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Information sources on fires

 In-situ observations and fire monitoring

> pretty accurate when/where available

> costly and incomprehensive in many areas with low population
density

 Remote sensing products

> burnt area inventories on e.g. monthly basis (registering the sharp
and well-seen changes in the vegetation albedo due to fire)

hot-spot counts on e.g. daily basis (registering the temperature\
anomalies)

fire radiative power/energy and similar physical guantities on e.g
daily basis (registering the radiative energy flux) )

e Impact on air quality is highly dynamic, thus temporal
resolution play a key role



Fractionation of the fire energy

For moderate fires, the total energy
release splits:

e= Radiation (40%) + Convection (50%)
+ Conduction (10%)

« The splitis valid for a wide range of
fire intensity and various land use

types

(A.1.Sukhinin, Russian Academy of Sciences,

V.N.Sukachev Forest Institute, Krasnoyarsk,
Russia)

Empirical formula for total rate of
emission of FRP:

Ef = 4.34*101° (T,8- T,.8) [MWatt per
pixel]

T, 4 IS fire and background brightness
temperatures at
3.96 um (Kaufman et al,1998)

Fuel consumption (kg/m?®)
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Emission scaling

« Satellite(s) observe both fire
itself and the resulting plume

« Horizontal dispersion is
evaluated via transport
simulations

« Empirical emission factors for
TA/FRP-to-total PM based on
land use type (Sofiev et al,
2009)

e Speciation is assumed mainly

from laboratory studies Transport
(Andreae and Merlet, 2001) & scaling
. FAS output: gridded daily estimation

emission data

P
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Fire emissions database: available, 2000 »
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Why the rise ?

e Terra-only time series do not show jump...
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Reason for jump: overpass timing over Africa %
« Diurnal variations in both fire intensity and number of fires

> correlate with satellite overpass times

 More overpasses will still see more fires

TERRA: 8:50 and 21:20 AQUA: 00:10 and 12:40

hipsfferererssecowise edu/datacenter/ierra
10:45
22:45
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SEVIRI: source of diurnal variation data

» Geostationary satellite

alpha2
250

> 15 minutes temporal
resolution

> ~20km pixel size in Southern '
Europe >> ~1.5km of MODIS

FRP

« Example: diurnal variation of
FRP

> lItaly, July 2007

« Depends on both fire intensity 0 ; - .
and number of fires in SEVIRI
gridcell
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Adjustment of African FRP observations

e Diurnal variation of fires applied to the MODIS observed
FRP to obtain the daily-total radiative energy release

Original After correction

Europe




Impact on European totals

Total PM, 2005, before correction
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Plume rise from fires: motivation

e Strong dependence of injection height on:
> fire features (size, intensity)
> meteorological parameters (ABL height, stratification)
« Doubtful applicability of existing plume-rise algorithms

» empirical formulas and 1D models were not developed and
evaluated for very wide plumes

 Most of AQ models simply assume constant injection
height

> Wide range of guesses from 0.5km up to 5km



Suggested methodology

« Semi-empirical approach (Sofiev et al, 2011, ACPD)

> Analytical derivation of form of the dependencies considering:

— rise against stratification

— widening due to outside air involvement

> Modification of the analytical solution keeping main dependencies
but involving a series of empirical constants

> MODIS fire FRP + MISR plume top datasets for calibration and
evaluation of the constants

 Final formulation:

YV
FRP N *
Hipp =aH s, +,B[ FRPOJ EXP(5N—OZJ

a=0.22;, p=260m; y=0.27; 6=0.15;
FRP, =IMW; N; =2.4-10"sec™
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Plume rise evaluation, inter-comparison
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Is wind speed important?

The error of the method does not correlate with the wind

speed

Error of the height prediction
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Application: global injection height distribution

e Motivation:
> request from AEROCOM community

> nhecessity to accompany the FAS emission database with injection
height information

* Brute-force approach:
> MODIS active fires
> ECMWEF archived meteorological data
> Injection height computed and averaged-up

> result: space- and time- resolving vertical injection profile



lotitude [deg)
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Top of the plume
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-Eurasia and North America are more reasonable
-fire regions are realistic
-eliminated spots of extremely high plumes
-but:
-Alaska is missing (too few fires in 2001, 2008)
-Africa is noticeably higher — and no MISR verification available



Injection profile, zonal average

e Assumption:

> 80% is emitted from 0.5H
> 20% below 0.5H

till H
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Summary

Fire Assimilation System (FAS) v.1.2: scaling MODIS
Collection 5 Temperature Anomaly (TA) and Fire
Radiative Power (FRP)

Diurnal variation of both fire intensity and the number of
fires correlate with Terra and Aqua overpasses

FRP diurnal variation curve extracted from SEVIRI was
applied to MODIS-Aqua and Terra FRP

> Significant impact in Africa, where previously MODIS-Terra and
Agua estimates differed noticeably

A methodology for estimating the plume injection height
from wild-land fires has been developed and validated
against MISR dataset

The plume-rise method was used to obtain global space-
and time-resolving injection profiles for wild-land fires
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Thank you for your attention !
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SILAM fire plume forecasts:


http://silam.fmi.fi/�

Modification of Briggs’ formulas

He

_16 Fl/3 (3.5X*)2/3U -1
2.4(F/Us)”
5 Fl/4s—3/8

(21.4F¥*U, neutral, unstable, F <55m*sec
38.7F*°*U™, neutral, unstable, F >55m*sec™

2.4(F/Us)”, stable, U >0.5 msec™

| 5FY*s®, stable, U <0.5 msec™

o Switch from internal “stack” parameters to the fire power
P;, then to FRP
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