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Emissions remain one of the largest uncertainties for AQF
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Approaches for Emission Data Generation

<+ Approaches to prepare emissions
> Emission Inventory based data processing.
> Emission modeling;
1. Bottom-up or top-down emission modeling;
2. Hybrid approaches (inverse modeling etc.);

<+ Application of each approach
> Inventory-based approach predominantly for anthropogenic emissions;
> Bottom-up emission modeling for natural sources (biogenic, dust, fires, seasalt);

> Top-down and inverse modeling used to adjust existing emissions to improve
model performance.
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Limitations of Inventory-Based Approach

<+ Emission inventories are costly and time-consuming
> Emission Inventories always 2 — 10 years old.
> Frequency of updates driven by regulatory needs, not forecasting needs;
> Large gap between forecasting need and data availability;

<+ Lack of understanding of emission uncertainties
> Information lost when compiling emission inventories;
> Reconstructing such information using SMOKE introduces extra uncertainties;
> Some emission data not supposed to be used for AQ forecasting.
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Inventory-Based Emission Processing: US Area Sou;;%
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CMAQ PM Other (ug/m3)

CMAQ vs. IMPROVE Observations (January 2002)

<+ Two CMAQ runs: with and without anthropogenic dust emissions;
<+ Dust contribution is calculated from the difference;

Fugitive Dust contribution < 1ug/m3 Fugitive Dust contribution > 2ug/m3
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(Source: Tong et al., 2009)
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Revising fugitive dust emission

Collaboration with George Pouliot, David Mobley, Heath Simon, Prakash
Bhave, Tom Pace, Rohit Mathur, Tom Pierce (US EPA)
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<+ Meteorological adjustments by soil moisture
and snow/ice cover;
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Agricultural Dus sion

The AP-42 method for agricultural dust emissions (US EPA, 1983):

R=Mxex(1-c)

R -- estimated mass emission rate;
M -- source extent;

e -- specific emission factors;

c -- fractional efficiency of control.
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Things not considered:

-- Meteorology (soil moisture and
ice/snow cover);

-- Seasonal variability;

-- Year-to-year variations;

-- Increased soil conservation practices;
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ricultural Dust Emission

(Tennessee as an example
Tillage Practices by Crop, Tennessee, 2004-2008

Total No-Till * Other C;OIISEI'ZVHHOH Conventional Till > Double Cropped *
Crop Year Acres - Tillage — ; —
Planted Acres I 0f5 Acres i Ots Acres i Of; Acres 5 OtS
Total Total Total Total
Soybeans 2004 1,210,000 800,000 66.1 260,000 215 150,000 300,000 24.8
2005 1,130,000 750,000 66.4 260,000 23.0 120,000 170,000 15.0
2006 1,160,000 880,000 75.9 180,000 15.5 100,000 210,000 18.1
1,040,000 820,000 78.8 160,000 154 60,000 310,000 298
1,410,000 1,110,000 78.7 220,000 15.6 80,000 540,000 383
Corn 2004 680,000 450,000 66.2 140,000 20.6 90,000 25,000 3.7
2005 650,000 430,000 66.2 140,000 215 80,000 20,000 3.1
2006 550,000 400,000 72.7 100,000 18.2 50,000 20,000 3.6
2007 870,000 600,000 69.0 170,000 19.5 100,000 25,000 29
2008 700,000 500,000 714 130,000 18.6 70,000 30,000 4.3
Sorghum 2004 20.000 9.000 45.0 7,000 35.0 4.000 1,500 7.5
2005 22,000 9.000 40.9 6,000 273 7,000 1.500 6.8
2006 14,000 7,000 50.0 4,000 28.6 3,000 1,000 7.1
2007 22.000 7,000 31.8 8,000 36.4 7,000 1.000 4.5
2008 25.000 11,000 44.0 6,000 24.0 8.000 1.500 6.0




Emission Forecasting Model

An emission forecasting model simulates the detailed processes underlying
emissions.

This can be accomplished through combining emission activity and process
modeling with the use and integration of near real time data collected from
routine ground-level networks and monitors, remote sensing devices, and
up-to-date survey and census data (Tong, Lee and Saylor, 2011).

Three components for an emission forecasting model:
a)Emission algorithms;
b)Near-real-time (NRT) data hub;

c)A computer model to integrate a and b;
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Major Crops in U.S.

