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                                Links with 
 SPARC Data Assimilation workgroup 
 SPARC Data Initiative workgroup 
 SPARC Renanalysis workgroup 
 SPARC High-Energy-Particle Precipitation  
                  in the Atmosphere (HEPPA) workgroup 
 Ozone-CCI (Climate Change Initiative) 

Multi-disciplinary 
 Chemical Data Assimilation 

 Observations 

 Chemical transport modeling 

 Diagnostics 

 Processes 

 Ozone-radiation interaction 
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Chemical Data Assimilation (CDA) 
 
CDA for reanalysis 
• integrate multi-species from multi-sensors  
• resolve sampling issues 
 
CDA to estimate ozone loss 
• discriminate transport effects from chemistry effects 
 
CDA to capture poorly modeled processes 
• capture production and transport (descent) of NO2 
 
CDA as an initial value estimation 
• Stratospheric  ozone forecast  
 
CDA coupling to NWP 
• Weak coupling:  ozone-radiation interaction 
• Strong coupling:  tracer observations to determine winds 
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Core CDA system for the project 
• Belgium CTM with 4D-Var full chemistry , 
              EnKF tracer ,  
                                       EnKF full chemistry 
 
• Optimality tuned error statistics  
        In observation space : χ2 , Desroziers ,  
        In model space :  NMC , Perturbed assimilation cycles (Fisher 2003) 

 
• Share same elements as the Canadian meteorological DAS 

• Non separable spectral error correlations 
• Observation perturbation EnKF 

 
• Sequential filter – tracer using Prather scheme 

 
• Canadian NWP model GEM with 3D-Var.  Linearized ozone chemistry 
                                                                                Belgium CTM chemistry 
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Improvement in error covariances 
• spectral error covariances (non-separable) 
 
• tuning of the error variances 

Errera and Ménard (2012) ACP 
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Belgian  Assimilation  System  for Chemical ObsErvations – Var  (BASCOE-4Dvar) 
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Improving REAN01  ( towards REAN02 ) 

Comparison of CDA when assimilating different instruments 
• MLS  and  MIPAS 
• N2O and CH4 

 

Importance of 
• B - background error covariance.  Has been re-estimated 

 
 
 
 
 

 

          the background differences have the same correlation 
          structure as B but twice the error variance 
• Averaging kernels 
o Quality control 
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• N2O analysis at 100 hPa for different config of BASCOE 
=> AK and calibrated B are important 

9 

Impact of Averaging kernels and calibration of B : N2O  MIPAS 



Time stability of reanalysis:  Assim N2O  MIPAS  vs Assim N2O  MLS 

• Time series of reanalysis is “noisy” at some dates 
• This noise is due to noisy MIPAS data 
• Quality control of O-F still needed 
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Impact of averaging kernels for CH4 MIPAS 
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N2O-CH4 correlations in 2010 between 30°S-30°N 
• Using AK and calibrated B, correlations are much compact, in particular in the 

lower stratosphere 
• Better agreement with ACEFTS 
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BASCOE – EnKF   

EnKF            •  Using same CTM and framework as BASCOE-4DVar   
                     • Observation perturbation method  (Houtekamer and Mitchell  2001) 
                        with additive model error    

Skachko et al (2014) GMD 

Comparison EnKF-4DVar tracer (O3 assimilation) 
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Assimilation of ozone as passive tracer transport, using the same input errors and with model  
error the EnKF and 4D-Var solutions gives nearly identical O-P zonal statistics, but the EnKF 
analyses are somewhat smoother than the 4D-Var analyses  



BASCOE - EnKF 

BASCOE – 4D-Var 
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Assimilation of nadir  observations : Ozone deficit (< 220 DU) 
 
30 year reanalysis.  van der A (ACP) 2010  
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Emerging new methodology using limb sounding measurements 

Using an accurate transport model 
- Prather  2D isentropic 
- Vertical upwind scheme driven by diabatic heating  

 
Estimation method 
• Estimates of the chemical ozone loss 

(Rosevall et al. 2007, Sagi et al., ACP 2014) 

ODIN SMR limb measurements 
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Chemical ozone loss  - vortex mean average (70- 90 equivalent latitude s) 

Antarctic ozone loss  - from December 1st  

Arctic ozone loss  - from August 1st  

Another method based on analysis increments (and thus does not requires accurate 
long-range transport is under development  



