
This document gives one example of how one might be able to “fix” a
meteorological file, if one finds that there may be problems with the file. There
are lots of different potential problems, and this approach will not necessarily fix
every problem. Nevertheless, it may be useful in some cases.

The example will use the following file, that can be downloaded from the ARL
met data archives:

ftp://arlftp.arlhq.noaa.gov/pub/archives/edas/edas.subgrd.mar00.002

It was found that trajectories were prematurely truncated at certain times when
using the file.

Example: Fixing a HYSPLIT Met Data File

Mark Cohen, NOAA ARL, College Park, MD

Nov 20, 2014

ftp://arlftp.arlhq.noaa.gov/pub/archives/edas/edas.subgrd.mar00.002
ftp://arlftp.arlhq.noaa.gov/pub/archives/edas/edas.subgrd.mar00.002

Can run “chk_times” program as one strategy to find if met data file has any missing times

• Open up command prompt window

• Run chk_times program:

 c:\hysplit4\exec\chk_times

• Program asks first for met file directory, in my case this was:

 c:\d\metdata\edas80km\

• Program then asks for met file name, in this example:

 edas.subgrd.mar00.002

• Output is shown in the figure on the next page

• It can be seen that there appear to be three time periods that may be
missing: Mar 26, UTC=3; Mar 26, UTC=6; Mar 26, UTC=21

• • •

At three different
times,
a “-1” is shown after
the hour column

Can run “chk_file” program as another strategy to find if met data file has any missing times

• Open up command prompt window

• Run chk_file program:

 c:\hysplit4\exec\chk_file

• Program asks first for met file directory, in my case this was:

 c:\d\metdata\edas80km\

• Program then asks for met file name, in this example:

 edas.subgrd.mar00.002

• Output is very extensive… a few snippets are shown on the following
pages…

• It can be seen from the figure on the next page that there is clearly a
problem with the data records for Mar 26, UTC=3. The same problem
would be seen for the other missing time periods (Mar 26, UTC=6; and
Mar 26, UTC=21).

• • •

• • •

The data for Mar 26,
UTC=0 looks
“normal”, i.e., there
appears to be
numerical
information
present…

The data for Mar 26, UTC=3
clearly looks like its missing:
• there is a “-1” in the

forecast hour field;
• “NULL” is the field name
• values are all “0”

To begin the “fixing” process, will run “xtrct_time” program to create valid chunks of the
data. There are three valid chunks of the data in this file:
• 2000, March, 16, 0:00 (beginning of the file)  2000, March, 26, 0:00
• 2000, March, 26, 9:00  2000, March, 26, 18:00
• 2000, March, 27, 0:00  2000, March, 31, 21:00 (end of the file)

• Open up command prompt window [see Figure on next page, showing steps below]

• Run chk_file program: c:\hysplit4\exec\xtrct_time

• Program asks first for met file directory, for my directory structure it is: c:\d\metdata\edas80km\

• Program then asks for met file name, in this example: edas.subgrd.mar00.002

• Program lists the starting and ending time of the file

• Program then asks you for the starting time of the extract (day, hr, min). For this first extract, we want the start of the extract to be
the start of the file, so we enter the following: 16 0 0

• Program then asks you for the ending time of the extract (day, hr, min). For this first extract, we want the extract to go up to the last
valid time period before the first glitch. The first “glitch” is at 26 3 0, so we want the ending time of this extract to be: 26 0 0

• Program then asks you for the “skip time interval”. Generally one doesn’t want to skip any times, so generally will enter 0 here: 0

• Program then determines the expected start and stop record numbers for you, and asks you to confirm that this is what you want:

 1 12474

• Then the program runs, creating an output file “extract.bin” in whatever directory you are working in. You must rename this file to
something else, or else the next extract will just overwrite this file: rename extract.bin march2000_part1.bin

Creating the 1st Extract File:

