference Series Method

An alternative method to identify small trend differences
embedded in noisy time series is to examine the difference
time series d(t) 5 x(t) 2 y(t). In our case, it is meaningful to
consider pairwise differences in x(t) and y(t), since both pur-
portedly represent temperature fluctuations in the same atmo-
spheric layer and over the same time period. Differencing
facilitates identification of overall trend differences by remov-
ing variability that is common to both time series. An analysis
of this kind is typical of statistical assessments of the effects of

physical or chemical treatments [e.g., Dixon and Massey, 1983].
Here we consider whether there are significant trend differ-
ences that may be related to differences in the system used to
estimate temperature, in the version of the data set, in spatial
coverage, and in the method used to compute an equivalent
MSU temperature.

To determine whether any trend bd in d(t) is significantly
different from zero, we proceed as in eqs. (1)–(6) but now
substituting d(t) for x(t). To assess the significance of bd we
use the same three approaches outlined in section 4.1: NAIVE,
AdjSE, and AdjSE 1 AdjDF.

As noted in section 4.1 for tests of the significance of indi-
vidual trends, these three methods yield systematic differences
in computed significance levels, with NAIVE the most and
AdjSE 1 AdjDF the least liberal approach. The same system-
atic differences are found in tests of the significance of trends
in d(t). This is evident from Figure 9, which shows numerous
instances where decisions on the significance of a trend differ-
ence (at a stipulated significance level of a 5 0.01 or a 5 0.05)
depend on the choice of significance testing method. We con-
centrate here on the AdjSE 1 AdjDF significance results,
which are in closest accord with empirical expectations from
stochastic simulations (D. Nychka et al., manuscript in prepa-
ration, 2000).

Tables 5a–5c give the least squares linear trends in all pos-
sible d(t) pairs, together with p values for the null hypothesis
of zero trend in d(t). All results are for trends over 1979–1993
computed with global-mean seasonal-mean anomaly data.
First consider results for the 2LT retrieval. We showed in sec-

Figure 6. As for Figure 5, but for the midtroposphere (channel 2).
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tion 5.1 that the least squares linear trends in all 13 individual
data sets had strongly overlapping 95% confidence intervals.
Tests of the trend in d(t), however, reveal that there are
significant trend differences between ERA and all other data
sets except HadRT1.1 and MSUMASKc (which like ERA have
a positive 2LT trend over 1979–1993). Thus the use of paired
differences has enabled us to discern small but significant trend
differences that were not obvious when the individual time
series were considered.

We infer from this result that differences in measurement
systems can have a significant impact on lower tropospheric
temperature trends. Other factors do not yield significant dif-
ferences in 2LT trends, although the trend difference between
HadRT1.1 and HadRT1.2 (largely related to coverage differ-
ences; see S99) is significant at the 5% level.

For channel 2, most of the trend differences significant at
the 5% level or better involve HadRT1.2 and MSUMASKc
(Table 5b). These have the largest negative and positive
midtropospheric trends over 1979 –1993 (20.098 and
10.0528C/decade, respectively; see Table 1a). The channel 2
trend differences between MSUb (10.0078C/decade) and
MSUd (20.0748C/decade) and between MSUc (10.0158C/
decade) and MSUd are significant at the 5% level. The large
trend differences between the latest MSU version and the
earlier two are due to adjustments made to MSUd for changes
in instrument body temperature and east-west drift of satel-
lites. These adjustments are thought to have had a net cooling
effect (J. Christy, personal communication, 1999). In the
MSUd 2LT data they are offset by a correction for the orbital

decay effect identified by Wentz and Schabel [1998]. Since this
decay effect does not influence channel 2, there is no compen-
sating adjustment in the MSUd channel 2 data.

For channel 4, all difference series tests involving the AN-
GELL data set yield trend differences that are significant at the
1% level (Table 5c). Possible explanations for the much larger
lower-stratospheric cooling in ANGELL are reviewed by An-
gell [1999] and S99. These include limited and spatially non-
uniform coverage of the 63-station ANGELL network [Tren-
berth and Olson, 1991], instrumental inhomogeneities in the
ANGELL data [Gaffen, 1994], and differences in the atmo-
spheric layers sampled by the channel 4 weighting function and
ANGELL’s 100–50 hPa layer-mean virtual temperature (see
section 2.4).

