AIRPACT-Fire for enhanced communication of human health risk with improved wildfire smoke modeling

Serena Chung, Joe Vaughan, Brian Lamb
Laboratory for Atmospheric Research, Washington State University
Farren Herron-Thorpe, Matthew Kadlec
Washington State Department of Ecology
Adam Kochanski
Department of Atmospheric Sciences, University of Utah
Susan O’Neill, Narasimhan (Sim) Larkin
USDA Forest Service, Pacific Northwest Research Station

September 3, 2015
Presentation Overview:

- Fires in the Pacific Northwest (PNW)
- Overview of the AIRPACT Forecast System for the PNW
 - Fire Emissions Framework
 - Model Evaluation
- Planned upgrade
 - WRF-SFIRE
- Summary
Current Ongoing Wildfire Season

MODIS Image
August 23, 2015
Wildland Fires in the Pacific Northwest during 2012-2014

From GEOMAC: http://www.geomac.gov/viewer/viewer.shtml
AIRPACT Regional Air Quality Forecasting System:

- Pacific Northwest domain
- Operational since 2001
- ~7 years of online archive
- AIRPACT-4
 - 48-hour forecasts posted to the web daily by ~5 am Pacific Time
 - 4-km x 4-km grid cells
 (285 columns x 258 rows)
AIRPACT-4 Modeling Framework

- **WRF-ARW v3.5.1**
 - Daily forecasts from Univ. of Washington
- **CMAQ v4.7.1**
 - SAPRC99 gas-phase mechanism
 - AERO5 aerosol module
- **MOZART-4**
 - Daily forecasts for chemical boundary conditions

Components of AIRPACT-4
Fire Emissions Framework:

- **Within CMAQ domain:**
 - SMARTFIRE2 for fire activity (locations and sizes)
 - BlueSky 3.5.1 for emission and heat flux
 - Emissions for Canada are obtained from the BlueSky Canada system: http://firesmoke.ca/data/emissions/sf2
 - SMOKE for plume-rise speciation of VOC and PM$_{2.5}$

- **Chemical Boundary Conditions**
 - MOZART-4 (Emmons et al., 2010) includes fire emissions from FINN (Wiedinmyer et al. 2011), which is based on MODIS Rapid Response fire counts
SMARTFIRE2:

- Reconciles data streams:
 - NOAA’s Hazard Mapping System (HMS)
 - (Infrared fires perimeter from GEOMAC)
 - (Incident Command Information from IRWIN)

- Provides fire locations and sizes (areas)
 - Fire sizes scaled by number of HMS detects

- Due to timing, forecast system is using fire locations and sizes from “yesterday”

- Reference: Larkin and Raffuse, 2012
Fire Emission Modeling:

- BlueSky v3.5.1 options selected:
 - FCCSv2 fuels map (Prichard et al. 2011)
 - CONSUMEv3 for combustion completeness (Prichard et al. 2006)
 - FEPS for emissions (Anderson et al 2004)
 - BlueSky options not used: plume rise, dispersion, time rate

- BlueSky Output
 - Daily emissions of CO, NOx, NH₃, VOC, PM₂.5
 - Daily heat flux

- SMOKE v3.5.1
 - Speciates NOx, VOC, PM₂.5
 - Temporal profile for time rate
 - Converts heat flux to buoyant flux to calculate plume rise using Brigg’s algorithm
Online output – Hourly Concentrations
(http://lar.wsu.edu/airpact)
Online output – Daily Fire Locations
(http://lar.wsu.edu/airpact)
Online output – Individual Fire Information
(http://lar.wsu.edu/airpact)
SMARTFIRE2 Information

(http://128.208.123.111/smartfire/events/5554c709-3134-4fb8-a7ad-6d2f823082a5/)
Near-Real Time Evaluation
(http://lar.wsu.edu/airpact)
AIRPACT-3 Performance
(reanalysis, 12-km, BlueSky 3.1, CMAQ 4.6)

- AIRPACT-3 forecasts of PM$_{2.5}$ downwind (+100 km) of fires are generally too low, in contrast to CO
 - Uncertainty in primary PM emission
 - Low VOC emissions
 - Low SOA
 - VOC speciation
 - Missing semi- and intermediate-volatile VOC in emission
Comparison of Plume Rise methods
(AIRPACT-3 reanalysis 12-km, BlueSky 3.1, CMAQ 4.6)

