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Method:

The temporal and spatial distribution of air pollution and
boundary layer height over the Chesapeake Bay Is analyzed
using ship- and aircraft-based observations obtained during
the DISCOVER-AQ and GeoCAPE-CBODAQ field
campaigns during July 2011 and the NOAA experimental
WRF-NMM-CMAQ modeling system. Airborne High
Spectral Resolution Lidar (HSRL) observations of boundary
layer height from the NASA UC-12 aircraft; in-situ P-3B
alrcraft profiles of O5;, NO, and NOy mixing ratios; and ship-
based in-situ O, NO and NOy mixing ratios are analyzed
alongside the I\OAA experimental WRF-NMM-CMAQ
modeling system. Model biases and future work on how to
Improve regional air quality model simulations near a
coastline are identified.

Goals:

1) Gain a better understanding of boundary layer processes 3
and regional and local scale circulations on air quality In a "
polluted marine boundary layer.

2) ldentify regional air quality model deficiencies for future
work on improving model simulations.
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upward at the bay breeze convergence zone. Pollutants lofted
above the boundary layer have a longer lifetime than
pollutants in the boundary layer, and can then more efficiently
be transported downwind, having a larger impact on climate
and air quality farther away from the source. Improving air
guality model simulations near a coastline and over a polluted
marine boundary layer will not only improve model results
over the water, but also inland, near the coastline, and
downwind of the region due to bay breeze effects.

Significance:

A bay, sea, or lake breeze can exacerbate air pollution levels.
When the regional scale wind Is offshore in the morning,
onshore pollutants are transported offshore. After a bay
breeze develops, the pollutants over the water are then
transported back onshore and converge with more pollution
over land near the bay breeze convergence zone contributing
to high concentrations. In addition, pollutants are lofted

Results: July 20: Figure 5: O;, NO, and NOy observed (aircraft in-situ

July 11:

Figure 1: Ship track and observed and simulated surface
O,, NO, and NOy concentrations. CMAQ has high O,
NO and NOy biases compared with observations.

Figure 3: Ship track and observed and simulated surface
O,, NO, and NOy concentrations. Better agreement
between observed and simulated O, and NO than on July
11. However, CMAQ’s high NOy Euas persists throughout

profiles and ship in-situ surface concentrations; black) and
CMAQ (red) simulated profiles over the ship in the
Chesapeake Bay at Location 1 shown In Figure 3.
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concentrations
around 980 hPa
suggests a lifting
mechanism IS
transporting
pollution aloft
from the surface.
This may be due
to a weak bay
breeze.
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Large vertical
pollutant
concentration
gradient observed
near the surface IS
not captured by
CMAQ. This
suggests CMAQ
may have too
much mixing In
the stable marine
boundary layer.
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Figure 4: WRF-NMM minus HSRL-observed PBL

heights. CMAQ PBL heights have a smaller low bias
(100-500m) than on July 11 over the Chesapeake, which P00
coincides with better agreement between observed and 700

Figure 2: WRF-NMM minus HSRL-observed PBL

heights. CMAQ PBL heights have a high bias over land
and a large low bias (500-1,300m) over the Chesapeake,
which contributes to CMAQ’s high surface O, NO, and
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boundary layer. CMAQ-simulated NOy concentrations
have a large high bias compared to observations
throughout the observed profile.
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