Crop

Corn
Soybeans
Hay
Wheat
Cotton
Sorghum
Rice

Acreage
(108 acres)
72.7
72.7
59.9
53.0
13.1
7.7
3.0

Revenues
(S billion)
15.1
12.5
3.4
5.5
4.6
0.82
1.2
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ds Emission Forecasting?

» Stage |. Emission activity and process modeling:

Reproducing emission inventory data through emission modeling;
» Careful review of emission inventory documentation;
> Develop emission models to reproduce emission data;

< Stage Il. Improving emissions through incorporation of near-real-time data;

« Stage lll. New emission algorithms and parameterization;

«» Stage IV. Emission-Meteorology-Air Quality three way coupling;

(a) (b)

Air Quality
Forecast

Air Quality
Forecast
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Lightning (D. Allen);
Pollen (M. Sofiev);
Volcanic emission (S. Lu);

YV V V VYV VY

model-ready emissions;

> Traceability of uncertainties and their propagation;

Benefits of Emission Forecasting

Capability to forecast emissions of tomorrow;

Bring new emission sources into the domain:

> Wildfires (M. Prank; J. Chen; P. Lee; J. Vaughan);
Marine isoprene (M. Wang);
Windblown dust (X. Zhang; M. Cope; D. Tong);

Increased transparency of emission data generation:
» Transparency along the data flow from input data to emission algorithm to

Scientifically measureable improvements (data, algorithms, or parameterization);
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Less expensive way to update emission inventories;

Increased flexibility for forecasters and air quality managers;

Air Resources Laboratory
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Challenge: Which Dataset to use

Data Source: NASA Giovanni: http://disc.sci.gsfc.nasa.gov/giovanni
MODIS Deep Blue MODIS Collection 5
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The remote sending community needs to build Consensus for users;
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# observations

Isoprene Emissions
+ Isoprene emissions very sensitive to diffuse coefficient K ,q,:

H max = (—In(?)/Km)
0

P = SA*H max*[Chl —a]*EF * """ In(1)*dh

< Some existing K,,4, algorithms:

1. NASA previous operational algorithm (Mueller, 2000);

2. Revised Mueller algorithm (J. Werdell, online 2005);

3. NASA current operational algorithm (Morel et al., 2007);
4. NOAA’s new Kd490 algorithms: (Wang et al., 2009).
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Work closely with data providers to understand theeuncertainty in the input data.
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New Direction Article
Atmospheric Environment (in press)

Atmospheric Environment xxx (2011) 1-2

journal homepage: www.elsevier.com/locate/atmosenv

Contents lists available at SciVerse ScienceDirect

Atmospheric Environment

I :

ATMOSPHERIC
ENVIRONMENT

DIRECTIONS

New Direction: The need to develop process-based emission forecasting models

Air quality forecasting, also known as chemical weather fore-
casting, is a rapidly expanding science and technological discipline.
Traditionally, weather forecasting predicts the physical state and
tendency of the weather in the near future. Since the beginning
of the industrial revolution, human impacts on the atmosphere
have increased to such a high level that the composition of the atmo-
sphere is distinctly different from that in the past (Horowitz, 2006).
Most noticeably, the use of fossil fuels has spewed millions of tons of
waste gases and particles into the atmosphere. These gases and
particles are chemically transformed in the presence of sunlight
to form secondary pollutants that, together with directly emitted
pollutants, pose serious threats to human health and to the well-

individual sources are no long available in the emission inventories.
Instead, emission processing is used to reconstruct such characteris-
tics based on precompiled profiles. Such practices not only leave
large uncertainties unknown and unexplored for years, but also
delay advances in emissions science.

In light of these current realities, emissions science needs to
be brought to a higher level to meet the specific requirements of
air quality forecasting. Meteorological and chemical models are built
by using a physically based approach for all known and computa-
tionally implementable processes that control the evolution of phys-
ical or chemical states of the atmosphere. Such a process-based
modeling approach has been used to generate emission data for

Air Resources Laboratory
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Emission Forecasting WorkGroup

Collaboration essential to the success!

Want to contribute or be kept in loop? Email us:
Daniel.Tong@noaa.gov
Pius.Lee@noaa.gov

Rick.Saylor@noaa.gov
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