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AQF: An unbalanced system 
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Emissions remain one of the largest uncertainties for AQF 



Approaches for Emission Data Generation 
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 Approaches to prepare emissions 
 Emission Inventory based data processing. 
 Emission modeling; 
     1. Bottom-up or top-down emission modeling; 
     2. Hybrid approaches (inverse modeling etc.); 
 

 Application of each approach   
 Inventory-based approach predominantly for anthropogenic emissions; 
 Bottom-up emission modeling for natural sources (biogenic, dust, fires, seasalt); 
 Top-down and inverse modeling used to adjust existing emissions to improve 

model performance. 
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Limitations of Inventory-Based Approach 
 Emission inventories are costly and time-consuming 

 Emission Inventories always 2 – 10 years old. 
 Frequency of updates driven by regulatory needs, not forecasting needs; 
 Large gap between forecasting need and data availability; 

 
 Lack of understanding of emission uncertainties  

 Information lost when compiling emission inventories; 
 Reconstructing such information using SMOKE introduces extra uncertainties; 
 Some emission data not supposed to be used for AQ forecasting. 

Real World 
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Emission Inventories Model-ready Emission 
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Inventory-Based Emission Processing: US Area Sources  
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? Anthropogenic 

PM2.5 Emissions in the United States 



CMAQ vs. IMPROVE Observations (January 2002) 
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 Two CMAQ runs: with and without anthropogenic dust emissions; 
 Dust contribution is calculated from the difference; 
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Fugitive Dust contribution < 1µg/m3  Fugitive Dust contribution > 2µg/m3  

(Source: Tong et al., 2009) 



12/21/2011 Air Resources Laboratory 8 

Revising fugitive dust emission 
Collaboration with George Pouliot, David Mobley, Heath Simon, Prakash 

Bhave, Tom Pace, Rohit Mathur, Tom Pierce (US EPA) 

 Further Speciation PM Other;  
 Temporal allocation – Adopt 

nonroad mobile source profiles for 
fugitive dust emission;  

(Simon et al., 2010) 

 Apply transportable fraction to 
raw emissions;  

(Tong et al., 2010) 
 Meteorological adjustments by soil moisture 

and snow/ice cover;  



Agricultural Dust Emission 
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The AP-42 method for agricultural dust emissions (US EPA, 1983):  
 

R = M × e × (1 – c)  
 

        R -- estimated mass emission rate; 
        M -- source extent; 
        e -- specific emission factors; 
        c -- fractional efficiency of control.  

Things not considered: 
 

    -- Meteorology (soil moisture and    
            ice/snow cover); 
    -- Seasonal variability; 
    -- Year-to-year variations; 
    -- Increased soil conservation practices;  



Outline  
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1.  

Agricultural Dust Emission  
(Tennessee as an example) 



Emission Forecasting Model  
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An emission forecasting model simulates the detailed processes underlying 
emissions. 
 

This can be accomplished through combining emission activity and process 
modeling with the use and integration of near real time data collected from 
routine ground-level networks and monitors, remote sensing devices, and 
up-to-date survey and census data (Tong, Lee and Saylor, 2011). 
 

Three components for an emission forecasting model: 

a)Emission algorithms; 

b)Near-real-time (NRT) data hub; 

c)A computer model to integrate a and b; 
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Agricultural Dust Emission Forecasting 
Conceptual Design 

Major Crops in U.S. 
Crop 

Acreage  
(106 acres) 

Revenues  
($ billion) 

Corn 72.7 15.1 
Soybeans 72.7 12.5 

Hay 59.9 3.4 
Wheat 53.0 5.5 
Cotton 13.1 4.6 

Sorghum 7.7 0.82 
Rice 3.0 1.2 
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 Stage I. Emission activity and process modeling:  
       Reproducing emission inventory data through emission modeling; 

 Careful review of emission inventory documentation; 
 Develop emission models to reproduce emission data; 
 

 Stage II. Improving emissions through incorporation of near-real-time data; 
 
 Stage III. New emission algorithms and parameterization; 

 
 Stage IV. Emission-Meteorology-Air Quality three way coupling; 

 
 

 
 

How to Move towards Emission Forecasting?  



Benefits of Emission Forecasting  
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 Capability to forecast emissions of tomorrow; 
 

 Bring new emission sources into the domain:         
 Wildfires (M. Prank; J. Chen; P. Lee; J. Vaughan); 
 Marine isoprene (M. Wang); 
 Windblown dust (X. Zhang; M. Cope; D. Tong); 
 Lightning (D. Allen); 
 Pollen (M. Sofiev); 
 Volcanic emission (S. Lu); 

  Increased transparency of emission data generation:       
 Transparency along the data flow from input data to emission algorithm to 

model-ready emissions; 
 Traceability of uncertainties and their propagation; 
 Scientifically measureable improvements (data, algorithms, or parameterization); 

 Less expensive way to update emission inventories;   

 Increased flexibility for forecasters and air quality managers;   
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The remote sending community needs to build Consensus for users; 

Challenge: Which Dataset to use  
Data Source: NASA Giovanni: http://disc.sci.gsfc.nasa.gov/giovanni  

  Same Sensor; 

  Same period; 

  Same location; 

  Same color scale; 

 

 

But  

  Distinct values; 

  Distinct spatial variations; 
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Marine Isoprene Emissions 
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 Some existing Kd490 algorithms: 
1. NASA previous operational algorithm (Mueller, 2000); 
2. Revised Mueller algorithm (J. Werdell, online 2005); 
3. NASA current operational algorithm (Morel et al., 2007); 
4. NOAA’s new Kd490 algorithms: (Wang et al., 2009).  

 Isoprene emissions very sensitive to diffuse coefficient Kd490: 

Work closely with data providers to understand theeuncertainty in the input data. 
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Take home Message 

Emission inventories impose several limitations on AQ Forecasting; 
 
Emission forecasting is proposed as the future solution. 
 

New Direction Article  
 Atmospheric Environment (in press) 



Emission Forecasting WorkGroup  
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Collaboration essential to the success! 

 

Want to contribute or be kept in loop? Email us: 

Daniel.Tong@noaa.gov  

Pius.Lee@noaa.gov 

Rick.Saylor@noaa.gov 
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