Subsampling the MSUc channel 4 data with the HadRT1.1
data mask leads to a large (10.1318C/decade) and marginally
significant trend in the difference relative to the spatially com-
plete MSUc data (see MSUc-MSUMASKc comparison in Ta-
ble 5c). Significant differences are not evident in NCEP-
NCMASK or ERA-ERMASK comparisons. Coverage
differences have a relatively greater effect in MSUc than in
NCEP and ERA since MSUc channel 4 has larger (and spa-
tially more coherent) warming in the tropics than either ERA
or NCEP (Figure 10). The HadRT1.1 coverage mask (see S99)
removes much of this warming, hence the large change in the
lower-stratospheric trend in MSUc, from 20.241 to 20.3718C/
decade (MSUc versus MSUMASKc; see Table 1a) and the
much smaller decreases in ERA and NCEP.

The trends for differences between MSUd on the one hand

Figure 7. As for Figure 5, but for the lower stratosphere (channel 4).
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and MSUb and MSUc on the other hand are also significant at
the 5% level. As noted above for the channel 2 results, these
differences are probably related to the adjustments made to
MSUd for changes in instrument body temperature and east-
west drift effects. Another interesting and curious aspect of the
channel 4 results is that the trend in the MSUb-MSUc differ-
ence time series is significant at the 1% level, even though it is
very small (10.0018C/decade; see Table 5c). The fact that we
judge this trend in d(t) to be statistically significant indicates
that there is a systematic component to MSUb-MSUc differ-
ences and that the adjustments made to MSUc did have an
effect on its lower-stratospheric trends. However, a trend in
d(t) of 0.0018C/decade is of no practical importance when
compared with trend uncertainties arising from other sources
(see S99).

6. Conclusions
Several recent investigations have attempted to improve our

understanding of observational uncertainties of temperatures
close to the Earth’s surface [Jones et al., 1997] and in the free
atmosphere [Gaffen et al., 2000; Santer et al., 1999]. The latter
study (S99) focused on uncertainties arising from the system
used to monitor temperature (satellites, radiosondes, and re-
analysis), the method used to compute an equivalent MSU
temperature, the adjustments made to individual versions of a
specific data set, and from differences in the coverage of the
data sets.

The present work complements the earlier study by S99. It
addresses two main issues. The first relates to the sensitivity of
linear trends to the selected fitting method. The second deals
with the significance of trends and trend differences and with
the question of which procedures one might use in order to
determine significance.

The first issue, trend sensitivity to the fitting method, has
also been considered by Gaffen et al. [2000] in the context of
radiosonde-derived temperature records. They found a rela-
tively small sensitivity (0.038C/decade or less) to the use of two
different methods to compute radiosonde-based trends over
1959–1995 (least squares and “median pairwise slopes”). Our
results, obtained using both a least squares approach (LS) and
minimization of absolute deviations (LA), are consistent with
those of Gaffen et al. [2000] when we consider trends over a
comparable period. When we compute trends over a much
shorter period (1979–1993) than Gaffen et al. examined, we
find that the LS and LA methods can yield trend differences
exceeding 0.108C/decade.

Furthermore, we find that there are systematic differences
between the 1979–1993 trends estimated with LS and LA ap-
proaches, particularly for trends in the lower stratosphere
(channel 4) and lower troposphere (2LT retrieval), where LA
trends are generally more negative or less positive, respec-
tively. These systematic differences are most likely related to
the uneven temporal distribution of volcanically induced
warming events in the lower stratosphere and El Niño events in

Figure 8. Sensitivity of confidence intervals for 2LT least squares linear trends to sampling interval. Trends
and adjusted 95% confidence intervals (see section 5.1) were computed with both seasonal-mean and annual-
mean anomaly data spanning the period 1979–1993.
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the lower troposphere. In the lower stratosphere, LA/LS trend
differences are strongly reduced by removal of the temperature
effects of El Chichón and Pinatubo.

Such issues are highly relevant in interpreting the results of
previously published MSU/radiosonde trend comparisons [e.g.,
Christy et al., 1997, 1998], which have noted a close correspon-
dence between the 2LT trends in MSUc and in several radio-
sonde data sets (HadRT1.2 and ANGELL). These previous
comparison relied solely on LS trend estimates. We find here
that the LA approach systematically degrades the lower-
tropospheric trend correspondence between MSUc and radio-
sonde data. A similar result was obtained by S99, who found
that accounting for coverage differences degraded MSU/
radiosonde trend correspondence in the midtroposphere. That

study and the current investigation point toward the need for
some caution in interpreting the results of satellite/radiosonde
trend comparisons.