Repeat the same process, making the 2nd extract, i.e., to go from the first valid time after
the glitch, to the last valid time before the next glitch:
• 2000, March, 26, 9:00  2000, March, 26, 18:00

• Open up command prompt window [see Figure on next page, showing steps below]

• Run chk_file program: c:\hysplit4\exec\xtrct_time

• Program asks first for met file directory, for my directory structure it is: c:\d\metdata\edas80km\

• Program then asks for met file name, in this example: edas.subgrd.mar00.002

• Program lists the starting and ending time of the file

• Program then asks you for the starting time of the extract (day, hr, min). For this second extract, we want the start of the extract to be
the first valid time after the two corrupted time, so we enter the following: 26 9 0

• Program then asks you for the ending time of the extract (day, hr, min). For this second extract, we want the extract to go up to the
last valid time period before the next glitch. The next “glitch” is at 26 21 0, so the ending time of this extract is: 26 18 0

• Program then asks you for the “skip time interval”. Generally one doesn’t want to skip any times, so generally will enter 0 here: 0

• Program then determines the expected start and stop record numbers for you, and asks you to confirm that this is what you want:

 12783 13398

• Then the program runs, creating an output file “extract.bin” in whatever directory you are working in. You must rename this file to
something else, or else the next extract will just overwrite this file: rename extract.bin march2000_part2.bin

Creating the 2nd Extract File:

Repeat the same process, making the 3rd extract, i.e., to go from the first valid time after
the last glitch, to the end of the file:
• 2000, March, 27, 0:00  2000, March, 31, 21:00

• Open up command prompt window [see Figure on next page, showing steps below]

• Run chk_file program: c:\hysplit4\exec\xtrct_time

• Program asks first for met file directory, for my directory structure it is: c:\d\metdata\edas80km\

• Program then asks for met file name, in this example: edas.subgrd.mar00.002

• Program lists the starting and ending time of the file

• Program then asks you for the starting time of the extract (day, hr, min). For this last extract, we want the start of the extract to be
the first valid time after the last corrupted time, so we enter the following: 27 0 0

• Program then asks you for the ending time of the extract (day, hr, min). For this last extract, we want the extract to go up to the end
of the file, so the ending time of this extract is: 31 21 0

• Program then asks you for the “skip time interval”. Generally one doesn’t want to skip any times, so generally will enter 0 here: 0

• Program then determines the expected start and stop record numbers for you, and asks you to confirm that this is what you want:

 13553 19712

• Then the program runs, creating an output file “extract.bin” in whatever directory you are working in. You must rename this file to
something else, or else the next extract will just overwrite this file: rename extract.bin march2000_part3.bin

Creating the 3rd Extract File:

Here you see a “directory” listing – using the command “dir”, for the directory that the work
is taking place in (in this case, c:\hysplit4\working_metdata\

You can see the 3 extract files, and the relative sizes of the files makes sense, in terms of
how many time periods each file contains.

Next, we are going to combine the 3 extract files into one file, using the DOS Copy
command. Before we do that, here’s the “help” file for the DOS Copy command:

Now we combine the files

copy march2000_part1.bin/B+march2000_part2.bin/B+march2000_part3.bin/B march2000_prelim.bin/B

Note that the 3 input files are separated by a “+”,
and the “/B” flag is set for each input file and the output file to indicate that they are “binary files”

The resulting directory listing is also shown below, and the size of the new combined file appears to make sense,
i.e., the size is the sum of the sizes of the 3 input files, as expected

• The program “add_miss.exe” has been in the HYSPLIT4 distribution package in the past, but may
not currently be in the package. If you have it in your hysplit4\exec directory, great! If you don’t,
you may be able to download a version compiled for Windows from the following URL (e.g.,
right click on this link and “save target as” or “save link as”, and save the program to the
hysplit4\exec directory or anywhere else that you want:

 http://www.arl.noaa.gov/documents/reports/add_miss.exe

• We run this program… in my case, as shown below, it was in a different executable directory,

i.e., c:\hysplit4\exec\INTEL\

• The program asks for the meteorological directory and the meteorological file name. If you are
running the program from the directory where the met file resides, you can enter “.\” for the
directory name, as shown in the example below

• We will run the program on the “combined” file we have just created, i.e.,
march2000_prelilm.bin

Now will use the program “add_miss.exe” to add in the missing times, using interpolation

http://www.arl.noaa.gov/documents/reports/add_miss.exe

• When the program starts running, it detects the missing time periods, and you see *ERROR*
messages. This is ok. We know there are missing time periods, and we are actually glad that the
program recognizes this, too!