- Model underpredicts PM$_{2.5}$ when CO performs well
- Treatment of plume rise makes a big difference

Herron-Thorpe et al. 2014
Comparison of Plume Rise methods (AIRPACT-3 reanalysis: 12-km, BlueSky 3.1, CMAQ 4.6)

Herron-Thorpe et al. 2014
Some Weaknesses in the Current Framework:

- **Persistence Assumption:**
 - Tomorrow’s area burned will be the same as that from yesterday’s or two days ago

- Fixed diurnal profile

- Plume rise
 - Based on algorithm for power plants

- Constant fuel moisture of “dry”
New Framework with WRF-SFIRE:

- WRF-SFIRE is a two-way coupled atmosphere and fire model (Mandel et al. 2011)
 - WRF – ARW for meteorology
 - Rothermel (1972) semi-empirical fire spread model – fire spread depends on wind speed and terrain slope
 - Heat and moisture released by the fire feedback to atmosphere dynamics
WRF-SFIRE: coupled atmosphere-fire model

- **METEO INPUT**
 - Large scale weather data from NWP models: initial conditions and boundary conditions
 - Static data:
 - High-resolution topography
 - Land Use and Soil Data

- **FIRE INPUT**
 - High resolution fuel data:
 - 30m-resolution fuel description
 - 30m-resolution elevation data
 - times and locations of ignitions or fire perimeters
 - Initial fuel moisture

- **WRF SFiRE**
 - WRF framework (atmosphere):
 - ARW atmospheric core
 - WPS preprocessing system

- **FIRE-GENERATED HEAT AND MOISTURE**
 - Fuel Moisture Model (Van Wagner and Pickett)
 - Drying and wetting due to changes in T and RH
 - Wetting due to rain
 - Explicit treatment of different fuel classes

- **FIRE-AFFECTED WINDS**

- **METEO OUTPUT**
 - High-resolution forecast including Plume height

- **AIRPACT**
 - Regional air quality forecast

- **FIRE OUTPUT**
 - High-resolution fire forecast including:
 - fire area
 - fire heat flux
WRF-SFIRE Reanalysis Case Study: 2007 Witch Fire

3125 x 2625 ($\Delta x = 20$ m)
fire mesh at within the smallest WRF Domain

Domain D04, $\Delta x = 500$m

Kochanski et al. 2013
WRF-SFIRE Case Study: 2007 Witch Fire

• The plume rise is resolved by the dynamics based on the amount of the fire-generated heat and meteorological conditions
• Emissions are computed based on FINN
• Smoke may be represented as a passive tracer (fast), or as chemical fluxes integrated with WRF-Chem (slow)
WRF-SFIRE Case Study: 2007 Witch Fire

Kochanski et al. 2013

Observed (white) vs. simulated (red) fire perimeter at 17 PDT on October 23 2007 (60 hours into simulation)
Summary

- AIRPACT is a widely used tool for federal, state and local agencies in the PNW in managing air quality concerns.
- In retrospective mode (when fire activity is more certain), AIRPACT generally models smoke location well but PM$_{2.5}$ concentrations are under-predicted due a combination of primary emissions being too low and not enough SOA.
- Future work includes:
 - Use WRF-SFIRE for dynamic fire area and plume rise
 - Update emission factors and speciation for VOC
 - Update SOA chemistry mechanism
Acknowledgements:

- **NW-AIRQUEST:**
 EPA Region 10, Washington Department of Ecology; Washington Department of Natural Resources; Washington Local Air Agencies (Benton County Clean Air Agency, Northwest Regional Clean Air Agency, Olympic Regional Clean Air Agency, Puget Sound Clean Air Agency, Southwest Clean Air Agency, Spokane Regional Clean Air Agency, Yakima Regional Clean Air Agency; Idaho Department of Environmental Quality; Oregon Department of Environmental Quality; Lane Regional Air Protection Agency; Nez Perce Tribe; University of Washington; Washington State University; Environment Canada; BC Ministry of Environment; National Park Service, Pacific West Region; USDA Forest Service, Pacific Northwest Research Station

- **NASA**
- **NSF**
- **NIST**
- **Joint Fire Science Program**
WRF-SFIRE Case Study: 2007 Witch Fire

Kochanski et al. 2013