Is a trend in data set x(t) significantly different from zero or
from that in data set y(t)? This is the next issue that we have
addressed. We used three different methods to assess the sig-
nificance of individual trends and trend differences. These
methods differ in terms of how they account for temporal
autocorrelation effects. The first of these, NAIVE, does not
account for temporal autocorrelation of the data being tested.
The second, Adjusted Standard Error (AdjSE), uses an esti-
mate of the lag-1 autocorrelation of the data to determine an
effective sample size ne. This in turn is used to adjust estimates
of the standard error and calculated t value. The third ap-

Figure 9. Significance of midtropospheric (channel 2) trend differences between various data sets, as
assessed by the “NAIVE,” “AdjSE,” and “AdjSE 1 AdjDF” approaches (see section 4). All three test the
significance of the trend in the difference time series d(t). Tests involve global-mean seasonal-mean anomaly
data spanning the period 1979–1993. Matrices are symmetrical about the diagonal line.
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proach, AdjSE 1 Adjusted Degrees of Freedom (AdjSE 1
AdjDF), involves use of the effective sample size ne not only in
computation of the adjusted standard error and calculated t
value but also in the indexing of the critical t value.

There are systematic differences in the significance levels
yielded by these three approaches, with NAIVE the least con-
servative and AdjSE 1 AdjDF the most conservative test. We
find that decisions on trend significance can depend critically
on the choice of test, particularly for individual trends in lower-
stratospheric temperatures. The AdjSE 1 AdjDF test is our
preferred method and gives significance results that are in
closest accord with empirical expectations based on stochastic
simulations (D. Nychka et al., manuscript in preparation,
2000). Using this test, we find that none of the individual
1979–1993 trends in deep-layer temperatures is significantly
different from zero. This result holds for virtually all data sets
and atmospheric regions that we consider. In all data sets,
individual (cooling) trends in lower-stratospheric temperatures
become significant if volcanic effects are first removed from
the time series.

For assessing the significance of trend differences, we used
two complementary approaches, the “confidence interval” and

“difference series” methods. In the former, we compute the
“unadjusted” and “adjusted” 95% confidence intervals for LS
linear trend estimates. The unadjusted intervals are based on a
large-sample normal approximation, while the larger adjusted
intervals account for temporal autocorrelation effects (through
the effective sample size) and rely on a small-sample t distri-
bution approximation. For the adjusted 95% confidence inter-
vals, there is always overlap between the intervals estimated for
different data sets. This holds for all three atmospheric regions
considered here. It also holds, in all cases except ANGELL’s
lower-stratospheric trend over 1979–1993, for the unadjusted
95% confidence intervals. In virtually all cases, therefore, we
cannot reject the null hypothesis that the trends in the indi-
vidual satellite, radiosonde, and reanalysis data sets are drawn
from the same population. Our results also show that for the
2LT trends over 1979–1993, the large adjusted 95% confidence
intervals for all data sets encompass both zero and the model-
projected trends due to anthropogenic effects. This conclusion
does not depend on whether adjusted confidence intervals are
computed with seasonal-mean or annual-mean data.

The “confidence interval” test is not an efficient way of
discerning relatively small trend differences that are embedded

Table 5a. Difference Time Series, 2LT Retrieval: Linear Trends and Trend Significance

2LT Retrieval (1979–1993)

NCEP
(WF)

NCMASK
(WF)

ERA
(RT)

ERA
(WF)

ERMASK
(WF) MSUb MSUc MSUd

MSUMASK
(c) HadRT1.1 HadRT1.2 ANGELL

NCEP (RT) 10.006 20.027 20.133 20.129 20.120 10.042 10.022 10.026 20.039 20.093 10.021 10.025
(0.621) (0.578) (0.005)* (0.019)† (0.033)† (0.120) (0.558) (0.244) (0.606) (0.112) (0.517) (0.511)

NCEP (WF) 20.034 20.140 20.135 20.127 10.036 10.015 10.020 20.045 20.099 10.015 10.019
(0.493) (0.002)* (0.006)* (0.022)† (0.146) (0.652) (0.489) (0.543) (0.091)‡ (0.687) (0.567)

NCMASK (WF) 20.106 20.102 20.093 10.069 10.049 10.053 20.012 20.066 10.048 10.052
(0.098)‡ (0.141) (0.108) (0.136) (0.342) (0.284) (0.789) (0.006)* (0.329) (0.326)

ERA (RT) 10.004 10.013 10.175 10.155 10.160 10.094 10.040 10.155 10.159
(0.705) (0.748) (0.000)* (0.000)* (0.006)* (0.179) (0.583) (0.010)* (0.001)*

