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Up to 90% of submicron aerosol mass is composed of organics  
(Kanakidou et al., 2005; Zhang et al., 2007) 

SOA formation is quite rapid (within a few hours) during daytime  
(Volkamer et al., 2006; Kleinman et al., 2007; de Gouw et al., 2008)   

SOA from oxidation of SVOCs from diesel exhaust may help explain some of 
the missing organic aerosol mass in models (Robinson et al., 2007) 

Observed rapid growth of newly formed particles (via homogeneous nucleation) 
is thought to be by SOA condensation (Kuang et al., 2008) 

Anthropogenic and biogenic SOA precursors may interact to enhance the 
overall SOA yield (Weber et al., 2007) 

Particle-phase reactions of absorbed VOCs within inorganic particles can form 
SOA (Jang et al., 2003; Kroll et al., 2005; Liggio et al., 2005) 

Accretion reactions, including aldol condensation, acid dehydration, and gem-
diol condensation can transform VOCs into oligomeric compounds  
(Gao et al., 2004; Jang et al., 2003; Kalberer et al., 2004) 

SOA Formation Processes 
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Gas-particle partitioning processes are still poorly understood at a 
fundamental level 

How do we handle the complexities in the gas-phase VOC chemistry? 

Should we use Raoult’s Law or some sort of reactive uptake formulation 
as driving force for gas-particle mass transfer? 

Should we use Henry’s Law if the organics are dissolved in the aqueous 
phase? 

Are the organic particles liquid or solid? Virtanen et al. (2011) and Vaden 
et al. (2011) suggest that SOA particles are solid. 

How do we treat organic-inorganic interactions and the associated phase 
transitions? 

How do we treat particle-phase reactions? What are the time scales? 

What are the anthropogenic-biogenic interactions? How do we reliably 
represent them in models? 

SOA Modeling Challenges 
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General Problem Solving Approach 

Develop a comprehensive aerosol model framework that includes all the 
processes that we think are (or might be) important 

Evaluate the roles of specific processes using appropriate laboratory and 
field observations 

Simplify, parameterize, and optimize the process model as much as 
possible to increase computational efficiency and decrease memory 
requirements 

 



MOSAIC Aerosol Module 

Model for Simulating Aerosol Interactions and Chemistry  
(Zaveri et al., 2008) 
Comprehensive aerosol module for air quality and climate modeling 
Flexible framework for coupling various gas and aerosol processes 
Robust, accurate, and highly efficient custom numerical solvers for 
several processes 
Suitable for 3-D regional and global models 
Implementation in: 

Weather Research and Forecasting Model (WRF-Chem) – done 
Global model: Community Atmosphere Model (CAM5) – in progress 
EPA’s CMAQ – planned 



Thermodynamics & Mass Transfer 
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Organic-inorganic interactions 
within the particle to determine 
water uptake and phase separation 
(partially implemented) 

Size-distributed, dynamic mass 
transfer between gas and particles 

Raoult’s Law in the absence of 
aqueous phase (implemented) 

Reactive uptake that instantly 
converts VOC to non-volatile  
products (implemented) 

Henry’s Law in the presence of 
aqueous phase (future) 

Particle-phase reactions (future) 

Gas-Particle Partitioning of Organics 
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Raoult’s Law vs. Reactive Uptake 

HC + oxidant  α1 G1 + α2 G2 

dGi 
 dt      

xi = mole fraction 

vapor 
pressure 

A1    A2 

= -ki (Gi – xiPi
0) 

Raoult’s Law Based Mass Transfer 

HC + oxidant  α1 G1 + α2 G2 

dGi 
 dt      

A1    A2 

= -kiGi 

Reactive Uptake Mass Transfer 



Sample Results 

Idealized Case 

Sacramento Urban Air Case 
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Sacramento June 6, 2010 

Initial aerosol composition: mass ratio OA/(NH4)2SO4 = 10 
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Sacramento June 6, 2010 

Initial aerosol composition: mass ratio OA/(NH4)2SO4 = 10 
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Sacramento June 6, 2010 

Initial aerosol composition: mass ratio OA/(NH4)2SO4 = 10 
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Sacramento June 6, 2010 
Aitken mode mass ratio OA/(NH4)2SO4 = 10 

Accumulation mode mass ratio OA/(NH4)2SO4 = 0.01 
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Sacramento June 6, 2010 
Aitken mode mass ratio OA/(NH4)2SO4 = 10 

Accumulation mode mass ratio OA/(NH4)2SO4 = 0.01 



Future Directions 
Perform additional constrained Lagrangian model analyses to 
test different SOA formation mechanisms 

Use carefully designed chamber experiments to constrain and 
evaluate different formulations 

Extend model analyses to mixtures of organic and inorganic 
species at different relative humidities 

Implement and evaluate new SOA formulations in WRF-Chem 
using urban to regional field observations 
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Thank you for your attention 
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