• The first missing periods in the combined file are March 26, 3:00 and March 26, 6:00. So,

instead of the expected 3 hour interval between time periods in the file, these are missing, and
the program reports that the meteorological data time interval varies, changing from 180
minutes (3 hrs) to 540 minutes (9 hrs). This is expected, as the combined file does have a 9-hour
interval at that point, instead of 3 hours.

• The program keeps running, and it begins reading the data from the file.
• If the data appear present and valid, the program just copies the data into the output file, as

shown below
• It continues to do this until it encounters the first missing time period

• As the program continues, you can see that when it encounters the missing time periods, it
“interpolates” to estimate the missing data, and then writes the interpolated estimates to the
output file.

The program ends

The directory listing shows the
new output file “addmiss.bin”…

you can see it’s a little bigger
than the combined file with the

3 missing time periods, as
expected

We now rename the “addmiss.bin”
file to a more useful name. In this

example, we have renamed it to be
the following:

edas.subgrd.mar00.002.fixed

The directory listing now shows
the renamed file

If we run the
“chk_file”

program on the
new file, we see,
for example, that

the data for the
time Mar 26, 3:00
appear to be “ok”,

or at least not
obviously missing

And here’s
another snippet of

the output from
the same

“chk_file” run that
shows that the

data for the next
period – which

was missing – also
appears to be ok…

And a final
snippet of the

output from the
same “chk_file”
run that shows

that the data for
the final time

period that was
missing (Mar 26,

21:00) also
appears to be ok…

00 03 28 00
1
40.000 -90.000 500.0
-96
0
10000.0
1
C:/D/METDATA/edas80km/
edas.subgrd.mar00.002
./
tdump

To carry out another test of the file, we will try to run a back-trajectory.
First, we will do a run with the original file. The CONTROL file that was
used for this simple test is the following:

Starting time
Number of starting locations

Starting lat, long, height
Number of hrs for run

Vertical motion option
Model top

Number of met data files
Met data directory

Met data file
Directory for output

Name of output

Here’s the tdump file for this run, using the old met file. You can see
that it stops, after just 24 hours, rather than going the full 96 hours as
we specified.

This is because as it goes back in time, it gets to the Mar 27 0:00 time,
and then, it needs the Mar 26 21:00 time to go further. This time is
missing, so the program “crashes”

00 03 28 00
1
40.000 -90.000 500.0
-96
0
10000.0
1
C:/D/METDATA/edas80km/
edas.subgrd.mar00.002.fixed
./
tdump

Now we carry out the same test with the fixed met data file. The
CONTROL file that was used for this simple test is the following (the only
difference is the name of the met file)… if you want, you could also
specify a different name for the output file, e.g., “tdump_fixed.txt” or
something:

Starting time
Number of starting locations

Starting lat, long, height
Number of hrs for run

Vertical motion option
Model top

Number of met data files
Met data directory

Met data file
Directory for output

Name of output

Here’s the tdump file
for this new run using
the fixed met file.

It only goes back 51
hours, but this is
because the trajectory
goes off the met data
grid at that point.

This can be confirmed
in the MESSAGE file for
the run.

This is why it can be a
good idea to also
include a global met
data file, so that when
the trajectory goes off
the regional data
domain, it can still
continue…

Map of trajectory
output using original

met data file

Map of trajectory
output using fixed

met data file

At this
point, the
trajectory
goes off
the met
data grid

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