ERA (WF) 10.009 10.171 10.151 10.155 10.090 10.036 10.150 10.154
(0.842) (0.000)* (0.001)* (0.021)† (0.215) (0.646) (0.025)† (0.001)*

ERMASK (WF) 10.162 10.142 10.146 10.081 10.027 10.141 10.145
(0.001)* (0.003)* (0.013)† (0.013)† (0.680) (0.025)† (0.013)†

MSUb 20.020 20.016 20.081 20.135 20.021 20.017
(0.557) (0.649) (0.186) (0.013)† (0.507) (0.638)

MSUc 10.004 20.061 20.115 20.001 10.003
(0.909) (0.299) (0.063)‡ (0.989) (0.930)

MSUd 20.065 20.119 20.005 20.001
(0.363) (0.044)† (0.842) (0.981)

MSUMASK (c) 20.054 10.060 10.064
(0.291) (0.414) (0.363)

HadRT1.1 10.114 10.118
(0.027)† (0.036)†

HadRT1.2 10.004
(0.924)

Significance of lower tropospheric (2LT) trend differences between various data sets. The test uses d(t), the time series of differences between
individual pairs of data sets (e.g., between NCEP (RT) minus NCEP (WF), NCEP (RT) minus NC-MASK (WF), etc.). The test procedure,
AdjSE 1 AdjDF, involves a one-sample t test, modified to account for autocorrelation in d(t) (see sections 4.1 and 5.2). Least squares linear
trends in d(t), computed with the 1979–1993 global-mean seasonal-mean anomaly data described in Table 1a, are given (in 8C/decade). The
numbers in parentheses are the p values for the null hypothesis that the trend in d(t) is not significantly different from zero.

*Trends in d(t) achieving significance at 1% level.
†Trends in d(t) achieving significance at 5% level.
‡Trends in d(t) achieving significance at 10% level.
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Table 5b. Difference Time Series, Channel 2: Linear Trends and Trend Significance

Channel 2 (1979–1993)

NCEP
(WF)

NCMASK
(WF)

ERA
(RT)

ERA
(WF)

ERMASK
(WF) MSUb MSUc MSUd

MSUMASK
(c) HadRT1.1 HadRT1.2

NCEP (RT) 10.014 10.018 20.083 20.066 20.063 20.050 20.058 10.030 20.096 20.039 10.054
(0.618) (0.661) (0.074)‡ (0.270) (0.215) (0.103) (0.079)† (0.577) (0.018)† (0.449) (0.055)‡

NCEP (WF) 10.004 20.097 20.080 20.077 20.064 20.072 10.016 20.110 20.053 10.041
(0.917) (0.053)‡ (0.140) (0.162) (0.116) (0.069)† (0.803) (0.020)† (0.380) (0.292)

NCMASK (WF) 20.101 20.084 20.081 20.068 20.076 10.012 20.114 20.057 10.036
(0.118) (0.232) (0.324) (0.309) (0.267) (0.883) (0.013)† (0.233) (0.523)

ERA (RT) 10.017 10.020 10.032 10.024 10.113 20.013 10.044 10.137
(0.393) (0.540) (0.532) (0.546) (0.213) (0.756) (0.568) (0.002)*

ERA (WF) 10.003 10.016 10.008 10.096 20.030 10.027 10.121
(0.927) (0.808) (0.873) (0.362) (0.552) (0.762) (0.024)†

ERMASK (WF) 10.012 10.005 10.093 20.033 10.024 10.117
(0.856) (0.942) (0.294) (0.377) (0.824) (0.061)‡

MSUb 20.008 10.080 20.046 10.011 10.105
(0.799) (0.002)* (0.368) (0.875) (0.000)*

MSUc 10.088 20.038 10.019 10.113
(0.025)† (0.433) (0.800) (0.000)*

MSUd 20.126 20.069 10.025
(0.048)† (0.444) (0.481)

MSUMASK (c) 10.057 10.057 10.150
(0.307) (0.001)*

HadRT1.1 10.094
(0.085)‡

As for Table 5a, but for midtropospheric (channel 2) trend differences between various data sets.