EPP produces NOx continually, but transport 
downwards into stratosphere involves interplay 
with dynamics 

Energetic particle precipitation impact on the middle atmosphere 

• EPP contribute up to 10% of the stratospheric budget (40% polar regions) 
• Not well modeled by comprehensive models 
• EPP-NOx interfere with catalytic cycles involving O3 
• Changes in O3 can lead to changes in temperature and predictability 



 Robichaud and Ménard (ACP, 2010) 

Can we assimilate when there is model error bias 
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Works well for EPP-Indirect effect (slow time scale).   EPP direct effect  would  require 
   a bias estimation and correction scheme. 
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de Grandpré et al., Mon. Wea. Rev., 2009 : 
• MIPAS assimilation of ozone 
→ big improvement of T forecast skill in lower strato: 

 Anomaly Correlation, N.H. (20°N-90°N), 20030811 - 20030905 



Forecast verification against analyses 
BIRA:  Comprehensive chemistry 
LINOZ: Linearized chemistry 
FK : Ozone zonal monthly climatology 

--- BIRA  --- LINOZ   ---- FK

Temperature (K)

50 hPa

(NH)

Ozone (ppmv) 

50 hPa

(NH)

___ RMSE

----- BIAS
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We have improvement  50 hPa and higher up.  But lower down 
at 100 hPa  - the reverse is observed 

No clear why.?  MIPAS observations at 100 hPa.   
 Other  radiative processes  cancellation of errors 

Forecast verification against analyses 
BIRA:  Comprehensive chemistry 
LINOZ: Linearized chemistry 
FK : Ozone zonal monthly climatology 



Tracer-Wind using 4DVar:   increment from different species 
CH4 O3 

N2O Together 

24 

Using  1x1° Canadian NWP GEM model  



Wind increments from TOVS and chemical species are of comparable magnitude  
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O-P temperature time series between RAOBS and the 3D-Var (blue) and 
4D-var (red) assimilation cycles at 20 hPa in the North Hemisphere. 

The strong coupling DA between chemistry-tracer and meteorology 
has introduced a temperature bias that increases in time 
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Summary and outlook 
 
• The CDA methodology is improving.  A more effective  
    use of observations can be achieved by improving error covariances, 
    adding retrieval consistency in the observation operator, and  
    quality control, we are thus moving  towards an effective  
    multi-species multi-instruments integration 
    that can be useful to address science question   
• Methodologies based on  CDA are being developed to estimate 
    missing processes (e.g. ozone loss).  
• Coupling with NWP 

o Ozone –radiation interaction have been shown to have an impact 
               on lower stratospheric temperatures on the meteorology 
              with a linearized chemistry scheme.   However the improvement 
              is not seen in LS/UT region so further work need to be  
              conducted to improve medium-range NWP  

o  Tracer-wind.  Analysis increment on winds are consistent and significant 
       (compared with increments due to temperature observations).  However, 
      temperature biases develops over time.   
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Papers in preparation 
 
• Added-value of stratospheric chemical data assimilation.  An overview. 
      BAMS ?.   Menard et al. 
 
• Reanalysis of  stratospheric chemical composition based on MIPAS N2O and 
      CH4.  ACP.  Errera et. al. 
 
• The long-term study of polar ozone loss observed by Odin/SMR.   
      ACP.  Sagi et al.  
 
• Evaluation of modelled ozone in the upper stratosphere and lower mesosphere 
     with a state-of-art chemistry transport model.  ACP.  Skachko et al. 
 
• Comparison of EnKF and 4D-Var data assimilation systems of multi-species 
      chemistry transport model.  GMD. Skachko et al. 
 
• Ozone predictability in a numerical weather prediction model.  De Grandpré et al. 
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Extra slides 
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Ozone chemical life-time 

• 𝜏𝜏 is more than one week , below 10 hPa 
• 𝜏𝜏  > one day , below 4 hPa 

for mid and lower stratosphere we can treat ozone as a tracer  

(figures from Jean de Grandpré) 
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Diagnostics – multiple sensor 

ISSI:   -  Analysis of short-lived species to validate CCMI models   
           -  Assimilation as a transfer standard for comparison between data-sparse instruments            
                 

Errera and Ménard (2012) ACP 
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No assimilation 

MLS assimilation 

GOME assimilation 

Column 
ozone  

Ozone forecast predictability 
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