Table 5c. Difference Time Series, Channel 4: Linear Trends and Trend Significance

Channel 4 (1979–1993)

NCEP
(WF)

NCMASK
(WF)

ERA
(RT)

ERA
(WF)

ERMASK
(WF) MSUb MSUc MSUd

MSUMASK
(c) HadRT1.1 HadRT1.2 ANGELL

NCEP (RT) 10.002 10.032 10.012 10.019 10.056 20.005 20.004 20.054 10.127 10.096 10.103 10.732
(0.731) (0.701) (0.854) (0.767) (0.614) (0.957) (0.967) (0.493) (0.166) (0.478) (0.349) (0.000)*

NCEP (WF) 10.030 10.009 10.017 10.054 20.007 20.006 20.056 10.124 10.093 10.101 10.730
(0.709) (0.884) (0.796) (0.622) (0.941) (0.950) (0.492) (0.175) (0.474) (0.344) (0.000)*

NCMASK (WF) 20.021 20.013 10.024 20.037 20.036 20.087 10.094 10.063 10.071 10.700
(0.832) (0.892) (0.783) (0.787) (0.793) (0.480) (0.451) (0.541) (0.317) (0.000)*

ERA (RT) 10.008 10.044 20.017 20.015 20.066 10.115 10.084 10.092 10.720
(0.081)‡ (0.643) (0.803) (0.815) (0.139) (0.138) (0.527) (0.333) (0.000)*

ERA (WF) 10.037 20.024 20.023 20.073 10.107 10.076 10.084 10.713
(0.693) (0.731) (0.741) (0.120) (0.165) (0.558) (0.362) (0.000)*

ERMASK (WF) 20.061 20.060 20.110 10.071 10.040 10.047 10.676
(0.652) (0.657) (0.342) (0.568) (0.667) (0.348) (0.000)*

MSUb 10.001 20.049 10.132 10.101 10.108 10.737
(0.006)* (0.017)† (0.078)‡ (0.577) (0.447) (0.000)*

MSUc 20.050 10.131 10.099 10.107 10.736
(0.013)† (0.081)‡ (0.580) (0.450) (0.000)*

MSUd 10.181 10.150 10.158 10.786
(0.012)† (0.353) (0.204) (0.000)*

MSUMASK (c) 20.031 20.023 10.605
(0.894) (0.853) (0.000)*

HadRT1.1 10.008 10.636
(0.891) (0.004)*

HadRT1.2 10.629
(0.001)*

As for Table 5a, but for lower-stratospheric (channel 4) trend differences between various data sets.
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Figure 10. Lower-stratospheric temperature trends over 1979–1993 (in 8C/decade) in the NCEP, ERA, and
MSUc data. Equivalent channel 4 temperatures from NCEP and ERA were computed with a radiative
transfer code. The contour interval is 0.58C, and areas with positive changes are shaded.
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in noisy time series. In the “difference series” approach we use
d(t), the time series of paired differences between x(t) and
y(t). This markedly reduces noise levels by subtracting vari-
ability components common to x(t) and y(t) and facilitates the
identification of trend differences arising from different data
treatment methods. We then test whether the LS trend in d(t)
is significantly different from zero, using the same three ap-
proaches employed for testing significance of individual trends.

For the lower tropospheric trends, our preferred approach
(AdjSE 1 AdjDF) indicates that significant trend differences
exist between ERA and all other data sets except HadRT1.1
and MSUMASKc (which have a positive 2LT trend over 1979–
1993, like ERA). In the midtroposphere, most of the trend
differences significant at the 5% level or better involve
HadRT1.2 and MSUMASKc, the two data sets with the largest
negative and positive midtropospheric trends, respectively,
over 1979–1993. Results for the lower stratosphere indicate
that ANGELL’s trend over 1979–1993 differs significantly
from that in all other data sets. In most cases, the only factor
that produces significant trend differences is the difference in
the system used to monitor temperature (i.e., radiosondes,
satellites, and reanalysis models). In a few instances, however,
differences in the version of the MSU data (for channel 2 and
4) and the HadRT radiosonde data (for the 2LT retrieval) were
also found to be important.

In summary, it is difficult to obtain reliable estimates of
short-timescale trends embedded in noisy time series and as-
sess their statistical significance. Trend uncertainties arising
from the choice of linear fitting method can be large. The high
noise levels and strong temporal autocorrelation of the deep-
layer temperature data used here lead to broad confidence
bands about the trend estimates. Because of this, for virtually
all data sets considered here, one cannot conclude that the
observed trends differ from zero nor that they differ from
model estimates of what these trends should be in response to
anthropogenic perturbations. Claims that we know the ob-
served global-mean lower-tropospheric temperature trend
over the satellite era to within a few hundredths of a degree
C/decade should therefore be treated with caution.
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